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Abstract 
This paper proposes a systematic method to design general integral control with the generic inte-
grator and integral control action. No longer resorting to an ordinary control along with a known 
Lyapunov function, but synthesizing singular perturbation technique, mean value theorem, stabil-
ity theorem of interval matrix and Lyapunov method, a universal theorem to ensure regionally as 
well as semi-globally asymptotic stability is established in terms of some bounded information. Its 
highlight point is that the error of integrator output can be used to stabilize the system, just like 
the system state, such that it does not need to take an extra and special effort to deal with the 
integral dynamic. Theoretical analysis and simulation results demonstrated that: general integral 
controller, which is tuned by this design method, has super strong robustness and can deal with 
nonlinearity and uncertainties of dynamics more forcefully. 
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1. Introduction 
Integral control [1] plays an important role in practice because it ensures asymptotic tracking and disturbance 
rejection when exogenous signals are constants or planting parametric uncertainties appear. However, integral 
control design is not trivial matter because it depends on uncertain parameters and disturbances. Therefore, it is 
of important significance to develop the design method on the integral control. 

In 2009, for overcoming the restriction of traditional integral control, the idea of general integral control 
firstly was proposed by [1], which presented some general integrators and controllers. However, their justifica-
tion was not verified by mathematical analysis. General integral control designs based on linear system theory, 
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sliding mode technique and feedback linearization technique were presented by [2]-[4], respectively. The main 
shortage of these design methods proposed by literature [2]-[4] is that they were all achieved by using a kind of 
particular integrator and linear integral action, which are a serious obstruction to design a high performance 
integral controller. In addition, general concave integral control [5], general convex integral control [6], con-
structive general bounded integral control [7] and the generalization of the integrator and integral control action 
[8] were all developed by resorting to an ordinary control along with a known Lyapunov function. This results in 
that design methods presented by [5]-[8] are all suspended in midair. Thus, it is a very valuable and challenging 
problem to establish a solid foundation for designing general integral control with the generic integrator and 
integral control action. 

Motivated by the cognition above, this paper proposes a systematic method to design general integral control 
with the generic integrator and integral control action. The main contributions are that: 1) By mean value theo-
rem, the nonlinear actions in the subsystem and integral dynamics are all reformulated as the linear forms on the 
interval matrix such that stability theorem of interval matrix can be used to deal with them; 2) The error of inte-
grator output can be used to stabilize the system, just like the system state, such that it does not need to take an 
extra and special effort to deal with the integral dynamic; 3) No longer resorting to an ordinary control along 
with a known Lyapunov function, but synthesizing singular perturbation technique, mean value theorem, stabil-
ity theorem of interval matrix and Lyapunov method, a universal theorem to ensure regionally as well as semi- 
globally asymptotic stability is established in terms of some bounded information. Consequently, this universal 
theorem is not suspended in midair but is developed with a solid foundation. Moreover, simulation results 
showed that general integral controller, which is tuned by this design method, has superstrong robustness and 
can deal with nonlinearity and uncertainties of dynamics more forcefully. 

Throughout this paper, we use the notation ( )m Aλ  and ( )M Aλ  to indicate the smallest and largest eigen-
values, respectively, of a symmetric positive defined bounded matrix ( )A x , for any nx R∈ . The norm of vector x  

is defined as Tx x x= , and that of matrix A is defined as the corresponding induced norm ( )T
MA A Aλ= .  

For two n m×  matrices A and B, A B≥  denotes element-by-element inequality. A family of interval matrices 
is defined as, 

( ), :n mA A A R A A A× Λ = ∈ ≤ ≤   

where ijA a =    and ijA a =    are fixed matrices. The family Λ  is described geometrically as hyperrec-
tangle in the space n mR ×  of the coefficients ija . We say that a n nR ×  family matrix Λ  is Hurwitz stable if 
every A∈Λ  is Hurwitz stable. 

The remainder of the paper is organized as follows: Section 2 describes the system under consideration, as-
sumption and definition. Section 3 addresses the design method. Example and simulation are provided in Sec-
tion 4. Conclusions are presented in Section 5. 

2. Problem Formulation 
Consider the following controllable nonlinear system, 

( )
( ) ( )

,

, , , ,
x

z

x f x z

z f x z w g x z w u

=


= +





                              (1) 

where nx R∈  and mz R∈  are the states; mu R∈  is the control input; lw R∈  is a vector of unknown constant 
parameters and disturbances. The partial derivative of function xf  on ( ),x z  is bounded in the control domain 

n m
x zD D R R× ⊂ × , and ( )0,0 0xf = . The functions, zf  and g are continuous in ( ), ,x z w  on the control do- 

main n m l
x z wD D D R R R× × ⊂ × × . We want to design a control law, u  such that ( ) 0x t →  and ( ) 0z t →  

as t →∞ . 
Assumption 1: There is a unique pair ( )00,0,u  that satisfies the equations, 

( ) ( ) 00 0,0, 0,0,zf w g w u= +                               (2) 

so that 0x z= =  is the desired equilibrium point and 0u  is the steady-state control that is needed to maintain 
equilibrium at 0x z= = . 
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Assumption 2: No loss of generality, suppose that the functions ( ), ,zf x z w  and ( ), ,g x z w  satisfies the 
following inequalities, 

( ) ( ), , 0,0,
z z

x z
z z f ff x z w f w l x l z− ≤ +                           (3) 

( ), , 0g g x z w g≥ ≥ >                                       (4) 

( ) ( ), , 0,0, x z
g gg x z w g w l x l z− ≤ +                             (5) 

for all xx D∈ , zz D∈  and ww D∈ . where 
z

x
fl , 

z

z
fl , x

gl  and z
gl  are all positive constants. 

Definition 1: ( ), , ,F a b c xφ φ φ φ  with 0aφ > , 0bφ >  and nx R∈  denotes the set of all continuously diffe-
rential increasing functions [8], 

( ) ( ) ( ) ( ) T
1 1 2 2 n nx x x xφ φ φ φ =    

such that 

( )0 0φ = , 

( )      :i i i ix b x R x aφ φφ ≥ ∀ ∈ >  

( ) ( )d d 0     1, 2, ,i i i ic x x x R i nφ φ≥ > ∀ ∈ =  . 

where   stands for the absolute value. 
Figure 1 depicts the example curves of one component of the functions belonging to the function set Fφ . For 

instance, for all x R∈ , the functions, ax ( )0a > , ( )tanh x , ( )arcsinh x  and so on, all belong to function set 
Fφ . 

Definition 2: ( ), ,v vF c x z  with 0vc > , n
xx D R∈ ⊂  and m

zz D R∈ ⊂  denotes the set of all integrable func- 
tions [8], 

( ) ( ) ( ) ( ) T
1 2, , , ,nv x z v x z v x z v x z=     

such that 

( ) ( )
( ) ( )

( )
( ) ( ), , , ,

, ,
,

x z x z
i i i i

i i
i

x z x z

v x z v x z
v x z x z

x z
ς ς ς ς= =

∂ ∂
= +

∂ ∂
, 

( )
( ) ( )

( )
( ) ( ), , , ,

, 0
x z x z
i i i i

i i
v

x z x z

v x v x
c

x z
ς ς ς ς= =

∂ ∂
≥ >

∂ ∂
 

 

 
Figure 1. Example curves of one component of the functions be-
longing to the function set Fφ . 
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hold for all 1, 2, ,i n=  , and ( ),x z
i iς ς  is a point on the line segment connecting ( ),x z  to the origin. 

Figure 2 depicts the example curves of one component of the functions belonging to the function set vF . For 
instance, for all ( )1,1x∈ − , and ( )1,1z∈ − , the functions, 3x z+ , ( ) ( )tanh sinhx z+ , ( )sinh 2x z+ , and so 
on, all belong to the function set vF . 

3. Control Design 
In general, integral controller comprises three components: the stabilizing controller, the integral control action 
and the integrator, and then the general integral controller can be given as, 

( )( )
( ) ( )

1

,
x zu K x K z K

v x z
σε φ σ

σ β σ

− = − + +


= 
                            (6) 

where xK , zK  and Kσ  are the m × n, m × m and m × m gain matrices, respectively; ( ) ( ),i i i iv x zσ β σ= ; 
( ) 0i icβ β σ≥ >  ( )1,2, ,i m=  ; ε  is a positive constant; the functions ( )φ •  and ( )v •  belong to the func-

tion sets Fφ  and vF , respectively. 
Thus, substituting (6) into (1), obtain the augmented system, 

( )
( ) ( ) ( )( )

( ) ( )

,

, , , ,

,

x

z x z

x f x z

z f x z w g x z w K x K z K

v x z
σε ε φ σ

σ β σ

=
 = − + +


=







                    (7) 

By Assumption 1 and choosing 1Kσε −  to be nonsingular and large enough, and then setting 0z =  and 
0x z= =  of the system (7), we obtain, 

( ) ( ) ( )00,0, 0,0,zg w K f wσφ σ ε=                             (8) 

Therefore, we ensure that there is a unique solution 0σ , and then ( )00,0,σ  is a unique equilibrium point of 
the closed-loop system (7) in the domain of interest. At the equilibrium point, 0x z= = , irrespective of the 
value of w . 

Now, by Mean Value Theorem for each component of the vector function ( ),xf x z , we have, 

( ) ( )
( ) ( )

( )
( ) ( ), , , ,

, ,
,

x z x z
i i i i

xi xi
xi

x z x z

f x z f x z
f x z x z

x z
ς ς ς ς= =

∂ ∂
= +

∂ ∂
 

where 1,2, ,i n=   and ( ),x z
i iς ς  is a point on the line segment connecting ( ),x z  to the origin. 

For convenience, the function, ( ),xf x z  can be written as a compact formulation, that is, 

( ),
x x

x z
x f ff x z x zθ θ= +  

 

 
Figure 2. Example curves of one component of the functions 
belonging to the function set vF . 
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where, 

1 2 1 2

T T
,     

x x x xn x x x xn

x x x x z z z z
f f f f f f f fθ θ θ θ θ θ θ θ   = =     . 

Thus, by the bound of partial derivative of function xf  on ( ),x z , we can ensure that the matrices 
x

x
fθ  and 

x

z
fθ  belong to the families of interval matrices, respectively, that is, 

, ,     ,
x x x x x x

x x x z z z
f f f f f fθ θ θ θ θ θ   ∈ ∈    . 

In the same way, we obtain, 

( ) ( ) ( ) ( ) ( )0 0, ,     x z
v vv x z x z ϕβ σ θ θ φ σ φ σ θ σ σ= + − = −  

Therefore, by ( ) 0i icβ β σ≥ > , and Definitions 1 and 2, we have, 

, ,     , ,     ,x x x z z z
v v v v v v φ φ φθ θ θ θ θ θ θ θ θ     ∈ ∈ ∈      , 

and then substituting them and (8) into (7), obtain, 

( ) ( ) ( ) 1
0 0 0 0 0

x x

x z
f f

x z z z z

x z
v v

x x z

z gK x gK z gK f f g g g f

x z
σ φ

θ θ

ε θ σ σ ε ε

σ θ θ

−

 = +
 = − − − − + − − −


= +







              (9) 

where 

( ) ( ) ( ) ( )0 0, , ,   0,0, ,   , , ,   and  0,0,z z z zf f x z w f f w g g x z w g g w= = = = . 

Now, defining [ ]Tx 0σση −= , )(ηhzy −= , 

)()( 0
11 σσθη φσ −−−= −− KKxKKh zxz , 

and then the closed-loop system (9) can be rewritten as, 

( )

( )d ,
d y

A y
y y y

ηη η δ

εδ η
τ

 = +



= Λ +



                                  (10) 

where 
1 1

1 1
x x x

x z z
f f z x f z
x z z
v v z x v z

K K K K
A

K K K K
σ φ

σ φ

θ θ θ θ

θ θ θ θ

− −

− −

 − −
=  

− −  
, 

( )
0

00
x

z
f
z
v

y
yη

θ
δ

θ

   
=    

   
, 

zgKΛ = − , tτ ε= , and 

( ) ( ) ( ) ( )1
0 0 0 0,y z z zy f f g g g f hδ η η−= − − − −  . 

In the absence of ( )yηδ  and ( ),y yδ η , the asymptotic stability of the closed-loop system (10) can be 
achieved by designing the interval matrices A and Λ  are all Hurwitz stable [9]. Thus, by linear system theory, 
two quadratic Lyapunov functions, 

( ) T
AV Pη η η η=                                     (11) 

( ) T
yV y y P yΛ=                                     (12) 
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can be obtained, respectively. Where AP  and PΛ  are the solutions of Lyapunov equations T
A AP A A P I+ = −  

and TP P IΛ ΛΛ + Λ = − , respectively. It is obvious that AP  and PΛ  are all interval matrices, that is, 

,A A AP P P ∈    and ,P P PΛ Λ Λ ∈   . 

Based on the Lyapunov Functions (11) and (12), a composite Lyapunov function candidate [10] for the 
closed-loop system (10) can be written as, 

( ) ( ) ( ) ( ), 1     0 1yV y d V dV y dηη η= − + < <                        (13) 

Obviously, Lyapunov function candidate (13) is positive define. Therefore, our task is to show that its time 
derivative along the trajectories of the closed-loop system (10) is negative define, which is given by, 

( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( ) ( )T T T T T T

, 1

            1 1 1 , , .
y

A A y y A

V y d V dV y

d d P y d y P dy y dy P y d y P y
η

η η

η η

η η η δ δ η δ η δ ηΛ

= − +

= − − + − + − − + +

  

  (14) 

By definitions of ( )h η  and ( )φ σ , we have, 

( ) ( )1 1
z x zh K K x K Kση φ σ− −= − − 

  

( ) ( ) ( ) ( ) ( ),v x z
φ σ φ σ

φ σ σ β σ
σ σ

∂ ∂
= =

∂ ∂


  

and then substituting ( )φ σ , x , and ( )z y h η= +  into ( )h η , and using Assumptions 2, and Definitions 1 
and 2, we have, 

( ),
y y

y
y y yη

δ δδ η γ η γ≤ +                               (15) 

In addition, by ,
x x x

z z z
f f fθ θ θ ∈   , ,z z z

v v vθ θ θ ∈    and definition of ( )yηδ , obtain, 

( ) yy y
ηη δδ γ≤                                   (16) 

where 
y

η
δγ , 

y

y
δγ , and y

ηδ
γ  are all positive constants. 

Substituting (15) and (16) into (14), obtain, 

( ) ( ) ( ) ( )( )2 21 T
1 2, 1 2 1V y d d y d d y Qη η ε γ β β η ξ ξ−≤ − − − − + − + = −          (17) 

where 

( )
( )

( ) ( )
( ) ( )

1 ,

2 ,

T

1 2

1
1 2

,   Max ,

,   Max ,

2 ,    ,

1 1
.

1

A A A

y

y

y
AP P P

y y P P P

y
y

P P P

P P P

P y

d d d
Q

d d d

ηδ η η

η
δ

δ

β γ

β γ

γ γ ξ η

β β

β β ε γ

Λ Λ Λ

 ∈ 

Λ ∈ 

−

= =

= =

= =   

− − − 
=  

− − −  

 

The right-hand side of the inequality (17) is a quadratic form, which is negative define when, 

( ) ( ) ( )( )21
1 21 1d d d dε γ β β−− − > − +                            (18) 

which is equivalent to, 

( )
( ) ( )( )2

1 2

1

1 1
d

d d

d d d d
ε ε

γ β β

−
< =

− + − +
                          (19) 
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By the dependence of dε  on d , it is obvious that the maximum value of dε  occurs at ( )1 1 2d β β β∗ = +  
[10] and is given by, 

1 2

1
4dε ε

γ β β
∗ < =

+
                                 (20) 

It follows that the origin of closed-loop system (10) is asymptotically stable for all ε ε ∗< . Consequently, by 
0η =  and 0y = , we have 0x = , 0σ σ=  and ( ) 0z h η= = . This means that the closed-loop system (7) is 

asymptotically stable, too. This established the following Theorem. 
Theorem 1: Under Assumptions 1 and 2, if there exist gain matrices xK , zK  and Kσ  such that the inter-

val matrices A  and Λ  are all Hurwitz stable and the following inequality, 

( )( ) ( )0,0,m mg K a f wσ φλ φ ε>                            (21) 

holds to ensure that there exist positive constants dε  and ε ∗ , and then ( )00,0,σ  is an exponentially stable 
equilibrium point of the closed-loop system (7) for all ε ε ∗< . Moreover, if all assumptions hold globally, and 
then it is globally exponentially stable. 

Discussion 1: It is not hard to see that: Just using singular perturbation technique, two key points in stability 
analysis are solved, that is, one is that it decomposes the whole system into two interconnection subsystems such 
that it is very easy to obtain two quadratic Lyapunov functions; another is that it derives the condition on the 
controller gains to ensure the asymptotic stability. Therefore, although mean value theorem, stability theorem of 
interval matrix, singular perturbation technique and Lyapunov method are all indispensable components, singu-
lar perturbation technique plays a decisive role. This is why our design method is called as singular perturbation 
one. 

Discussion 2: By special concerns of the equation η  and its matrix A , it is not hard to find that the error of 
integrator output 0σ σ−  appears in not only the system dynamic x  but also the integral dynamic σ . This 
results in that integral dynamic σ  has the same formulation as the system dynamic x . Thus, the error of inte-
grator output can be used to stabilize the system, just like the system state x . This means that in stability analy-
sis, the integral dynamic plays a positive role and it does not need to take an extra and special effort to deal with 
it. As a result, this is a highlight point of this paper. 

Discussion 3: Compared with general integral control proposed by [2]-[8], the main differences are that: 1) 
The integrator and integral action here are all generalized by two function sets, respectively. However, they are 
all particular in [2]-[4]; 2) As like reference [7], the integrator here increases a positive define vector function 
( )β σ  on base of the integrator presented by [8], which can be used as an additional freedom of degree to im-

prove the integrator performance. However, it is not completely freedom and mainly used to construct the bound 
condition in [7]; 3) Control design here is achieved by synthesizing singular perturbation technique, mean value 
theorem, stability theorem of interval matrix and Lyapunov method. However, in reference [2]-[8], the designs 
are achieved by linear system theory, sliding mode technique, feedback linearization technique and Lyapunov 
method, respectively; 4) For the stability analysis, the integral dynamic here not only plays a positive role but 
also its negative effects can be effectively attenuated by decreasing ε . However, the integral dynamics not only 
almost have not positive actions in [5]-[8] but also there no effective method was proposed to deal with its nega-
tive effects; 5) Theorem 1 is not suspended in midair but is established on a solid foundation. However, stability 
theorems [5]-[8] were all developed by resorting to an ordinary control along with a known Lyapunov function. 

Discussion 4: From the design procedure above, it is obvious that: First, the equation z  in (1) is transformed 
into the singular perturbation form such that singular perturbation technique can be used to attenuate the nonli-
nearities and/or uncertainties, ( ),y yδ η . Second, by mean value theorem, the nonlinear terms, ( ),xf x z , ( )φ σ  
and ( ) ( ),v x zβ σ  are all reformulated as the linear forms on the interval matrix such that stability theorem of 
interval matrix can be used to deal with them. Finally, by Lyapunov method, a universal theorem to ensure re-
gionally as well as semi-globally asymptotic stability is established in terms of some bounded information. All 
of them synthesize a systematic method to design general integral control with the generic integrator and 
integral control action. Specially, the error of integrator output can be used to stabilize the system, just like the 
system state x . All those mean that the design method here can more effectively deal with nonlinearity and 
uncertainty of dynamics, and then makes the engineers more easily design a stable controller. 
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4. Example and Simulation 
Consider the pendulum system [10] described by, 

sina b cTθ θ θ= − − +   

where ,  ,  0a b c > , θ  is the angle subtended by the rod and the vertical axis, and T  is the torque applied to 
the pendulum. View T  as the control input and suppose we want to regulate θ  to r . Now, taking x rθ= − , 
z θ=  , 3zk =  and 9xk kσ= = , general integral controller can be written as, 

( )( )( )
( ) ( )

1 9 3 9 tanh

5 sinh tanh

u x z

x x z z

ε σ σ

σ

− = − + + +


= + + + 
, 

and then the pendulum system with the normal parameters 10a c= =  and 1b =  can be written as, 

( )

( )d 30 ,
d y

A y
y y y

ηη η δ

εδ η
τ

 = +



= − +



                                 (22) 

where ,A A A ∈   , 

3 6
0 12

A
− − 

=  − 
, 

3 3]
13.6 6]

A
− − 

=  − 
, 

( )
1 0
2 0 0

y
yηδ

   
=    
   

, 

( ) ( ) ( ) ( )( )1, 3 3 10 sin siny y x z x r rδ η φ σ= + − − + −

 . 

By stability theorem of interval matrix [9], it is easy to verify that the interval matrix A  is Hurwitz stable. 
Thus, by solving Lyapunov equation T

A AP A A P I+ = −  and TP P IΛ ΛΛ + Λ = − , the maximum values of AP  
and PΛ  can be obtained, respectively, that is, 

0.177Pη ≤  and 0.034yP ≤ . 

and then using ( ), 104.5 14y y yδ η η≤ +  and ( ) 5y yηδ ≤ , we have, 

1 0.4β = , 2 1.74β =  and 0.47γ = . 

Therefore, the stability of the closed-loop system (22) can be ensured for all 0.3ε <  and [ ]π,πr∈ − . 
For illustrating the performance of controller above, the simulations are achieved under normal and perturbed 

parameters, respectively. The normal parameters are 10a c= =  and 1b = . In the perturbed case, b  and c  
are reduced to 0.25 and 2.5, respectively, corresponding to four times the mass. 

Figure 3 showed the simulation results under normal (solid line) and perturbed (dashed line) cases. The fol-
lowing observations can be made: the optimum response in the whole domain of interest can all be achieved by 
a set of the same control gains, even under the case that four times payload changes. This demonstrates that al-
though the design method here is too conservative, general integral controller, which is tuned by only the normal 
parameters, has superstrong robustness, fast convergence, and good flexibility and can deal with nonlinearity 
and uncertainties of dynamics more forcefully. 

5. Conclusions 
This paper proposes a systematic method to design general integral control with the generic integrator and 
integral control action. The main contributions are that: 1) By mean value theorem, the nonlinear actions in the 
subsystem and integral dynamics are all reformulated as the linear forms on the interval matrix such that stabili-
ty theorem of interval matrix can be used to deal with them; 2) The error of integrator output can be used to  
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Figure 3. System output under normal (solid line) and 
perturbed case (dashed line). 

 
stabilize the system, just like the system state, such that it does not need to take an extra and special effort to 
deal with the integral dynamic; 3) No longer resorting to an ordinary control along with a known Lyapunov 
function, but synthesizing singular perturbation technique, mean value theorem, stability theorem of interval 
matrix and Lyapunov method, a universal theorem to ensure regionally as well as semi-globally asymptotic sta-
bility is established in terms of some bounded information. Consequently, this universal theorem is not sus-
pended in midair but is developed with a solid foundation. 

Simulation results showed that general integral controller, which is tuned by this design method, has super-
strong robustness and can deal with nonlinearity and uncertainties of dynamics more forcefully. 
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