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Abstract 
In this paper, the one-dimensional time dependent Schrödinger equation is discretized by the 
method of lines using a second order finite difference approximation to replace the second order 
spatial derivative. The evolving system of stiff Ordinary Differential Equation (ODE) in time is 
solved numerically by an L-stable trapezoidal-like integrator. Results show accuracy of relative 
maximum error of order 10−4 in the interval of consideration. The performance of the method as 
compared to an existing scheme is considered favorable. 
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1. Introduction 
Numerical methods have played an important role in researches in physics. Most often Partial Differential Equa-
tions (PDEs) are used to model physical problems. Proficiency in the numerical approach to the solution of 
PDEs is a great tool in the hand of a mathematical physicist. According to [1], numerical methods of PDEs have 
played an important role in various areas of mathematical physics. In numerical relativity a set of highly nonli-
near systems of coupled differential equations of general relativity have to be solved under very general symme-
try conditions in order to predict the profile of gravitational waves expected to be observed by ground-based 
gravitational wave detectors. In Euler’s equation, the hydro-dynamical equations are solved by numerical me-
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thods in order to explain and predict astrophysical phenomena. In the evolution of a Bose condensate, the solu-
tion of the time dependent Schrodinger equation involved is sought for by numerical method. 

Schrodinger equation has a wide range of application in physics varying from optics, propagation of electric 
field in optical fibers, self-focusing and self-modulation of trains in monochromatic wave in nonlinear optics, 
collapse of Langmuir waves in plasma physics as well as modeling of deep water freak waves in ocean [2]-[4]. 
Reference [5], used the Schrodinger equation in modeling the 2004 Indonesian Tsunami while [6] used the 
Schrodinger equation in studying Bose-Einstein condensation using ultra cold neutral bosonic gases. Reference 
[7] used the Schrödinger wave equation in explaining the quantum behavior of a conventional wireless commu-
nication system. There exists therefore, the need for further researches seeking more accurate numerical ap-
proximations to the Schrödinger equation. 

In this paper, we shall discretize the 1-dimensional Schrödinger equation by the Method of Lines (MOL). The 
numerical solution of the resulting system of coupled stiff Ordinary Differential Equations (ODEs) shall be 
sought for using an L-stable implicit trapezoidal-like integrator. This paper is organized as follows. In Section 2 
we give a brief overview of the MOL. In Section 3 we discretize the 1-dimensional time dependent Schrödinger 
equation by the MOL under some assumptions. In Section 4 we discuss the stability property of the trapezoidal- 
like integrator. In Section 5 we show how absolute and relative errors are obtained in the computation and in 
Section 6 we discuss the results obtained.  

2. The Method of Lines 
A well-known numerical approach for solving a time dependent PDE, whose solutions vary both in time and in 
space, is the Method of Lines. In the Method of Lines approach to the solution of PDEs, the solution of the PDE 
is sought for in a finite domain with a time coordinate t and a spatial coordinate, x. The spatial coordinate is de-
fined as a discrete set of points given by jx j x= ∆ , and the boundaries correspond to the points 0x  and nx . 
Time, nt n t= ∆  is also defined only for certain values of the continuum time. Thus a function ( ),u x t  is de-
fined only for the values of x and t that correspond to points ( ), n

jx t  in the mesh by ( ), n
ju x t . For a uniformly 

discretized domain, 1i ix x x+∆ = −  and 1n nt t t+∆ = − , indicate the resolution in the spatial and time coordinates 
respectively. In using the MOL to solve PDEs the spatial derivative is approximated by its finite difference ap-
proximation thereby, generating a coupled system of Ordinary Differential Equations (ODEs) in the time de-
pendent variable t, which is associated with the initial value. Numerical approximations to the solutions of the 
PDE are obtained by marching forward in time on the grid. It is at this point that existing and generally well es-
tablished numerical methods for initial value ODEs can be used to compute numerical solutions to the PDE. In 
[8], the applicability of the MOL in solving problems in Physics, fluid dynamics, rector models as well as auto-
matic control is demonstrated. 

Discretization of the Schrödinger Equation by the MOL 
Given the Schrödinger equation 

( ) ( ) ( ) ( )
2 2

2

, ,
,

2
u x t u x t

i u x t V x
t m x

∂ − ∂
= +

∂ ∂



                            (1) 

where: 
( ),u x t  is complex dependent variable; 

x is a boundary-value (spatial) independent variable; 
t is initial-value independent variable; 
  is Planck constant; 
i is an imaginary complex number 1− . 
According to [9], by letting ( ) 2V x q u= −  and normalizing   and 2m to unity Equation (1), can be written 

in the form  
2

2
2 0u ui q u u

t x
∂ ∂

+ + =
∂ ∂

                                  (2) 

where q is arbitrary parameter. 
In subscript notation Equation (2) can be written as 
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2 0t xxiu u q u u+ + =                                    (3) 

Replacing the spatial derivative xxu  by a second order finite difference approximation in Equation (3) and 
following [10], the function, ( ),u x t , is replaced by the sum of its real part ( ),v x t  and its imaginary part 
( ),x tω  in the form 

( ) ( ) ( ), , ,u x t v x t i x tω= +                                  (4) 

Substituting Equation (4) into Equation (3), the two equations: 

( ) ( )2 0t t xx xxi v i v i q v i v iω ω ω ω+ + + + + + =                          (5a) 

or 

( )( )2 2 0t t xx xxiv v i q v v iω ω ω ω− + + + + + =                          (5b) 

are obtained. 
Equating the real and imaginary parts of Equations (5a) and (5b) to zero, the following nonlinear system of 

PDE 

( )2 2 0t xxv q vω ω ω+ + + =                                (6a) 

( )2 2 0xx tv q v vω ω+ + − =                                (6b) 

is obtained. 
From Equation (6a) the equations: 

( )
2

2 2
2 0v q v

t x
ω ω ω∂ ∂

+ + + =
∂ ∂

                              (7a) 

or 

( )
2

2 2
2 0v q v

t x
ωω ω∂ ∂

= − + − =
∂ ∂

                             (7b) 

are obtained. 
From Equation (6b), 

( )
2

2 2
2 0v q v v

tx
ωω∂ ∂

+ + − =
∂∂

                              (8a) 

or 

( )
2

2 2
2 0vq v v

t x
ω ω∂ ∂
= + + =

∂ ∂
                              (8b) 

are obtained. 

Replacing the second order partial derivative 
2

2x
ω∂

∂
 in Equation (7b) by the three point central difference ap-

proximation 1 1
2

2n n n

h
ω ω ω+ −− +

 and to the replacing the second order partial derivative 
2

2

v
x
∂
∂

 by its equivalent 

three point central difference approximation 1 1
2

2n n nv v v
h

+ −− +
 in Equation (8b) where h is the space between the 

discretized line and n is the number of grids, the following equations are obtained. 

( )2 2 1 1
2

2d
d

n n n
n n n

v q v
t h

ω ω ω
ω ω + −− + = − + −  

 
                        (9a) 

( )2 2 1 1
2

2d
d

n n n
n n n

v v v
q v v

t h
ω ω + −− + = − + −  

 
                         (9b) 
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According to [11], the analytical solution of Equation (3) is  

( ) ( ) ( )0.5 0.75, 2e sechi x tu x t x t+= −                              (10) 

To analyze ( ),u x t  as two real functions it is obtained that 

( ) ( ), 2 sechu x t x t= −                                 (11) 

Equations (9a) and (9b) constitute the discretized form of the real and imaginary parts of Equation (3) by the 
MOL respectively. The real and the imaginary parts of the solution of the Schrodinger equation are independent, 
identically distributed standard normal random variables with mean 0 and variance 1 [12]. Hence Equation (9a) 
or (9b) can be chosen for computational purposes. In this paper we shall use Equation (9a) and 0q = , for the 
numerical integration. 

3. L-Stable Implicit Trapezoidal-Like Integrator 
The trapezoidal-like integrator 

1 1n n n nu u Ru Su+ +′ ′− = +                                 (12) 

shall be used in the numerical integration, where: 

( )
( )

( )
( )

1 2 2 1

1 2 1 2
1 2

1 e e e 1 e

e e e e

l l l l

l l l l
R

λ λ λ λ

λ λ λ λλ λ

− −

− −

 − −
 = −
 − − 

                         (13a) 

( )
( )

( )
( )

2 1

1 2 1 2
2 1

e 1 1 e

e e e e

l l

l l l l
S

λ λ

λ λ λ λλ λ

−

− −

 − −
 = −
 − − 

                         (13b) 

1 2andλ λ  are the first and second eigenvalues of the discretization matrix respectively; l is the time step; and 
u′  denotes differentiation with respect to time. 

The derivation of the method (12) and the analysis of the order of accuracy are as discussed in [13]. 

3.1. Stability Properties of the Method (12) 
In this section, we state and prove one lemma and two theorems which relate to the stability property of the me-
thod (12) as follows: 

3.1.1. Lemma 1 
Let 1λ  and 2λ  be the eigenvalues of the system of ODE evolved by discretizing the Schrödinger equation by 
the MOL; and let 1 0λ <  and 2 0λ < . Suppose the following conditions hold: 

1) 10 e 1lλ< <  if 1 1;lλ <  and 
2) 20 e 1lλ−< <  if 2 1.lλ <  
Then, in Equation (12), 0S R− > . 
Proof. 
Given that 10 1e lλ< <  if 1 1lλ <  and 20 e 1lλ−< <  if 2 1,lλ <  

11 e 0lλ⇒ − >  and 21 e 0lλ−− > . 
But 1 0λ <  and 2 0λ < ; given. 

1 0λ⇒ − >  and 2 0λ− > . 

But  
21 e 0lλ−+ >  and 11 e 0lλ+ > . 

Hence  

( )( )( ) ( )( )1 2 2 1
2 11 e 1 e 1 e 1 e 0l l l lλ λ λ λλ λ− −− − + − − + >                       (13) 
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∵ All the quantities on the L.H.S. of inequality (13) are positive.  
Expanding and rearranging the L.H.S. of (13), we have 

( ) ( ) ( ) ( )1 2 1 2 2 1
2 1 2 11 e e 1 1 e e e 1 e 0l l l l l lλ λ λ λ λ λλ λ λ λ− − −− + − − − + − > .                 (14) 

Dividing inequality (14) through by ( )1 2
1 2 e el lλ λλ λ −−  yields 

( ) ( ) ( ) ( )
( )

1 2 1 2 2 1

1 2

2 1 2 1

1 2

1 e e 1 1 e e e 1 e
0

e e

l l l l l l

l l

λ λ λ λ λ λ

λ λ

λ λ λ λ

λ λ

− − −

−

− − + − − − + −
>

−
.                (15) 

Therefore, 

( ) ( )
( )

( ) ( )
( )

1 2 1 2 2 1

1 2 1 2

2 1 1 1

1 2 1 2

1 e e 1 1 e e e 1 e
0

e e e e

l l l l l l

l l l l

λ λ λ λ λ λ

λ λ λ λ

λ λ λ λ

λ λ λ λ

− − −

− −

− − + − − − + −
− >

− −
.               (16) 

Resolving inequality (16) into partial fractions, we have 

( )
( )

( )
( )

( )
( )

( )
( )

2 1 1 2 2 1

1 2 1 2 1 2 1 2
2 1 2 2

e 1 1 e 1 e e e 1 e
0

e e e e e e e e

l l l l l l

l l l l l l l l

λ λ λ λ λ λ

λ λ λ λ λ λ λ λλ λ λ λ

− − −

− − − −

   − − − −
   − − − >
   − − − −   

.            (17) 

From Equations (17), (13a) and (13b), we have that 0S R− > . 
This proves the Lemma 1. 

3.1.2. Theorem 1 
The numerical integrator (12) is A-stable. 

Proof. 
Applying the test equation 

u uλ′ = .                                       (18) 
To the method in Equation (12) and from the general linear multistep method.  
The Schur’s polynomial is thus given by 

( ) ( )1 1 0S r Rλ λ− − − =                                 (19) 

( )1 1Sq r Rq⇒ − = +                                  (20) 

( )
( )
1
1

R
r

S
λ
λ

−
⇒ =

−
                                   (21) 

By Schur’s condition 

1 1
1

R
S

λ
λ

−
<

−
                                     (21) 

Hence 

1 1R Sλ λ− < −  

1 1Rq Sq
l l

− < −  

l Rq l Sq− < −  

( ) 0S R q⇒ − <                                    (23) 

But ( ) 0S R− >  as proved in Lemma 1, hence 0.q <  
The numerical integrator (12) is therefore A-stable. 
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3.1.3. Theorem 2 
The numerical integrator is L-stable. 

Substituting the scalar test Equation (18) into Equation (12) yields 
1 1n n n nu u Ru Suλ λ+ += + +                                (24) 

( ) ( )11 1n nS u R uλ λ+⇒ − = +                               (25) 

1 1
1

n nRu u
S

λ
λ

+ + =  − 
                                  (26) 

Hence 

( ) 1
1

Rl
S

λρ λ
λ

+ =  − 
                                  (27) 

Substituting for R and S in Equation (27), simplifying and taking the limit by use of L’Hospital’s rule we ob-
tain 

( )lim 0
l

l
λ

ρ λ
→−∞

=                                    (28) 

Hence, the proof of the Theorem 2. Thus the integrator (12) is L-stable. 

4. Computation of Absolute and Relative Errors 
In this section we explain how the absolute and relative errors of the methods shown in the Table 1 and Table 2 
were obtained.  

4.1. Absolute Errors 
The absolute errors of the scheme were computed by the use of the formula: 

( ),ij i ju u x t−  

where the numerical solution at the grid point ( ),i jx t  is iju  and the analytical solution at the same grid point 
is ( ), .i ju x t  

4.2. Relative Errors 
Relative errors of the method were computed by use of the formula: 
 
Table 1. Absolute errors of the trapezoidal-like method at various spatial discretization levels. 

t 0.01 0.05 0.167 0.20 0.25 

0.1 4.61302870 × 10−4 4.58567620 × 10−4 4.2956795 × 10−4 4.1572896 × 10−4 3.90105670 × 10−4 

0.2 9.71102410 × 10−4 9.65344370 × 10−4 9.0429632 × 10−4 8.7516347 × 10−4 8.21223140 × 10−4 

0.3 1.53449248 × 10−3 1.52539390 × 10−3 1.42892855 × 10−3 1.38289415 × 10−3 1.29766010 × 10−3 

0.4 2.157110026 × 10−3 2.14431001 × 10−3 2.00870472 × 10−3 1.94781011 × 10−3 1.82417529 × 10−3 

0.5 2.84514169 × 10−3 2.82827180 × 10−3 2.64941316 × 10−3 2.56405972 × 10−3 2.40602534 × 10−3 

0.6 3.60548217 × 10−3 3.58410396 × 10−3 3.35744700 × 10−3 3.24928366 × 10−3 3.04901613 × 10−3 

0.7 4.44570346 × 10−3 4.41934330 × 10−3 4.13986648 × 10−3 4.00649690 × 10−3 3.75955935 × 10−3 

0.8 5.37417703 × 10−3 5.34231165 × 10−3 5.00446720 × 10−3 4.84324396 × 10−3 4.54473458 × 10−3 

0.9 4.40014436 × 10−3 6.36219570 × 10−3 5.95985496 × 10−3 5.76785338 × 10−3 5.41235717 × 10−3 

1.0 7.53380492 × 10−3 7.48913446 × 10−3 7.01552767 × 10−3 6.78957709 × 10−3 6.37105267 × 10−3 
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( )
( )

,

1 ,
ij i j

i j

u u x t

u x t

−

+
 

where the numerical solution at the grid point ( ),i jx t  is iju  and the analytical solution at the same grid point 
is ( ), .i ju x t  

5. Results and Discussion 
On the implementation of the L-stable implicit trapezoidal-like integrator for the solution of one-dimensional 
time dependent Schrödinger equation after discretizing with the MOL, the errors and relative errors of the 
scheme were computed as shown in Table 1 and Table 2 respectively. The L-stable property of the scheme is 
supported by the fact that the maximum relative errors at the various discretization levels are not significantly 
different as shown in Table 3. The performance of the trapezoidal-like integrator compares favorably with the  
 
Table 2. Relative errors of the trapezoidal-like method at various spatial discretization levels. 

t 0.01 0.05 0.167 0.20 0.25 

0.1 4.517877899 × 10−4 4.491089587 × 10−4 4.207074514 × 10−4 4.071539118 × 10−4 3.820591415 × 10−4 

0.2 9.490134918 × 10−4 9.433864255 × 10−4 8.837269884 × 10−4 8.552568009 × 10−4 8.025434100 × 10−4 

0.3 1.496010306 × 10−3 1.487139901 × 10−3 1.393093720 × 10−3 1.348213776 × 10−3 1.265117235 × 10−3 

0.4 2.097482759 × 10−3 2.085036563 × 10−3 1.953179702 × 10−3 1.893968353 × 10−3 1.773751071 × 10−3 

0.5 2.758478275 × 10−3 2.742122244 × 10−3 2.568711663 × 10−3 2.485958101 × 10−3 2.332737470 × 10−3 

0.6 3.484499214 × 10−3 3.463838356 × 10−3 3.244786933 × 10−3 3.140253044 × 10−3 2.946705547 × 10−3 

0.7 4.281422636 × 10−3 4.256036555 × 10−3 3.968871640 × 10−3 3.858445952 × 10−3 3.469168567 × 10−3 

0.8 5.155558851 × 10−3 5.124989735 × 10−3 4.800888587 × 10−3 4.646223808 × 10−3 4.359857604 × 10−3 

0.9 4.203176233 × 10−3 6.077398278 × 10−3 5.6930679925 × 10−3 5.509661107 × 10−3 5.170078334 × 10−3 

1.0 7.162861272 × 10−3 7.120390262 × 10−3 6.670102555 × 10−3 6.455277155 × 10−3 6.057359716 × 10−3 

 
Table 3. Maximum relative errors of the trapezoidal-like in-
tegrator at various spatial discretization levels. 

x∆  Maximum relative error 

0.167 4.2956795 × 10−4 

0.200 4.1572896 × 10−4 

0.250 3.9010567 × 10−4 

0.050 4.5856762 × 10−4 

0.010 4.6130287 × 10−4 

 
Table 4. Comparison of the relative maximum errors of the 
trapezoidal-like integrator and [10] at various spatial discre-
tization levels. 

x∆  Trapezoidal integrator Sa’adu et al. 

0.167 4.2956795 × 10−4 7.00 × 10−4 

0.200 4.1572896 × 10−4 1.3 × 10−3 

0.250 3.9010567 × 10−4 2.9 × 10−3 
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Figure 1. A 3 dimensional plot of the surface ( ) ( ), 2 sechu x t x t= ⋅ −  

for 0 40x≤ ≤ , 0 30t≤ ≤ . 
 

 

Figure 2. The graph of ( ) ( )5, 2 sech 5u t t= ⋅ − , 0 30t≤ ≤ . 

 
method of [10] as shown in Table 4. This indicates that the method is considered to give more accurate and sta-
ble results at the various spatial discretization levels considered. All computations and plotting of Figure 1 and 
Figure 2 in this paper were carried out using Maple 15. 
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