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Abstract 

The so-called “global polytropic model” is based on the assumption of hydrostatic equilibrium for 
the solar system, or for a planet’s system of statellites (like the Jovian system), described by the 
Lane-Emden differential equation. A polytropic sphere of polytropic index n  and radius 1R  
represents the central component 1S  (Sun or planet) of a polytropic configuration with further 
components the polytropic spherical shells 2S , 3S , ..., defined by the pairs of radii ( ),1 2R R , 

( ),2 3R R , ..., respectively. 1R , 2R , 3R , ..., are the roots of the real part ( )Re θ  of the complex 
Lane-Emden function θ . Each polytropic shell is assumed to be an appropriate place for a planet, 
or a planet’s satellite, to be “born” and “live”. This scenario has been studied numerically for the 
cases of the solar and the Jovian systems. In the present paper, the Lane-Emden differential equa-
tion is solved numerically in the complex plane by using the Fortran code DCRKF54 (modified 
Runge-Kutta-Fehlberg code of fourth and fifth order for solving initial value problems in the com-
plex plane along complex paths). We include in our numerical study some trans-Neptunian ob-
jects. 
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1. Introduction 
In this study, we approach the issue on “gravitational quantization of orbits” in the solar system, or in systems of 
satellites of planets, by exclusively considering laws of classical mechanics. In particular, we take as basis of our 
treatment the equations of hydrostatic equilibrium for a nondistorted star or planet. These equations yield the 
well-known Lane-Emden differential equation, which is solved in the complex plane by using the so-called 
“complex plane strategy” (Section 2), developed by the first author for numerical treatment of certain astrophy- 
sical problems (see e.g. [1]; see also [2]). 

Classical mechanics is also used by some authors for treating this issue (see e.g. in [3] the so-called “vibrating 
membrane model”). On the other hand, several investigators use ideas arising within the framework(s) of Scale 
Relativity [4]; Relativity Theory regarding the finite propagation speed of gravitational interaction [5]; and 
quantum mechanics, like appropriate Bohr-Sommerfeld discretization ([6] [7]), or Schrödinger-type equations 
[8]. Further details are given in Section 6. 

2. The Lane-Emden Equation in the Framework of the Complex-Plane Strategy 
The so-called “complex-plane strategy” (CPS) proposes and applies numerical integration of “ordinary differen- 
tial equations” (ODE, ODEs) in the complex plane, either along an interval r ⊂   when the independent 
variable r  is real, or along a contour ⊂ C  when r  is complex. Integrating in   is necessary when the 
“initial value problem” (IVP, IVPs) under consideration is defined on ODEs: (i) suffering from singularities and/ 
or indeterminate forms in  , and/or (ii) involving terms that become undefined in   when the independent 
variable r  exceeds a particular value. 

A detailed review of CPS is given in [9] (Section 3.1). 
The equations of hydrostatic equilibrium for a nondistorted star are written as  

2
2

d d,     4π ,
d d
P Gm m r
r rr

ρ ρ= − =                                     (1) 

where ( )P r  is the pressure, ( )m r  the mass inside a sphere of radius r , and ( )rρ  the density. For the 
polytropic models we use the “polytropic EOS” ([10], Chapter IV, Equation (1))  

( )1 1 ,nP K Kρ ρ +Γ= =                                        (2) 

and the “normalization equations” ([10], Chapter IV, Equations (8a), (10a), respectively)  

,     ,n rρ λθ αξ= =                                        (3) 

where K  is the polytropic constant, Γ  the adiabatic index defined by ( )1 1 nΓ = + , [ )0,5n∈ ⊂   the 

polytropic index, λ  the polytropic unit of density set equal to the central density of the star, ( )0rλ ρ= = ,  
and α  the polytropic unit of length set equal to ([10], Chapter IV, Equation (10b))  

( ) ( ) 1 21 11
.

4π

nn K
G
λ

α
− +

=  
  

                                       (4) 

Thus nθ  is the density measured in such units, so-called “classical polytropic units” (abbreviated “cpu”), 
and ξ  the length measured also in cpu. 

By introducing Equations (2)-(3) into Equations (1a, b), we obtain the so-called “Lane-Emden equation” (cf. 
[10], Chapter IV, Equation (11))  

2d 2 d ,
d d

nθ θ θ
ξ ξ ξ
+ = −                                         (5) 

which, integrated along a specified integration interval  

[ ]start end0,ξ ξ ξ= = ⊂                                       (6) 

with initial conditions  

( ) ( )start start1,     0θ ξ θ ξ′= =                                      (7) 
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yields as solution the “Lane-Emden function” ξθ  ⊂ ⊂   . 

However, the Lane-Emden Equation (5) involves (i) the indeterminate form θ ξ′  at the origin, and (ii) the 
“raised-to-real-power” term nθ  which becomes undefined for ( ) 0θ ξ <  and, also, suffers from a “non- 
monodromy syndrome” in the sense that multiple-valued logarithmic functions are involved in the represen- 
tation of nθ  (see e.g. [11], Sections 26-28). To avoid such syndroms, we apply to the IVP established on the 
Equations (5) and (7) the complex-plane strategy. In particular, we assume that the independent variable ξ  is a 
“complex distance”, iξ ξ ξ= + ∈



 , and the integration proceeds along a complex path parallel to the real axis 
and at a relatively small imaginary distance from it. Hence, we perform numerical integration along a contour 
⊂ C , being parallel to the real axis   and distancing 0iξ



 from it, i.e. along the straight line-segment  

{ }0 0 0 end end 0 ,i iξ ξ ξ ξ ξ ξ= = + → = +
 

C                            (8) 

joining the points 0ξ  and endξ  in  . For the constant imaginary part 0ξ


 of the complex distance ξ , we 
usually take it to lie in the interval 9 310 ,10− −   . Thus the Lane-Emden function θ  becomes complex-valued 
function in one complex variable,  

[ ] [ ] [ ].θ θ θ⊂ = +


C C C                                (9) 

In the franework of CPS, the initial conditions (7) are written as  

( ) ( )0 0 0 0,     0,iθ ξ θ θ θ ξ′= + =


                           (10) 

where 0 1θ =  (cf. Equation (7a)). The initial value for the imaginary part 0θ


 is selected to be small compared 

to the initial value for the real part, lying usually in the interval 9 310 ,10− −   . In certain cases, this initial value  

can be set equal to zero, though systematic numerical experiments show that the presence of a nonzero initial 
value stabilizes and accelerates the complex-plane integration procedure. 

Readers interested in issues of this section can find full details in [9] (Section 3.2). 

3. The Global Polytropic Model: Application to the Solar and Jovian Systems 
In the so-called “global polytropic model” for the solar system ([12], Section 1), the primary assumption is hy-  
drostatic equilibrium (Equation (1)). Due to the fact that [ ]θ ⊂ ⊂ C  (Equation (9)), the real part θ  has a 

first root at 1 1 0iξ ξ ξ= +


, as well as further roots: a second root at 2 2 0iξ ξ ξ= +


, with 2 1ξ ξ> , a third root at 

3 3 0iξ ξ ξ= +


, with 3 2ξ ξ> , etc. Thus the polytropic sphere of polytropic index n  and radius 1ξ  is the central 
component or central body 1S  of a “resultant polytropic configuration” of which further components are the 

polytropic spherical shells 2S , 3S , 4S , defined by the pairs of radii ( )1 2,ξ ξ , ( )2 3,ξ ξ , ( )3 4,ξ ξ , respectively. 

Each polytropic shell can be considered as an appropriate place for a planet, or a satellite, to be born and live. 
We speak for a planet when the central body 1S  simulates the Sun [12]; in this case, the resultant polytropic 
configuration represents the solar system. On the other hand, we speak for a satellite when 1S  simulates a 
planet, say the Jupiter (for the Jupiter’s system of satellites see [13]); then the resultant polytropic configutation 
represents the Jovian system. 

The most appropriate location for a planet, or for a planet’s satellite, to settle inside a polytropic shell jS  is  
the place jΞ  at which θ  takes its maximum value inside jS , ( )0max =j jS iθ θ ξ  Ξ + 



. Now, concern-  

ing the solar system, the distance EA  of the Earth (the most massive inner planet) from the Sun is  

1 AU 214.9487 ;EA R= =


                               (11) 

the distance JA  of the Jupiter (the most massive outer planet) from the Sun is  

5.202 AU 1118.1632 ;JA R= =


                             (12) 

and the distance NA  of the Neptune (the most massive among the most distant outer planets) from the Sun is  

30.057 AU 6460.7132 ;NA R= =


                           (13) 
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The triplet EA , JA , NA  seems to be a representative triplet of distances for the solar system. To compute 
an “optimum polytropic index” n



 for the Sun, we search for a particular value of the polytropic index which  
generates a sequence of maximum values max jSθ    , 2,3, ,j L= 

, with the integer L  taken sufficiently  

large, occuring at distances jΞ , 2,3, ,j L= 
 among which there are values EΞ , JΞ , NΞ , yielding 

respective distances E Eα α= Ξ


, J Jα α= Ξ


, N Nα α= Ξ


, being as close to the given distances EA , JA ,  
NA , as possible; in agreement with Equation (3b), the unit of length for the Sun is given by 1Rα ξ=

 

. Note  
that, in such computations, the astronomical unit remains invariant, equal to 214.9487R



 (Equation (11)) 
irrespective of the particular value 1ξ . Computations presented in [12] (Section 2, Table I) give as optimum 
polytropic index for the Sun the value 3.23n =



. 
In [13] (Section 1), to find an optimum polytropic index for the Jupiter, we have used a general algorithm 

called A[n]. In detail, to compute an optimum polytropic index optn  so that a triplet of planets (or satellites), 
distancing 1 2 3P P PA A A< <  from the central body, be accomodated inside the resultant polytropic configuration, 
we work as follows.  

A[n]-1. For a sequence of values in , 1,2, , ni N=  , we compute the corresponding sequence of distances 
( ) ( )pj i j in nα = Ξ , 2,3, ,j L= 

, at which planets/satellites can be accomodated, with the integer L  taken 
sufficiently large.  

A[n]-2. For each sequence ( ){ }pj inα , we compute the two-dimensional “array of distance ratios”  

( ) ( )
( )

; , ,     2,3, , ,     2,3, , ,pj i
i

pk i

n
D n j k j L k L

n
α
α

= = =                  (14) 

A[n]-3. We scan the nN  arrays ( ); ,iD n j k  in order to find a value optn  generating a “maximum number 
of proper levels” related to the given ratios 12 1 2P PR A A=  and 13 1 3P PR A A= . Note that two particular ele-  
ments ( ); ,iD n q s  and ( ); ,iD n q t , t s> , constitute a “proper level” (and thus increase by one the number of 
the proper levels in favor of the polytropic index in ) if  

( )12

12

; ,
100 ,iR D n q s

R
τ

−
× ≤                            (15) 

and  

( )13

13

; ,
100 ,iR D n q t

R
τ

−
× ≤                            (16) 

verified within a percent tolerance τ  specified by the user. 
Applying A[n] to the Jupiter’s system of satellites ([13], Section 2, Tables I-III), we have computed an 

optimal value 2.45Jn =  for this planet. 

4. The Computations 
To compile our programs, we use the gfortran compiler, licensed under the GNU General Public License (GPL; 
http://www.gnu.org/licenses/gpl.html). gfortran is the name of the GNU Fortran compiler belonging to the GNU 
Compiler Collection (GCC; http://gcc.gnu.org/). In our computer, it has been installed by the TDM-GCC 
“Compiler Suite for Windows” (http://tdm-gcc.tdragon.net/), which is free software distributed under the terms 
of the GPL. 

Subroutines required for standard numerical procedures (e.g. interpolations of functions, rootfinding of 
algebraic equations, localizing extrema of functions, etc.) are taken from the SLATEC Common Mathematical 
Library, which is an extensive public-domain Fortran Source Code Library, incorporating several public-domain 
packages. The full SLATEC release is available in http://netlib.org/slatec/. 

To solve the complex IVPs involved in this investigation, we use the code DCRKF54 included in the Fortran 
package dcrkf54.f95 [2]. DCRKF54 is a Runge-Kutta-Fehlberg code of fourth and fifth order modified for the 
purpose of solving complex IVPs, which are allowed to have high complexity in the definition of their ODEs, 
along contours (not necessarily simple and/or closed) prescribed as continuous chains of straight-line segments; 
interested readers can find full details on dcrkf54.f95 in [2]. 

http://www.gnu.org/licenses/gpl.html
http://gcc.gnu.org/
http://tdm-gcc.tdragon.net/
http://netlib.org/slatec/
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The header of DCRKF54 is given in [2] (Section 2.1, Part #[000]). On entry to DCRKF54, the input 
arguments are assigned the values startA r= , endB r= , N n= , startY = y ; DEQS is the subroutine computing 
the vector derivative(s) function f  ([2], Section 2.1, Equation (1a), and discussion preceding this equation), 
HIN an initial stepsize, HMIN a minimum stepsize, HMAX a maximum stepsize. In this work, the input 
parameters are assigned the values 310H −= , 6HMIN 10−= , 1HMAX 10−= . Furthermore, the input values 
next to HMAX (discussed in [2], Appendix A) are assigned the values 24ATOL 10−= , 14RTOL 10−=  for 
double precision ( KD 8= , where KD is the overall “kind type parameter” explained in [2], Section 2.2, 
discussion following Part #[060]), 15RTOL 10−=  for high precision ( )KD 10= , and 1QLBD 7.5 10−= × . In 
fact, we almost use a pure relative error control, since ATOL is 10  orders of magnitude less than RTOL. 
Concerning the equality tolerance XTOL ([2], Section 2.2, Part #[050]), it takes the value XTOL 32 EMR= × , 
where EMR is the well-known “machine roundoff error” (i.e. the larger real number which does not change 
unity when added to it). Alternatively, the user can add XTOL to the call sequence by modifying the header of 
DCRKF54 and specify its input value in the calling program. On exit to DCRKF54, A has been hopefully 
advanced to B, Y is the solution vector at B, and H is the stepsize adapted so far, situation verified by the return 
value NFLAG 1= . If A needs further steps to arrive at B, then the return value is NFLAG 2= , whence we 
call again DCRKF54 leaving all of its arguments unchanged. 

In this study, integrations proceed along the following members of the contour class 2FormC  ([2], Section 5, 
Equation (17))  

( ) ( ) ( ){ }4 4 2 4 4 4
2 10 ,10 2.0 10 ,10 10 ,10 ,B

− − − − −= → × →C                           (17) 

( ) ( ) ( ){ }4 4 4 4 4 4
2 10 ,10 5.7 10 ,10 10 ,10 ,C

− − − − −= → × →C                           (18) 

( ) ( ) ( ){ }4 4 7 4 4 4
2 10 ,10 1.0 10 ,10 10 ,10 ,D

− − − − −= → × →C                           (19) 

for satellites of the Jovian system, planets of the solar system, and “trans-Neptunian objects” (TNO, TNOs), 
respectively. The contour class 2FormC  represents forward-and-then-backward straight-line routes parallel and 
close to   obeying the special form (8). The endpoint of any such contour coincides with its start point, 

end 0ξ ξ= . Hence, the true value endθ  at the endpoint endξ  coincides with its initial value 0θ  (Equation (10)) 
at the start point 0ξ . From the numerical analysis point of view, this is an important fact, since the global per-  
centage errors ( )% θ  owing to DCRKF54 can be readily calculated. A discussion on various contours and  

their characteristics can be found in [2] (Section 5). 

5. Numerical Results and Discussion 
The following two subsections contain numerical results for the purpose of testing the code DCRKF54 and of 
comparing with previous (published) corresponding results. The third subsection contains results regarding some 
trans-Neptunian objects. Some earlier (unpublished) corresponding numerical results will not be quoted here, 
since the computations of the present study are more accurate and reliable. 

5.1. Satellites of the Jovian System 
The Jovian system of satellites constitutes a short-distance integration problem, since the related complex IVP is 
solved along the contour 2BC  (Equation (17)). Integrating by the code DCRKF54 has been proved very 
accurate, since the global percentage error has been found to be ( ) 9% 2 10θ −≤ × ; whence, the numerical 
results in Table 1 can be safely quoted (as they do) with seven decimal digits. As said in Section 3, the optimum 
polytropic index for the Jupiter is ( )opt 2.45Jn J n= = . All symbols involved in Table 1 are explained in [13] 
(see especially Section 2; comparisons can be made with respective results of Table III). In both studies, Europa, 
Ganymede, and Callisto occupy Shells No 4, No 5, and No 7, respectively. 

5.2. Planets of the Solar System 
Treating planets of the solar system is a long-distance integration problem, since the so-defined complex IVP is 
solved along the contour 2CC  (Equation (18)). Numerical integration by the code DCRKF54 gives very  
accurate results, since ( ) 9% 2 10θ −≤ × ; accordingly, the numerical results in Table 2 are quoted again with  
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Table 1. The Jovian system: Quantities describing the central body 1S , i.e. the Jupiter, and the polytropic 

spherical shells ( )4 3 4,S ξ ξ= , ( )5 4 5,S ξ ξ= , ( )7 6 7,S ξ ξ=  (Section 3) of the satellites Europa (E), Gany- 

mede (G), and Callisto (C), respectively, computed by the code DCRKF54 (KD = 10).                     

 DCRKF54 ( )KD 10=  

Jupiter-Shell No 1 

Jn  2.45 

1ξ  5.2361414 (+00) 

JR  (cm) 6.9173000 (+04) 

JM  (g) 1.8990000 (+30) 

Jα  (cm) 1.3211000 (+09) 

Jλ  ( 3g cm−⋅ ) 2.9701122 (+01) 

Europa-Shell No 4 

Inner radius, 3ξ  3.0394242 (+01) 

Inner radius measured in Jupiter’s radii 5.8047022 (+00) 

Outer radius, 4ξ  5.4281234 (+01) 

Outer radius measured in Jupiter’s radii 1.0366648 (+01) 

Radius Eα  of max θ  measured in Jupiter’s radii 7.6774244 (+00) 

Percentage error in Eα , given that 9.405E JA R=  18.37 

Ganymede-Shell No 5 

Inner radius, 4ξ  5.4281234 (+01) 

Inner radius measured in Jupiter’s radii 1.0366648 (+01) 

Outer radius, 5ξ  8.0249546 (+01) 

Outer radius measured in Jupiter’s radii 1ξ  1.5326085 (+01) 

Radius Gα  of max | |θ  measured in Jupiter’s radii 1.3445027 (+01) 

Percentage error in Gα , given that G = 15.003 JA R  10.38 

Callisto-Shell No 7 

Inner radius, 6ξ  1.1618092 (+02) 

Inner radius measured in Jupiter’s radii 2.2188270 (+01) 

Outer radius, 7ξ  1.6904862 (+02) 

Outer radius measured in Jupiter’s radii 3.2284961 (+01) 

Radius Cα  of max | |θ  measured in Jupiter’s radii 2.6775448 (+01) 

Percentage error in Cα , given that 26.388C JA R=  1.47 
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Table 2. The solar system: Quantities describing the central body 1S , i.e. the Sun, and the polytropic 

spherical shells ( )7 6 7,S ξ ξ= , ( )11 10 11,S ξ ξ= , ( )18 17 18,S ξ ξ=  of the planets Earth (E), Jupiter (J), and Nep- 

tune (N), respectively, computed by the code DCRKF54 (KD = 10).                                      

 DCRKF54 (KD = 10) 

Sun-Shell No 1 

n


 3.23 

1ξ  7.9169049 (+00) 

R


 (cm) 6.9598000 (+10) 

M


 (g) 1.9890000 (+33) 

α


 (cm) 8.7911000 (+09) 

λ


 ( 3g cm−⋅ ) 1.1917082 (+02) 

AU  measured in α


 1.7017284 (+03) 

Earth-Shell No 7 

Inner radius, 6ξ  1.4338943 (+03) 

Inner radius in AU 8.4261056( 01)−  

Outer radius, 7ξ  2.3786878 (+03) 

Outer radius in AU 1.3978070 (+00) 

Radius Eα  of max θ  in AU 1.0865424 (+00) 

Percentage error in Eα  8.65 

Jupiter-Shell No 11 

Inner radius, 10ξ  7.7265388 (+03) 

Inner radius in AU 4.5404065 (+00) 

Outer radius, 11ξ  1.0659348 (+04) 

Outer radius in AU 6.2638359 (+00) 

Radius Jα  of max θ  in AU 5.3334010 (+00) 

Percentage error in Jα  2.53 

Neptune-Shell No 18 

Inner radius, 17ξ  4.6558115 (+04) 

Inner radius in AU 2.7359310 (+01) 

Outer radius, 18ξ  5.6506774 (+04) 

Outer radius in AU 3.3205518 (+01) 

Radius Jα  of max θ  in AU 3.0148759 (+01) 

Percentage error in Nα  0.31 
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seven decimal figures. As said in Section 3, the optimum polytropic index for the Sun is 3.23n =


. All 
symbols involved in Table 2 are explained in [13] (especially in Section 2; comparisons can be made with 
respective results of Table I and Table II). In both studies, Earth, Jupiter, and Neptune occupy Shells No 7, No 
11, and No 18, respectively. 

5.3. Trans-Neptunian Objects 
Computing quantities related to TNOs constitutes a very-long-distance integration problem, since the corres- 
ponding complex IVP is solved along the contour 2DC  (Equation (19)). A global percentage error ( ) 8% 9 10θ −≤ ×  
has been verified for the code DCRKF54, which is quite satisfactory for this case. Our model reproduces the 
sharp division between “plutinos” and “classical Kuiper belt objects” (also called “cubewanos”); in particular, 
the border between Shell No 19 and Shell No 20 is at 40  AU, and the “Kuiper cliff” appears at 47 AU . 

The TNO Sedna has a highly eccentric orbit with eccentricity 0.853, aphelion 937 AU, perihelion 76.4 AU, 
semi-major axis 518.6 AU, and inclination 11.9 . Regarding its semi-major axis, it lies inside Shell No 40 with 
inner radius 39 478.3 AUξ = , outer radius 40 521.9 AUξ = , and radius of max θ  40 500.2 AUα =  deviating 

3.5%  from the observed value. An interesting scenario studied in [14] is that: (i) Sedna’s orbit has been 
perturbed by a Jupiter-mass object at 5000 AU. Shell No 77 has inner radius 76 4888 AUξ = , outer radius 

77 5118 AUξ = , and radius of max θ  77 5001 AUα =  deviating 0.02%  from the value computed by this 
scenario. Alternatively, (ii) Sedna’s orbit has been perturbed by a Neptune-mass object at 2000 AU. Shell No 59 
has inner radius 58 1902 AUξ = , outer radius 59 2020 AUξ = , and radius of max θ  59 1961 AUα =  de- 
viating 2%  from the value computed by this alternative scenario. 

The largest TNO Eris has aphelion 97.7 AU, perihelion 38.4 AU, semi-major axis 68.0 AU, eccentricity 0.436, 
and inclination 43.8 . Concerning its semi-major axis, it lies inside Shell No 23 with inner radius 

22 66.1 AUξ = , outer radius 23 77.1 AUξ = , and radius of max θ  23 71.4 AUα =  deviating 5%  from the 
observed value. Some remarks made for the second largest TNO Pluto in [15] (Section 2, paragraph preceding 
the last one) do also hold for Eris. 

Makemake, the third largest TNO (after Eris and Pluto), has aphelion 53.1 AU, perihelion 38.5 AU, semi- 
major axis 45.8 AU, eccentricity 0.159, and inclination 28.9 . Regarding its semi-major axis, it lies inside Shell 
No 20 with inner radius 19 40.0 AUξ = , outer radius 20 47.6 AUξ = , and radius of max θ  20 43.6 AUα =  
deviating 5%  from the observed value. 

Haumea, the fourth largest TNO, has aphelion 51.5 AU, perihelion 34.7 AU, semi-major axis 43.1 AU, eccen- 
tricity 0.195, and inclination 28.2 . Its semi-major axis lies inside Shell No 20 with inner radius 19 40.0 AUξ = , 
outer radius 20 47.6 AUξ = , and radius of max θ  20 43.6 AUα =  deviating 1%  from the observed 
value. 

Furthermore, the TNO Quaoar has aphelion 45.1 AU, perihelion 41.7 AU, semi-major axis 43.4 AU, eccen- 
tricity 0.039, i.e. the smallest eccentricity among the largest known TNOs, and inclination 8 . Concerning its 
semi-major axis, it lies inside Shell No 20 with inner radius 19 40.0 AUξ = , outer radius 20 47.6 AUξ = , and 
radius of max θ  20 43.6 AUα =  deviating only 0.5%  from the observed value. 

On the other hand, Varuna is the TNO with the second smallest eccentricity, having aphelion 45.3 AU, 
perihelion 40.5 AU, semi-major axis 42.9 AU, eccentricity 0.056, and inclination 17.2 . Its semi-major axis lies 
inside Shell No 20 with inner radius 19 40.0 AUξ = , outer radius 20 47.6 AUξ = , and radius of max θ  

20 43.6 AUα =  deviating 1.5%  from the observed value. 
It seems that Quaoar and Varuna, due to the very small eccentricities of their orbits, are ideal candidates for 

obeying the global polytropic model (for similar comments regarding Jovian satellites, see [13], Section 2; for 
comments regarding planets, see [15], Section 2)). In fact, an object in almost circular orbit implies that it has 
evolved under mild processes, which, in turn, maintain the sensitive global polytropic character of such a 
system. 

6. Remarks and Conclusion 
First, it is worth emphasizing that in this study the solar and Jovian systems are considered within the framework 
of classical mechanics. In particular, it is assumed that these systems obey globally the equations of hydrostatic 
equilibrium. We mention here that the simulation of several astrophysical systems by polytropic models is a 
well-established long-lived hypothesis in astrophysics; readers interested in polytropic models can find full 
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details and plethora of astrophysical applications in [16] (for the solar system, see Section 6.1.7). A second 
interesting remark is that there is in fact only one parameter, which must be adjusted: the polytropic index n  of 
the central body. The algorithm for computing an optimum value optn  is described and used in [13] for the 
Jovian system (as discussed in Section 3) and in [17] for the solar system. Third, it is worth emphasizing that 
there are not any “external parameters” (i.e. empirical, semi-empirical, borrowed from other theories, etc.) 
inserted into our simulations. The quantized orbits are emerging as intrinsic properties of the system under 
consideration. In particular, each quantized orbit is identified and computed as the distance of the local density- 
extremum of each polytropic shell (belonging to the resultant polytropic configuration) from the central body. In 
the numerical treatment of the problem, the Fortran code DCRKF54 has been used, which can solve complex 
IVPs along complex paths. So, as said in [12] (Abstract), the theoretical input to the global polytropic model is 
very simple, while the numerical output admits of several interesting physical interpretations. 

Regarding alternative studies on quantized orbits of planets and satellites, it is first worth remarking that there 
is a common practice in the majority of these studies to use several external parameters. Such parameters have 
mainly to do with the well-known “Titius-Bode (TB) law” or with several modifications of this law, or with 
several TB-type laws. We mention here that the TB law is an empirical formula involving some parameters, 
which are fixed by observation(s). In view of certain assumptions, the TB law can be written so that to resemble 
the “quantized Bohr atomic model” (see e.g. [3], Section 1; [5], Section 1; [6], Section 2). Accordingly, quantum 
mechanics enters into the scene of such considerations (for a discussion on the similarities with quantum 
mechanics as well as on the uncertainty of such approach, see e.g. [6], Sections 3-5). In this case the “Bohr 
radius” of a planetary or a satellite system seems to be of great importance ([3], Equation (5); [6], Equation (15); 
[7], Equation (7)). A relevant quantum-like approach is to set up some Schrödinger-type equations (see e.g. [8] 
and references therein). Finally, there are alternative studies using: (i) Scale Relativity ([4] and references 
therein), which is an extension of Einstein’s principle of relativity: by giving up the differentiability of space- 
time coordinates at very large time-scale, the solar system can be described by a Schrödinger-type equation; and 
(ii) post-Newtonian approximations due to the finite propagation speed of gravitational interaction ([5] and 
references therein). 

Concluding, we emphasize on the fact that several predictions made recently by the above alternative studies, 
can be also found in the numerical results of the global polytropic model. We mention indicatively some such 
results. First, two “intramercurial orbits” with radii 0.05  and 0.18 AU , which are empty in our solar 
system but they are observed to be occupied in several extra-solar planetary systems ([8], Section 1), are quoted 
in Table III of [12], where the unoccupied Shells No 3 and No 4 are shown with radii of max θ  3 0.05 AUα   
and 4 0.15 AUα  , respectively. Second, the radius of the Neptune’s orbit, which is inaccurately estimated in 
several studies, is computed by the global polytropic model with a satisfactory accuracy (Table 2, results in 
group 4). Third, the recently discovered asteroids orbiting between Uranus and Neptune with orbit radii 24.8  
AU ([8], Section 1), seem to occupy Shell No 17 as quoted in Table III of [12] with radius of max θ  17 24.7 AUα  . 
Finally, the radius of the Quaoar’s orbit ([8], Section 4) has been computed in the present work with a 
satisfactory accuracy (Section 5.3). Readers interested in the issues of this study can find further details in [12], 
[13], [15], and [17]. 
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