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Abstract 
In this paper, we present a method for solving coupled problem. This method is mainly based on 
the successive approximations method. The external force acting on the structure is replaced by 

( )( ),1 1 ,λ λp x H u x= + . Then we have a nonlinear equation of unknown λ  to solve by successive 
approximations method. By this method, we obtain easily the analytic expression of the displace- 
ment. In addition, good results are obtained with only a few iterations. 
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1. Introduction 
Problem involved in fluid structure interactions occurs in a wide variety of engineering problem and therefore 
has attracted the interest of many investigations from different engineering disciplines. As a result, much effort 
has gone into the development of general computational method for fluid structure system by Osses, Fernandez, 
quarteroni, Blouza, Mbaye [1]-[7]. 

In this paper, successive approximations method is applied to solve a fluid-structure interaction problem. We 
replace the external force acting on the interface between fluid and structure by ( )( )1 1, ,p x H u xλ λ= + . 

Then we introduce a nonlinear equation to solve by successive approximations such that the coupled problem 
is achievable. 

By this method, we obtain good approximate solutions. In addition, the analytic solution of beam equation can 
be computed easily. 

The fluid is modeled by two dimensional Stokes equations for steady flow and the structure is represented by 
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the one dimensional beam equation. 

2. Presentation of the Problem 
We denote by FΩ  the two dimensional domain occupied by the fluid, uΓ  the elastic interface between fluid 
and structure and 1 2 3Γ = ∑ ∑ ∑   be the remaining external boundaries of the fluid as depicted in Figure 1. 

[ ] [ ]0 0, 0,L HΩ = ×  defines the reference domain. 

3. Governing Equations 
3.1. Structure Equation 
We start from the simple equation that governs the structure. The simplified beam equation is: 

( ) ( ) ( )4
1 1 1  for   0SDu x f x x L= < < ,                               (1) 

( ) ( ) ( ) ( ) ( ) ( )1 10 0 0u u L u u L= = = = .                               (2) 

where u  is the displacement of the structure, Sf  is the external force of the structure, 
3

12
EhD = , E  is the  

young modulus, h  is the thickness of the structure This equation is good representation of the structure for 
small deformation.  

3.2. Fluid Equation 
We suppose that the fluid is governing by the Stokes equations for steady flow in FΩ : 

F  in   Fv p fµ− ∆ +∇ = Ω ,                                    (3) 

F0  in  v∇⋅ = Ω ,                                       (4) 

1   on   v g= Σ ,                                       (5) 

20   on   v n⋅ = Σ ,                                       (6) 

1
20    on   

v
y

∂
= Σ

∂
,                                      (7) 

30    on   vpIn
n
∂

− + = Σ
∂

,                                   (8) 

0    on   uv = Γ ,                                      (9) 

where v  denotes the fluid velocity, p  denotes the pressure, Ff  denotes the volume force of the fluid, µ  
the viscosity of the fluid and g  denotes the inflow velocity profile of the fluid, n  is the unit outward normal 
vector, I  is the identity matrix, on the symmetric axis 2Σ  we have the non-penetration condition 

2 0v n v⋅ = = . 

4. Formulation of Coupled Problem 
The problem is to find u , v  and p  such that: 

( ) ( ) ( )( )4
1 1 1 1,    for   0Du x p x H u x x L= + < <                              (10) 

( ) ( ) ( ) ( ) ( ) ( )1 10 0 0u u L u u L= = = = ,                                 (11) 

F   in   Fv p fµ− ∆ +∇ = Ω ,                                     (12) 

F0    in    v∇⋅ = Ω ,                                      (13) 

1    on    v g= Σ ,                                       (14) 
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20    on   v n⋅ = Σ                                        (15) 

1
20    on   

v
y

∂
= Σ

∂
,                                      (16) 

30    on   vpIn
n
∂

− + = Σ
∂

,                                   (17) 

0    on   uv = Γ ,                                      (18) 

We have a fluid structure interaction problem. The domain of the fluid depends on the displacement and the 
displacement depends on the velocity and the pressure of the fluid. 

5. Successive Approximations Method 
We assume that ( )( )1 1, ,p x H u xλ λ= + . Corresponding to each λ , we consider the coupled problem: 

( ) ( )4
1 1   for    0Du x x Lλ= < <                                   (19) 

( ) ( ) ( ) ( ) ( ) ( )1 10 0 0u u L u u L= = = = ,                               (20) 

F    in    Fv p fµ− ∆ +∇ = Ω ,                                  (21) 

F0    in    v∇⋅ = Ω ,                                    (22) 

1    on    v g= Σ ,                                      (23) 

20    on    v n⋅ = Σ ,                                    (24) 

1
20    on     

v
y

∂
= Σ

∂
,                                     (25) 

30    on    vpIn
n
∂

− + = Σ
∂

,                                   (26) 

0    on    uv = Γ ,                                     (27) 

To solve this coupled problem, we need to solve a nonlinear equation of unknown λ  define as: 
( )( )1 1, ,p x H u xλ λ= +  by the successive approximations method. Then we will find u , v  and p . 

Description of the Method 
The weak formulation of the fluid and the structure is given by Grandmont, Murea [8] [9].  
We summarize step by step our computational method to find ( )nλ  such that: 

0 ,  the initial value is doneλ                                     (28) 

( )( )1
1 1, ,n np x H u xλ λ+ = + ,                                    (29) 

 Step 1: We give 0λ , the initial displacement and the fluid domain are compute.  
 Step 2: We solve the Stokes equation by finite elements methods in the reference domain. We find 

( ) ( )0 0, : ,v p v p= , 
 Step 3: we fine ( )( )1 0

1 1, ,p x H u xλ λ= + , 

 Step 4: Do: 
- 0 1λ λ= , 
- compute ( )1

1,u x λ  and ( )1
F λΩ , 

- solve the stokes equation in ( )1
F λΩ , we find  

- ( ) ( )1 1, : ,v p v p= , 
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- we compute ( )( )1 0
1 1, ,p x H u xλ λ= + , 

- While ( 1 0 tolλ λ− ≥ ), 
 Step 5: Give λ , u , ( ),v p . 

6. Numerical Results 
For each λ , the analytic solution of the beam equations is 

4 3 2 2

24 12 24
x Lx L xu

D
λ  

= − + 
 

. 

We assume that the velocity on 1Σ  is ( )1 2,v g v v= =  such that ( ) ( )2 2
1 1 2 2, 30 1v x x x H= −  and 

( )2 1 2, 0v x x =  for all ( )1 2,x x  in 1Σ  Murea [10]. 
The parameter values of the fluid and the structure are: 
Parameter related to fluid: The fluid velocity is 0.035 g cm sµ = ⋅ , the fluid density is 31 g cmFρ = , 

the channel length is 3 cmL = , the channel width 0.5 cmH =  ( )0,0Ff = . 
Parameter related to structure: The structure thickness 0.1 cmh = , Young’s modulus is 

6 20.75 10 g cm sE = × ⋅ , 410tol −= . 
We use the 1P b  Lagrange finite element to approach the velocities and 1P  Lagrange finite element is used 

to approach the pressure. FreeFem++ Hecht [11] is using for the numerical tests. 

7. Conclusion 
In this work, we applied successive approximations method to solve fluid structure interaction problem. This 
method gives good results when the displacement is small. After 11 iterations, we found a good approximate 
solution of the nonlinear equation and also we obtained the solution of coupled problem. 

Table 1 and Figure 2 show that 1 0Error λ λ= −  decreases to zero when iterations increase. Figure 3 and 
Figure 4 display the behavior of the fluid flow and the pressure wave respectively after 11. 
 

 
                        Figure 1. Sets appearing to the fluid structure problem.         
 

 
Figure 2. Error with respect to number iterations.             
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Figure 3. Fluid velocity and structure displacement.          

 

 
Figure 4. Fluid pressure.                                

 
Table 1. Different values of λ  after 11 iterations.                                                              

1λ  0λ  1 0Error λ λ= −  Iterations 

25.1986 0 25.1986 0 

14.776 25.1986 10.4227  
1 

18.1165 14.776 3.34049 2 

17.7406 18.1165 0.375886 3 

17.8601 17.7406 0.119541 4 

17.8368 17.8601 0.0233231 5 

17.8456 17.8368 0.0087835 6 

17.8423 17.8456 0.00330984 7 

17.8435 17.8423 0.00124704 8 

17.843 17.8435 0.000468658 9 

17.8432 17.843 0.000173383 10 

17.8432 17.8432 6.21913e−005 11 

 
In a forthcoming work, we will be showed the theoretical convergence of ( )( )1

1 1, ,n np x H u xλ λ+ = +  and 
also successive approximations method will be used to solve an unsteady fluid structure interaction problem.  
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