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Abstract 
For the case where the multivariate normal population does not have null correlations, we give 
the exact expression of the distribution of the sample matrix of correlations R, with the sample 
variances acting as parameters. Also, the distribution of its determinant is established in terms of 
Meijer G-functions in the null-correlation case. Several numerical examples are given, and appli-
cations to the concept of system dependence in Reliability Theory are presented. 
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1. Introduction 
The correlation matrix plays an important role in multivariate analysis since by itself it captures the pairwise de-
grees of relationship between different components of a random vector. Its presence is very visible in Principal 
Component Analysis and Factor Analysis, where in general, it gives results different from those obtained with 
the covariance matrix. Also, as a test criterion, it is used to test the independence of variables, or subsets of 
variables ([1], p. 407). 

In a normal distribution context, when the population correlation matrix = IΛ , the identity matrix, or 
equivalently, the population covariance matrix Σ  is diagonal, i.e. ( )11, , ppσ σ= Σ , the distribution of the 
sample correlation matrix R is relatively easy to compute, and its determinant has a distribution that can be ex-
pressed as a Meijer G-function distribution. But when ≠ IΛ  no expression for the density of R is presently 
available in the literature, and the distribution of its determinant is still unknown, in spite of efforts made by 
several researchers. We will provide here the closed form expression of the distribution of R, with the sample 
variances as parameters, hence complementing a result presented by Fisher in [2]. 
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As explained in [3], for a random matrix, there are at least three distributions of interest, its “entries distribu-
tion” which gives the joint distribution of its matrix entries, its “determinant distribution” and its “latent roots 
distribution”. We will consider the first two only and note that, quite often, the first distribution is also expressed 
in terms of the determinant, and can lead to some confusion. In Section 2 we recall some results related to the 
case where ≠ IΛ , and establish the new exact expression of the density of R, with the sample variances { }iis  
as parameters, denoted { }( ), iif sR R . In Section 3, some simulation results are given. The distribution of R , 
the determinant of R, is given in Section 4 for = IΛ . Applications of the above results to the concept of de-
pendence within a multi-component system are given in Section 5. Numerical examples are given throughout 
the latter part of the paper to illustrate the results. 

2. Case of the Population Correlation Matrix Not Being Identity 
2.1. Covariance and Correlation Matrices 
Let us consider a random vector X with mean µ  and covariance matrix Σ , of the form of a (p × p) symmetric 
positive definite random matrix  
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For a sample of size n of observations from ( ),pN µ Σ , the sample mean 
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It is noted that by considering the usual sample covariance matrix ( )* 1n= −S S , which is  

( ) ( )( )1 , 1pW n n− −Σ , we have the relation ( ) ( ){ }2* 1 , 1, ,i iis s n i p= − =  , between the two diagonal ele-

ments, but the sample correlation matrix is the same. 
The ( )1 2p p −  coefficients ijr  are (marginally) distributed independently of both the sample and popula-

tion means [2]. It is to be noticed that while R can always be defined from S, the reverse is not true since S has 
( )1 2p p +  independent parameters. This fact explains the differences between results when either R or S is 

used. 
In the bivariate case, Hotelling’s expression [4] clearly shows that the density of r depends only on the popu-

lation correlation coefficient ρ  and the sample size n (see Section 4.3) and we will see that, similarly, the density 
of the sample correlation matrix, with the sample variances as parameters, is dependent on the population vari-
ances and the sample size. However, ijr  are biased estimators of ijσ , and Olkin and Pratt [5] have suggested  

using the modified estimator 
( )

21
1

2 4
ij

ij

r
r

n
 − + 

−  
, with a table of corrective multipliers for ijr  for convenience. 

2.2. Some Related Work 
Several efforts have been carried out in the past to obtain the exact form of the density of R for the general case, 
where 0ijρ ≠ , i j≠  and 3p ≥ . For example, Joarder and Ali [6] derived the distribution of R for a class of 
elliptical models. Ali, Fraser and Lee [7], starting from the identity correlation matrix case, derived the density 
for the general case when ≠ IΛ , again by modulating the likelihood ratio to obtain a density of R containing  

the function ij ij
n

ii jj

r
H

λ

λ λ

 
 
 
 

, already used by Fraser ([8], p. 196) in the bivariate case. But here, ( ).nH , ex-  

pressed as an infinite series, has a much more complicated expression. Schott ([9], p. 408), using ( )Vec R , gives 
for a first-order approximation for R and the expression of ( )( )Var Vec R , and Kollo and Ruul [10], also using 

( )Vec R , presented a general method for approximating the density of R through another multivariate density, 
possibly one of higher dimension. Finally, Farrell ([11], p. 177) has approached the problem using exterior dif-
ferential forms. However, no explicit expression for the density of R is given in any of these works, and the 
question rightly raised is whether that such an expression really exists. 

2.3. Some New Results 
We begin with the case of ( )11diag , , ppσ σ= Σ . Then it can be easily established that the density of R is ([12], 
p. 107): 
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By showing that the joint density of the diagonal elements { }11, , pps s  with R, denoted ( )11, , , ppf s sR  , 
can be factorized into the product of two densities, ( )1 11, , ppf s s  and ( )2f R , which has expression (2) 
above. { }11, , pps s  and R are hence independent. 

We can also show that (2) is a density, i.e. it integrates to 1 within its definition domain, by using the ap-
proach given in Mathai and Haubold ([13], p. 421), based on matrix decomposition. 

In what follows, following Kshirsagar’s approach [14], which itself is a variation of Fisher’s [2] original me-
thod, we establish first the expression of a similar joint distribution, when Σ  is not diagonal. 

THEOREM 1: 
Let ( )~ ,pNX µ Σ , where we suppose that the population correlation ≠ IΛ  and its inverse 1−Λ  has iiλ  

as its diagonal elements. Then the correlation matrix R of a random sample of n observations has its distribution 
given by: 
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PROOF: Let us consider the “adjusted sample covariance matrix” S, given by (1). We know that ~ pWS  
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( ) ( )1 1 2, , pf u u f⋅ R , which is not the case since Φ  contains ijr . 
To integrate out the vector u , we set 
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(This integral is denoted ( )2n ijF γ−  by Fisher [2], and by ( )2nF − Φ  by Kshirsagar [14] who used the nota-
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Hence, if ( )G Φ  is constant, as in the case when = IΦ , R would have density  

( ) ( )

( )

2
2

1
3 2

2

1

12
2

n p

n
n pp

p ii
i

G
f

n λ

− −

−
−

=

 
 
  =  
  −  Γ        

∏
R R R

Φ

Λ

,                     (6) 

with 
( )1

4

1

1 π
2 2

p p p

p
i

n n i−

=

− −   =   
   

∏Γ Γ , being the p-gamma function. However, in the general case this is not 

true. 
Consider the quadratic form: 
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( )G Φ  contains all non-diagonal entries of the sample covariance matrix, and depends on S. We now obtain 
from (6) expression (3) of Theorem 1. Here, the off-diagonal sample covariance, { }ijs , serve as parameters of 
this density. 

QED. 
Alternately, using the corresponding correlation coefficients, we have: 
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REMARKS: 
1) For = IΛ  our results given above should reduce to known results, and they do. Indeed, since we now 

have = IΦ  
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as in (2) since we now have ( )
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Here, only the value of p needs to be known and this explains why expression (2) depends only on n and p. 
Also, as pointed out by Muirhead ([15], p. 148), if we do not suppose normality, the same results can be ob-
tained under some hypothesis. 

2) Expression (3) can be interpreted as the density of R when { } 1

p
ii i

σ
=

 are known, and { }, 1ijs i j p≤ < ≤ , is 
a set of constant sample covariances. But when this set is considered as a random vector, with a certain distribu-
tion, ( )fR R  is called mixture distribution, defined in two steps: 

a) { }ijs  has an (known or unknown) distribution 0℘ , i.e. { } 0~ijs ℘ . 

b) (R; { } 0~ijs ℘ ) has the density given by (3), denoted 0ℑ . 
The distribution of R is then 0 0ℑ ∗℘ , where * denotes the mixture operation. 
However, a closed form for this mixture is often difficult to obtain. 
Alternately, ( )fR R  could be 1 1ℑ ∗℘ , with 1℘  being the density of the diagonal sample variances { }iis   

and off-diagonal sample correlations, { }1 1

p
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≤ < =

 while 1ℑ  is given by (7). 
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Expression (8) gives the positive numerical value of ( )0;f =R R S S  upon knowledge of the value of S. It 
will serve to set up simulation computations in Section 3. However, it also shows that ( )fR R  can be defined 
with S, and when S has a certain distribution the values of ( )fR R  are completely determined with that distri-
bution. This highlights again the fact that, in statistics, using R or S can lead to different results, as mentioned 
previously. 

2.4. Other Known Results 
1) The distribution of the sample coefficient of correlation in the bivariate normal case can be determined 
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fairly directly when integrating out 1s  and 2s , and this fact is mentioned explicitly by Fisher ([2], p. 4), who 
stated: “This, however, is not a feasible path for more than two variables.” In the bivariate case,  

( )( )

( ) ( )

1

2 2

1 1

n

i
n n

i i

x x y y
r

x x y y

=

= =

− −
=

− −

∑

∑ ∑
, and has been well-studied by several researchers, using different approaches and, 

as early as 1915, Fisher [16] gave its density as: 

( )
( )

( ) ( )
( )

( )
( )

1
2 2 4 2

2 2
2 2

1 arccosd1 , 1 1,
π 2 d 1

n
n n

n

r
f r r r

n r r

ρ ρ

ρ ρ

−
− −

−

 − − = − − ≤ ≤ 
Γ −  − 

                (9) 

Using geometric arguments, with ρ  being the population coefficient of correlation. We refer to ([17], p. 
524-534) for more details on the derivation of the above expression. Other equivalent expressions, reportedly as 
numerous as 52, were obtained by other researchers, such as Hotelling [4], Sawkins [18], Ali et al. [7]. 

2) Using Equation (3) on the sample correlation matrix 
1

1
r

r
 
 
 

, obtained from the sample covariance matrix  

11 12 11 22

21 11 22 22

s s r s s

s r s s s

 =
 

=  
, 

Together with p = 2, we can also arrive at one of these forms (see also Section 4.3, where the determinant of 
R provides a more direct approach). 

3) Although Fisher [2] did not give the explicit form of the integral ( )G Φ  above, he included several inter-  

esting results on ( ) ( )2nG F −=Φ Φ , as a function of the sample size n and coefficients ij
ij ij

ii jj

r
λ

γ
λ λ

 
 =
  

. For  

example, in the case all 0ijρ = , i j≠ , the generalized volume in the p(p − 1)/2-dimension space of the region 
of integration for rij is found to be a function of p, having a maximum at p = 6. In the case all 0ijγ = , the ex-
pressions of the partial derivatives of Log ( )G Φ  w.r.t. ijγ  can be obtained, and so are the mixed derivatives.  

For the case n = 2, and p = 3, ( )G Φ  has an interesting geometrical interpretation as ( )2 22
2

t n−  
 
 

V
D

Γ , where  

V = generalized volume defined by ijγ−  and D is the volume defined by the p unit vectors in a transformation 
where ijγ−  are the cosines of the angles between pairs of edges. 

3. Some Computation and Simulation Results 
3.1. Simulations Related to R 
A matrix equation such as (3) can be difficult to visualize numerically, especially when the dimensions are high, 
i.e. 3p ≥ . Ideally, to illustrate (7), a figure giving ( )fR R  in function of the matrix R itself is most informa-
tive, but, naturally, impossible to obtain. One question we can investigate is how the values of ( )W f= R R  dis-
tributed, for a normal model ( )~ ,pNX µ Σ ? Simulation using (8) can provide some information on this distri-
bution in some specific cases. For example, we can start from the (4 × 4) population covariance matrix 

0.122 0.097 0.016 0.010
0.140 0.011 0.009

0.030 0.006
0.011

 
 
 =
 
 
 

Σ , 

taken from our analysis of Fisher’s iris data [19]. It concerns the Setosa iris variety, with x1 = sepal length, x2 = 
sepal with, x3 = petal length and x4 = petal width. It gives the population correlation matrix 



T. Pham-Gia, V. Choulakian 
 

 
337 

1 0.7425 0.2672 0.2781
1 0.1777 0.2328

1 0.3316
1

 
 
 =
 
 
 

Λ , 

where all 0ijρ ≠ . We generate 10,000 samples of 100 observations each from ( )4 ,N µ Σ , which give 10,000 
values of the covariance matrix S, which, in turn, give matrix values for R, scalar values for R  and, finally, 
positive scalar values for ( )0;W f= =R R S S , as given by (8). Recall that for X normal S has a Wishart distri-
bution ( )1,pW n − Σ . Figure 1 gives the corresponding histogram, which shows that values of W are distributed 
along a unimodal density, denoted by ( )h W , with a very small variation interval, i.e. most of its values are 
concentrated around the mode. 

Note: A special approach to graphing distributions of covariance matrices, using the principle of decompos-
ing a matrix into scale parameters and correlations, is presented in: Tokuda, T., Goodrich, B., Van Mechelen, I., 
Gelman, A. and Tuerlinckx, F., Visualizing Distributions of Covariance Matrices (Document on the Internet). 

It is also mentioned there that for the Inverted Wishart case, with ν  degrees of freedom, then 

( )
( )( ) 21 1

1
2

1

pp

ii
i

f
νν −− −

−

=

 
=  

 
∏R R R , 

where iiR  is the i-th principal sub-matrix of R, obtained by removing row and column i (p. 12). 

3.2. Simulations Related to R  
Similarly, the same application above gives the approximate simulated distribution of R  presented in Figure 
2. We can see that it is a unimodal density which depends on the correlation coefficients ijr . 

Using expression (7), which exhibits explicitely rij, and replacing rij by the corrected value 
( )

21
1

2 4
ij

ij

r
r

n
 − + −  

,  

the unbiased estimator of ijρ , we obtain R̂ . However, since an unbiased estimator of Λ  is still to be found 
we cannot use neither R  nor R̂  as point-estimate of Λ . Figure 2 gives the simulated distributions of 
R  and of R̂ . We can see that the two approximate densities are different, and the density of R̂  has higher 

mean and median, resulting in a shift to the right. But, again, the two variation intervals are very small. 

3.3. Expression of ( )ΦG  
In the proof of Theorem 1, we have established that 
 

W=fR(R)
0.0 5.0e-8 1.0e-7 1.5e-7 2.0e-7 2.5e-7 3.0e-7

h(W)

0.0

5.0e+6

1.0e+7

1.5e+7

2.0e+7

 
Figure 1. Simulated density of ( )0;W f= =R R S S . 
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Figure 2. Simulated densities of R  and R̂ . 

 

( )
( )3

T 2 2
1

10 0

1 1exp d d 2 exp .
2 2

pn pp
ij ijn

i p
i ji ii jj

snG u u u
λ

σ σ

−∞ ∞
−

<=

  −      = − = −            
∑∏∫ ∫ u u Φ Φ Γ  

Using the above matrix Σ , for a simulated sample, say 

0.1106 0.019 0.015 0.017
0.0384 0.0004 0.0092

0.0098 0.0034
0.172

− 
 
 =
 
 
 

S , 

we compute directly the left side by numerical integration, and the right side by using the algebraic expression. 
The results are extremely close to each other, with both around the numerical value 1.238523012 × 105. 

4. Distribution of R , the Determinant of R 
First, let det(R) be denoted by R . In this case ≠ IΛ , this distribution is very complex and no related result is 
known when 3p ≥ . Nagar and Castaneda [20], for example, established some results in the general case, for p 
= 2. 

Theoretically, we can obtain the density of R  from (3) by applying the transformation →R R , with dif-
ferential ( )( )1d dtr −=R R R R , but the expression obtained quickly becomes intractable. Only in the case of 

= IΛ  that we can derive some analytical results on R , as presented in the next section. Gupta and Nagar [21] 
established some results for the case of a mixture of normal models, but again under the hypothesis of = IΛ . 

4.1. Density of the Determinant R  
When considering Meijer G-functions and their extensions, Fox’s H-functions [22], for = IΛ  the density of 
R  can be expressed in closed forms, as are those of other related multivariate statistics [23]. Let us recall that  

the Meijer function ( )xG , and the Fox function ( )xH , are defined as follows: ( ) 1

1

, ,
, ,

m r pp q

q

a a
x x

b b
 

=  
  

G G




 is  

the integral along the complex contour L of a rational expression of Gamma functions  

( ) ( )

( ) ( )
1 1 1

1

1 1

1
, , 1 d
, , 2π 1

m r
p q

m r

j j
p j j s

q p
p L

j j
j m j r

b s a sa a
x x s

b b i b s a s

= = −

= + = +

− − +
 

= 
   − + −

∏ ∏
∫
∏ ∏

G




Γ Γ

Γ Γ
                 (10) 
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It is a special case, when 1,i jα β= =  ,i j∀ , of Fox’s H-function, defined as:  

( ) ( )
( ) ( )

( ) ( )

( ) ( )
1 1 1 1

1 1

1 1

1, , , , 1 d
2π, , , , 1

m r
p q

m r

j j j j
p p j j s

q p
Lq q

j j j j
j m j r

b s a sa a
x x s

ib b b s a s

β αα α

β β β α

= = −

= + = +

− − + 
  =
 

− + − 

∏ ∏
∫
∏ ∏

H




Γ Γ

Γ Γ
. 

Under some fairly general conditions on the poles of the gamma functions in the numerator, the above integrals 
exist. 

THEOREM 2: When = IΛ , for a random sample of size n from ( ),pN µ Σ , the density of R  depends 
only on n and p:  

( ) ( )

1

1 0
1 1

1 3 3, ,
2 2 2; , ,0 1

2 24 , ,2 2 2 2
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p
p p

n n n

g u n p u u
n n p n pn

−

−
− −

 
 
 
 
 
 
 
 

 −  − − 
    = ≤ ≤

− − − +    −
   
   

G






Γ

Γ Γ
.          (11) 

PROOF: 
From (2) the moments of order t of R  are: 

( )
1

1 2
1

1 2

1 1
2 22 2

1 1
2 22 2

p pp p

t j j
p p p p

j j

n j n jn nt t
E
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− − −   −       + +                  = =
− −    −   −    + +                  

∏ ∏

∏ ∏
R

Γ ΓΓ Γ

Γ ΓΓ Γ

,         (12) 

1t ≥ , which is a product of moments of order t of independent beta variables. Upon identification of (12) with  

these products, we can see that 1 1~ pX X −R  , with 1~ ,2 2i
n j jX β − − 

 
 

, with 2,3, ,j p=  . Using [23],  

the product of k independent betas, ( ) ( )( ),i iβ α β , has as density 
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Hence, we have here, the density of R  as:  
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where ( )1 2
2

nα −
= , ( )1 1

2
β = , ( )2 3

2
nα −

= , ( )2 2
2

β =  and ( )1

2
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= , ( )1 1
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And, hence, we obtain: 
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
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Γ

Γ Γ
          (13) 

QED. 
The density of R  can easily be computed and graphed, and percentiles of R  can be determined numeri-

cally. For example, for p = 4, n = 8. The 2.5th and 97.5th percentiles can be found to be 0.04697 and 0.7719 re-
spectively. 

4.2. Product and Ratio 
Let 1R  and 2R  be two independent correlation matrices, obtained from 2 populations, each with zero popula-
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tion correlation coefficients. The determinant of their product is also a G-function distribution, and its density 
can be obtained. This result is among those which extend relations obtained in the univariate case by Pham-Gia 
and Turkkan [24], and also has potential applications in several domains. 

THEOREM 3: Let ( ) ( ) ( ){ }1

11 1
1 2, , , nX X X  and ( ) ( ) ( ){ }2

22 2
1 2, , , nX X X  be two independent random samples 

from ( )
1 1 1,pN Σµ  and ( )

2 2 2,pN µ Σ  respectively, both iΣ  being diagonal. Then the determinant R  of the 
product 1 2=R R R  of the two correlation matrices 1R  and 2R  has density: 

( ) ( ) ( )

1 1 2 22 0
2 2

1 2
1 1 2 21 2

3 3 3 3, , , , ,
2 2 2 2; , , , 0 1

2 24 4, , , , ,
2 2 2 2
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g v n n p A v v
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− + − +− − 
  
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,      (14) 

where 
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1
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2
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i

i i i i
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A
n n p

−

=

 −  
  
  =

− −   
   
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∏


Γ

Γ Γ
 and 1 2p p p= + . 

PROOF: Immediate by using multiplication of G-densities presented in [23]. 
QED. 
Figure 3 shows the density of 1 2=R R R , for 1 8n = , 1 4p =  and 1 10n = , 2 5p = . 
Using again results presented in [23] we can similarly derive the density of the ratio 1 2R R  in terms of 

G-functions. Its expression is not given here to save space but is available upon request. 

4.3. Particular Cases 
1) Bivariate normal case: a) for the bivariate case we have 21 r= −R , and when ρ  is zero, we have from 

(11) the density of R  as  

1 0
1 1

1 3
2 2 , 0 1

2 4
2 2

n n

u u
n n

−  −  
       ≤ ≤

− −   
      

G
Γ

Γ
, 

which is the G-function form of the beta 2 1,
2 2

nβ − 
 
 

. Hence, the distribution of 2r  is: ( )( )1 2, 2 2nβ − , 

20 1r≤ ≤ , and the density of r is: 
 

|R1||R2|
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Figure 3. Density of product of independent correlation determi-
nants. 
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( ) ( )( ) ( )( )4 221 1 2, 2 2
n

f r r B n
−

= − − ,                           (15) 

for 1 1r− ≤ ≤ . Testing 0 : 0H ρ =  is much simpler when using Student’s t-distribution, 
2

2

1

R nt
R

−
=

−
, and is 

covered in most textbooks. 
Pitman [25] has given an interesting distribution-free test when 0ρ = . 
2) When 0ρ ≠  Hotelling ([4]) gave the density of r  as: 

( ) ( ) ( ) ( ) ( )
1 4

2 22 2
2 1

2 1 1 1 2 1 11 1 , , ; , 1 1,
1 2 2 2 22π
2

n nn n n rf r r F r
n

ρρ
− −− Γ − − + = − − − ≤ ≤    Γ − 

 

          (16) 

where ( )2 1 , ; ;F a b c x  is Gauss hypergeometric function with parameters ,a b  and c. 
3) Mixture of Normal Distributions: With X coming now from the mixture: ( ) ( ) ( )1 2, 1 ,p pN Nε ε+ −Σ Σµ µ ,  

0 1ε< < , Gupta and Nagar [21] consider ( )
1

det
p

ii
i

s∗

=

= ∏W S , and give the density of W in terms of Meijer  

G-functions, but for the case = IΣ  only. The complicated form of this density contains the hypergeometric 
function ( )2 1 .F , as expected. 

For the bivariate case, Nagar and Castaneda [20] established the density of r and gave its expression for both 
cases, 0ρ ≠  and 0ρ = . In the first case the density of r, when only one population is considered, reduces to 
the expression obtained by Hotelling [4] above. 

5. Dependence between Components of a Random Vector 
5.1. Dependence and R  
Correlation is useful in multiple regression analysis, where it is strongly related to collinearity. As an example of 
how individual correlation coefficients are used in regression, the variance inflation factor (VIF), well adopted 
now in several statistical softwares, measures how much the variance of a coefficient is increased by collinearity, 
or in other words, how much of the variation in one independent variable is explained by the others. For the j-th 
variable, jVIF  is the j-th diagonal element of 1−R . We know that it equals ( ) 12

.12 1, 1, ,1 j j j p

−

− +− R
 

, with 
.12 1, 1, ,j j j p− +R
 

 being the multiple correlation of the j-th variable regressed on the remaining 1p −  others. 
When all correlation measures are considered together, measuring intercorrelation by a single number has 

been approached in different ways by various authors. Either the value of R  or those of its latent roots can be 
used. Rencher ([26], p. 21) mentions six of these measures, among them 1− R , where R  is an observed 
value of R, and takes the value 1 if the variables are independent, and 0 if there is an exact linear dependence. 
But since the exact distribution of R is not available this sample measure is rather of descriptive type and no 
formal inferential process has really been developed. 

Although the notion of independence between different components of a system is of widespread use in the 
study of the system structure, reliability and performance, its complement, the notion of dependence has been a 
difficult one to deal with. There are several dependence concepts, as explained by Jogdev [27], but using the 
covariance matrix between different components in a joint distribution remains probably the most direct ap-
proach. Other more theoretical approaches, are related to the relations between marginal and joint distributions, 
and Joe [28] can be consulted on these approaches. Still, other aspects of dependence are explored in Bertail et 
al. [29]. But two random variables can have zero correlation while being dependent. Hence, no-correlation and 
independence are two different concepts, as pointed out in Drouet Mari and Kotz [30]. Furthermore, for two in-
dependent events, the product of their probabilities gives the probability of the intersection event, which is not 
necessarily the case for two non-correlated events. Fortunately, these two concepts are equivalent, when the un-
derlying population is supposed normal, a hypothesis that we will suppose in this section. 

5.2. Inner Dependence of a System 
When considering only two variables, several measures of dependence have also been suggested in the literature 
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(Lancaster [31]), and especially in system reliability (Hoyland and Rausand [32]), but a joint measure of the de-
gree of dependence between several components of a random vector, or within a system ϑ , or inner depen-
dence of ϑ , denoted by ( )δ ϑ , is still missing. We approach this dependence concept here by way of the cor-
relation matrix, where a single measure attached to it would reflect the overall degree of dependence. This con-
cept has been presented first in Bekker, Roux and Pham-Gia [33], to which we refer for more details. It is de-
fined as ( ) ( )11

p
δ ϑ = − Λ , with ( )0 1δ ϑ≤ ≤ . The measure of independence within the system is then  

( )11 1
p

− − Λ , estimated by ( )1ˆ1 1
p

− − Λ , where Λ̂  is a point estimation of Λ  based on R, the correlation  

matrix associated with a sample of n observations of the p-component system. In the general case this estimation 
question is still unresolved, except for the binormal case, ( )2~ ,Nϑ µ Σ . We then have 21 ρ= −Λ , and 
( )δ ϑ ρ= , where ρ  is the coefficient of correlation with its estimation well known, depending on either ρ  

is supposed to be zero or not. The associated sample measure being ( )d rϑ = , it is of interest to study the dis-
tribution of the sample inner dependence ( )d ϑ , based on a sample of n observations of the system. 

In the language of Reliability Theory, a p-component normal system is fully statistically independent when 
the ( )1 2p p −  correlation coefficients ijρ  of its components are all zero. We have: 

THEOREM 4: 1) Let the fully statistically independent system ϑ  have p components with a joint normal 
distribution with = IΣ , where 2p ≥ . 

a) Then the distribution of the sample coefficient of inner dependence ( )d ϑ  is: 
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0 1

p

p
p pp p

n n n

f d n p p d d
n n p n pn

d

−

−
− − −

 −   − − 
        = − − −

− − − +    − 
          

≤ ≤

G
Γ

Γ Γ







     (17) 

b) For the two-component case (p = 2), we have: 

( ) ( )( ) ( )( )4 22; 2 1 1 2, 2 2 , 0 1
n

f d n d B n d
−

= − − ≤ ≤                      (18) 

2) For a non-fully independent two-component binormal system ( )0ρ ≠ , for 0 1d≤ ≤ : 

( ) ( )( ) ( ) ( ) ( )( )

( ) ( ) ( )( )

34 22 2 2 1

3
2 2 1

; 1 1 1 2,1 2; 2 1 2, 1 2

1 1 2,1 2; 2 1 2, 1 2

n n

n

f d n A d d F n d

d F n d

ρ ρ

ρ ρ

 − − − 
 

 − − 
 


= ⋅ − − − +




+ + − − 


          (19) 

where 
( ) ( )( )( )

( )( )( )

1 22

1 2

2 1 1

1 2 2π

n
n n

A
n

ρ
−

− Γ − −
=

Γ −
 and ( )2 1 , ; ;F xα β λ  is Gauss hypergeometric function. 

PROOF: a) For , 0i jρ = , the density of ( )d ϑ , as given by (17), is obtained from (11) by a change of varia-
ble. Figure 4 gives the density of the sample coefficient of inner dependence ( )d ϑ , for n = 10 and p = 4. 

Expression (18) is obtained from (15) by the change of variable d r= . Again, the density of d, as given by 
(19), can be derived from (16) by considering the same change of variable. QED. 

Numerical computations give ( ) 0.17665E d = . Estimation of ( )δ ϑ  from ( )d ϑ  now follows the same 
principles as ρ  from r. 

Figure 5 gives the density ( )f d , as given by (19), for n = 8, p = 2, 0.25ρ = . 

6. Conclusion 
In this article we have established an original expression for the density of the correlation matrix, with the sam-
ple variances as parameters, in the case of the multivariate normal population with non-identity population cor-
relation matrix. We have, furthermore, established the expression of the distribution of the determinant of that 
random matrix in the case of identity population correlation matrix, and computed its value. Applications are  
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Figure 4. Density (17) for sample coefficient of inner depen- 
dence ( )d ϑ  (normal system with four components, n = 10, p 
= 4). 
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Figure 5. Density (19) of sample measure of a binormal sys-
tem dependence, ( )d ϑ . 

 
made to the dependence among p components of a system. Also, expressions for the densities of a sample meas-
ure of a system inner dependence are established. 
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