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Abstract 
 
In this work, an algorithm based on method of lines coupled with radial basis functions namely meshless 
method of lines (MMOL) is presented for the numerical solution of Kawahara, modified Kawahara and KdV 
Kawahara equations. The motion of a single solitary wave, interaction of two and three solitons and the 
phenomena of wave generation is discussed. The results are compared with the exact solution and with the 
results in the relevant literature to show the efficiency of the method. 
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1. Introduction 
 
In this paper we study numerical solution of Kawahara 
equation, Modified Kawahara equation and KdV-Kawa- 
hara equation respectively given as: 

0, , 0t x xxx xxxxxu u u u u a x b t          (1) 

2 0, , 0t x xxx xxxxxu u u u u a x b t          (2) 

0, , 0t x x xxx xxxxxu u u u u u a x b t          (3) 

A variety of physical phenomena like, magneto acous-
tic waves in plasma [1], shallow water waves with sur-
face tension [2] and capillary gravity water waves [3], 
are described by Kawahara Equation (1) and modified 
Kawahara Equation (2). KdV-Kawahara Equation (3) is 
used to describe the one dimensional evolution of small 
but finite amplitude long waves in various problems in 
fluid dynamics. This equation is a specific form of Ben-
ney-Lin equation [4,5]. 

Different analytic and numerical methods including 
the tanh-function method [6], Adomian decomposition 
method [7], sine-cosine method [8], variational iteration 
method, homotopy perturbation method [9], Crank-Ni- 
colson Differential quadrature algorithms [10], Predic- 
tor corrector methods [11], Dual-Petrov Galerkin method 
[12] and RBF collocation method [13] have been pro-
posed for solving the Kawahara type equations.  

We shall use method of lines approach [14,15] using 
RBFs for numerical solution of the above problems using 
radial basis functions. The method of lines [16] is pow-

erful and comprehensive approach for solving time de-
pendent partial differential equations (PDEs). This me- 
thod involves two steps, first the approximation of spatial 
derivatives converting the PDEs to a system of ordinary 
differential equations (ODEs) and in the second step the 
resulting system of ODEs is integrated in time. One of 
the salient features of the MOL is the use of existing and 
well established numerical methods for ODEs. Coupling 
method of lines with radial basis functions makes it very 
simple by getting rid of mesh generation as compared to 
conventional mesh based methods. In 1990 Kansa [17, 
18] for the first time used radial basis functions for nu-
merical solution of PDEs. Other researchers like Forn-
berg et al. [19], Hon and Wu [20], Franke and Schaback 
[21], Wong et al. [22], Chen and Tanaka [23] also con-
tributed a lot in this area. In order to solve the resultant 
collocation method Fasshauer modified the Kansa’s me-
thod to a Hermite type collocation method [24]. For non-
linear time dependent PDEs see also [25,26]. In 1971 
Hardy [27], developed MQ to approximate geogra- phi-
cal surfaces. In Franke’s [28] review paper, the MQ was 
ranked the best in some thirty scattered data interpolation 
methods. For solving PDEs the convergence proofs in 
applying the RBF’s is given by Wu [29]. The accuracy of 
RBFs methods depends on the choice of a parameter 
called shape parameter involved in infinitely smooth 
RBFs like, Multiquadric (MQ), Gaussian (GA), Inverse 
multiquadric (IMQ) radial basis functions. Tarwater [30] 
found that the Root Mean Square of error decreases up to 
certain limit and then increases rapidly when  .c 
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Golberg, Chen, and Karur [31] and Hickernell and Hon 
[32] applied the technique of cross validation to obtain 
an optimal value of the shape parameter. 

However the methods based on globally supported ra-
dial basis functions (GSRBFs) approach face the prob-
lem of ill-conditioning of the dense interpolation matrix. 
In order to overcome these difficulties several alterna-
tives including domain decomposition [33], precondi-
tioning [34] and use of compactly supported RBF [35] 
have been introduced. Another useful approach in this 
regard is locally supported RBFs instead of globally 
supported RBFs. The readers are recommended to visit 
Wu and Liu [36], C. K. Lie et al. [37], R. Vertnik and 
Bozidar Sarler [38]. It is worth mentioning that global, 
infinitely differentiable RBFs typically interpolate sm- 
ooth data with spectral accuracy [39-42] and the shape 
parameter can be adjusted with the number of centers in 
order to produce a interpolation matrix which is well 
conditioned enough to be inverted in finite precision ari- 
thmetic [43].The globally supported RBFs were used 
early on and for the problems whose size does not ex-
ceed 400-500 data points. These methods should still be 
the method of choice [44].  

This paper is organized in three sections. In Section 2 
the numerical scheme is explained and Section 3 con-
tains the numerical examples for the justification of the 
method and we conclude in Section 4. 

2. Numerical Scheme 
 

For implementation of numerical method, we consider 
the Kawahara Equation (1) with the following initial and 
boundary conditions 

   ,0 , ,u x f x a x b              (4) 

      1, , ,u a t g t u b t g t  2

.

         (5) 

To apply meshless method of lines, we first use radial ba-
sis functions to approximate space derivatives. The problem 
domain [a,b] is divided into nodes , 1, 2, ,ix i N   Out 
of these points 1i   are interior points 

d
 

and 
, 2, ,x i N 

, 1 anix i  N  are the boundary points. 
 ,u x tThe approximate solution of is given by 

         T

1

, ,
N

n n
j j

j

u x t u x t t x x


    λ ,      (6) 

where  

        TT
1 2, , , Nx x x x        

We have used the following RBFs 

   2 2 ,j jx x x c MQ     

    2
exp ,j jx c x x GA     

 
 2 2

1
,j

j

x IMQ
x x c

 
 

 

where 1,2, ,j N  and c being shape parameter.  
The Equation (6) in the matrix form is 

u Aλ                  (7) 

where  

       T T

1 2 1 2, , , , , , ,N Nu t u t u t       u λ  

and 

 
 

 

     
     

     

1 1 2 1 1
T

1 1 2 2 2 2
T

2

T

1 2

  ...  

   

. . . .

. . . ....

. . . .

 

N

N

N

N N N N

x x x

x x x x

x

x

x x x

  

  

  

 
                     
 
 





A







 

Using Equation (7) in Equation (6) it follows that 

  T 1, ( ) ( )u x t x x A u S u ,          (8) 

where    T 1x x S A  

Applying Equation (8) to Equation (1), and collocating 
at each node ix , we get system of first order ODEs 

        d
0,

d
1,2, ,

i
i x i xxx i xxxxx i

u
u x x x

t
i N

  

 

S u S u S u 
(9)

where  i iu t u  

       

   

1 2, , , , 1, 2, ,

, , 1, 2, ,

x i x i x i Nx i

jx i j i

x S x S x S x i N

x S x i j N
x

   


 


 



S

S
 

In the similar fashion 

       1 2, , ,

1, 2, ,

xxx i xxx i xxx i Nxxx ix S x S x S x

i N

,   






S
 

   
3

3
, , 1, 2, ,jxxx i j iS x S x i j N

x


 


  

       1 2, , ,

1, 2, ,

xxxxx i xxxxx i xxxxx i Nxxxxx ix S x S x S x

i N

,   






S
 

   
5

5
, , 1, 2, ,jxxxxx i j iS x S x i j

x


 


 N  

In order to write the above system of equations in 
terms of column vectors, let 

T

1 2 3 1... ,N Nu u u u u   U  

  ,x jx i N N
S x


   S  
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 
 

,

,

xxx jxxx i N N

xxxxx jxxxxx i N N

S x

S x





   

   

S

S
 

Equation (9) then can be written as follows 

     d

d x xxx xxxxxt
     0

U
U S U S U S U    (10) 

Rewriting Equation (10) as 

 d

d
G

t


U
U                 (11) 

where 

      x xxx xxxxxG     U U S U S U S U 



 and the sy- 

mbol (*) denotes component by component multiplica-
tion of two vectors.  

The initial condition is 

       0 0 0
0 1 2, , , Nt u x u x u x  U       (12) 

From the boundary conditions described in (5) we get 

      1 1 2 and Nu t g t u t g t          (13) 

Now we use classical fourth order Runge-Kutta sch- 
eme to solve Equations (11)-(13), namely 

 

 

 

1 2 3 41

1 2 1

3 2 4

2( )

6

,
2

,
2

n n

n n

n n

t K K K K

t
K G K G K

t
3K G K K G t

    
 


      

 
        

 

U U

U U

U U K

N

  (14) 

  The RK4 scheme does not face problem of stability as 
long as the time step Δt is chosen sufficiently small (see 
Collatz [45]) which is so in our case. The rule of thumb 
in selection of the time step Δt for stability is as follows 
[46]: “The method of lines is stable if the eigenvalues of 
the (linearized) spatial discretization operator, scaled by 
time step Δt, lie in the stability region of the time- 
discretization operator”. So the method is stable if all the 
eigenvalues of the Jacobian matrix in 
(11) lie inside the stability region R (i.e.

 ,  1,2, ,j j  
2.78 0jt    ) 

of RK4 scheme. For further details regarding stability of 
Runge-Kutta fourth order method, see Lambert [47] and 
Jain [48]. As far as the selection of the shape parameter c 
is concerned in this work, first we have to find an inter-
val for c in which matrix A of radial basis functions is 
invertible and then select a value from that interval 
which gives us the most accurate results.  
 

3. Numerical Application 
 

In this section the numerical results for Kawahara, modi-
fied Kawahara and KdV Kawahara equations are pre-

sented. The root mean square norm and maximum error 
norms are calculated by the formulas 

    22

2
1

N

ex num ex num
j

L u u x u j u j


       (15) 

   maxex num ex num
j

L u u u j u j 
        (16) 

For Kawahara equation the lowest three conserved 
quantities, defined in [49] are also calculated using 

2
1 2

2 2 3 2
3

1
d , d ,

2

13 105 1
d

8 96 2x x

I u x I u x

xI u u u 

 

 





 

    
 

 

 x

 

Example 3.1 
Consider the Kawahara equation  

0t x xxx xxxxxu uu u u     

with the following initial and boundary conditions 

  4105
,0 sech

169 ou x k x x        (17) 

   , 0; ,u a t u b t 0             (18) 

The exact solution given in [10] is, 

  4105 36
, sech

169 169 ou x t k x t x
     

  
     (19) 

where 
1 1

2 13
k    

For numerical computation we take [a,b] = [–20,30], 
2, 1, 51ox x N    . The simulation is carried out up 

to time t = 25. L2 and L∞ norms are calculated at t = 0, 5, 
15 and 25, using MQ and GA radial basis functions with 
the value of shape parameter found to be in neighbor-
hood of 4 as shown in Figure 1 and similarly for GA the 
value is found to be in neighborhood of 0.3. We have 
searched the optimal value of the shape parameter by 
plotting maximum error verses shape parameter with step 
0.01.The three conserved quantities are also shown in the 
Table 1.The amplitudes and peak position of the solitary 
waves are also calculated. The results with present me- 
thod using MQ are better than the polynomial based dif-
ferential quadrature (PDQ) method [10] and are very 
close to cosine expansion based differential quadrature 
(CDQ) method [10]. While the results obtained by GA 
are better than both methods mentioned in [10]. In Fig-
ure 2 the forward motion of the solitary wave in com-
parison with exact solution (19) at different time levels is 
shown. 

The Point wise rate of convergence in space is calcu-
lated using the following formula:
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Table 1. Results for Kawahara equation in comparison with [10]. 

Method Time 3
2 1 0L   

31 0L   1I  2I  3I  Height 
Peak 

Position 
CPU 

time(s) 

MQ(c = 4.3) 
 
 
 
 
 

GA(c = 0.27) 
 
 
 
 

PDQ[10] (Δt = 0.1) 
 
 
 

CDQ[10] 
 

0 
5 
15 
25 

 
0 
5 
15 
25 

 
0 
5 
15 
25 

 
0 
5 
15 
25 

0 
0.09468 
0.15362 
0.16818 

 
0 

0.10075 
0.10113 
0.13160 

 
0 

1.986 
2.543 
2.851 

 
0 

0.151 
0.156 
0.159 

0 
0.04669 
0.05939 
0.04660 

 
0 

0.034297 
0.03830 
0.03990 

 
0 

0.921 
1.045 
0.863 

 
0 

0.043 
0.049 
0.076 

5.97359 
5.97348 
5.97343 
5.97355 

 
5.973599 
5.973662 
5.973675 
5.973532 

 
5.97357 
5.97060 
5.97014 
5.97353 

 
5.97357 
5.97372 
5.97364 
5.97350 

1.27250 
1.27250 
1.27250 
1.27250 

 
1.272502 
1.272502 
1.272502 
1.272502 

 
1.27250 
1.27250 
1.27250 
1.27250 

 
1.27250 
1.27250 
1.27250 
1.27250 

–0.16458
–0.16458
–0.16458
–0.16458

 
–0.16458
–0.16458
–0.16458
–0.16458

 
–0.16458
–0.16458
–0.16458
–0.16457

 
–0.16458
–0.16458
–0.16458
–0.16458

0.62130 
0.62119 
0.62038 
0.61880 

 
0.621301 
0.621201 
0.620382 
0.618802 

 
0.62130 
0.62102 
0.62047 
0.61872 

 
0.62130 
0.62122 
0.62037 
0.61877 

2 
3 
5 
7 
 
2 
3 
5 
7 
 
2 
3 
5 
7 
 
2 
3 
5 
7 

 
0.094 
0.188 
0.328 

 
 

0.171 
0.172 
0.281 

 

1 2 3 4 5 6 7
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Shape parameter for MQ

er
ro

r

 

Figure 1. Error verses shape parameter c for Example 3.1. 
 

 

Figure 2. Travelling wave solution of Kawahara equation 
(solid lines showing numerical solution and dot (.) showing 
exact solution. 

 
 

110

10 1

log

log
i ih h

i i

u U u U

h h




 
 

where  and 
ihU  represents the exact solution and the 

numerical solution respectively and hi is spatial step size. 
We calculate spatial rate of convergence by keeping time 
step 

u

t 0.001   fixed and varying the number of collo-
cation points (F = 20, 40, 80). From the Table 2 we can 
see that the order of convergence decreases with the 
smaller spatial step size. In all numerical examples we 
have used MQ and GA in order to calculate order of 
convergence. 

Example 3.2 
Consider the modified Kawahara equation  

2 0t x xxx xxxxxu u u u u     

with the following initial and boundary conditions 

  2,0 sechu x D k x             (20) 

   
    

2

2

, sech ;

, sech

u a t D k a Bt

u b t D k b Bt

 

 


       (21) 

The above conditions are extracted from the exact so-
lution given in [50], 

  2, sechu x t D k x Bt        (22) 

where 
3 1 1

, ,
2 5 2510

D k B   
4

neighborhood of 0.5 and 0.0001. The L2 and L∞ norms cal-
culated at t = 0, 5, 15, 25 are shown in Table 3.

 

The calculation is carried out by taking [a,b] = [–30,30] 
with x = 1.We use MQ, GA and IMQ radial basis with 
shape parameter found to be in the neighborhood of 3 for 
MQ as shown in Figure 3 and for GA and IMQ it is in the 

Copyright © 2011 SciRes.                                                                                 AM 
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en

N Order 

Table 2. Spatial rate of converg ce at for Example 3.1, t = 25. 

L∞ order L2 
MQ  

2.8100 10–2 
 

9.1143 

8.2164 

 
1.0180 10–1 

 

9.2509 

8.6358 

20 
40 
80 
GA 
20 
40 
80 

1×
5.07036×10–5 

–53.56316×10  
 

1.4909 ×10–2 4
5.01268×10–5 

4.77379×10–5 

 

0.5089 
 
 

0.0704 

8×
1.67092×10–4 

–41.28499×10  
 

5.3877 –2 5×10
1.35443×10–4 

1.25773×10–4 

 

0.3788 
 
 

0.1068 
 

ults for ed Kawa tion. 

method time(s) 

Table 3. Res Modifi hara equa

time L∞ L2 I1 I2 CPU 

M  

GA(c 0.43) 

IMQ(c = 0.0001) 

6.1995×10–5

5.3996×10–5

1.806 10–1

1.7896×10–4

1.0804×10–4

5.2570×10–1

–8.4 2.68

2.

0.18

0.

0.

Q(c = 2.9)
 
 
 
= 
 
 
 

0 
5 

15 
25 

 
0 
5 

15 
25 

 
0 
5 

15 
25 

0 

1.0717×10–4

1.2130×10–4

 
0 

8.6124×10–5

7.8371×10–5

 
0 
59×

5.18281×10–1

7.63711×10–1

0 

2.7337×10–4

3.4855×10–4

 
0 

1.9575×10–4

2.5257×10–4

 
0 

5.2819×10–1

2.2681×100

8525
–8.48524
–8.48487
–8.48464

 
–8.48525
–8.48510
–8.48472
–8.48442

 
–8.48525
–8.48525
–8.48134
–8.47434

328
2.683176
2.68296
2.68275

 
2.68328
2.68317
2.68296
2.68275

 
683281

2.683281
2.683307
2.683351

 
7 

0.313 
0.453 

 
 

171 
0.313 
0.543 

 
 

203 
0.343 
0.469 

 

1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

Shape parameter for MQ

er
ro

r

 
Figure 3. Error verses shape parameter c for Example 3.2

A and MQ are showing better accuracy than IMQ. The 

dV-Kawahara equation  

with the following initial and boundary conditions 

. 
 
G
order of convergence in space decreases with increasing 
N as shown in Table 4. The solitary wave profile at dif-
ferent time levels in comparison with the exact solution 
is shown in Figure 4.  

Example 3.3 
Consider the K

0t x x xxx xxxxxu uu u u u      

   4105 1
,0 sechu x x x

 
      

169 2 13
o 

 
  (23) 

  4105 1 205
, sech

169 1692 13
ou x a a t x

     
  

 

  4105 1 205
, sech

169 1692 13
ou x b b t x

     
  

    (25) 

initial condition and boundary conditions are extracted 
from the exact solution given in [51]. 

  4105 1 205
, sech

169 1692 13
ou x t x t x  

  
   (26) 

The calculation is carried out by tak

    

ing [a,b] = [0,200] 
with Δx = 1. The discrete root mean square error
and maximum error norm L∞ are calculated us
GA a

 norm L2 
ing MQ, 

nd IMQ for time t = 1 up to 5. From the results 
shown in Table 5 we can see that the both MQ and GA 
are showing very good agreement with the exact solution. 
Shape parameter verses error plot for MQ is shown in 
Figure 5. The spatial rate of convergence is shown in 
Table 6. The order of convergence decreases by in-
creasing collocation points for a fixed time step Δt = 
0.001. The forward movement of the solitary wave at 
different time levels in comparison with the exact solu-
tion (26) is shown in Figure 6, same as in [52].  

Example 3.4 

Considering Equation (1) for interaction of two posi-
tive solitary waves with the following initial condition 

   
2

2 4

1

,0 sech
4i i

i

u x A x x


   
 

 . 


   (24) 

iA 

We solve the problem by using MQ and GA RBFs taking 
[a,b] = [–50,100] with N = 201. The calculation is carried  

Copyright © 2011 SciRes.                                                                                 AM 



N. BIBI  ET  AL. 613
 

Table 4. Spatial rate of converge

N L∞ order 

nce at for Example 3.2, t = 5. 

L2 order 
MQ 
24 
48 

 
–1 

2.422  10–5 

–2 

  
–1

5.670 –5 

–2 

 
 

7.6180 
96 
GA 
24 
48 
96 

2.56860 × 10
1.49043 × 10–3 

 
7.4291 

5.20872×10  
2.65141×10–3 

85 ×
 

3.47477 × 10
–45.00876 × 10  

2.17409 × 10–5 

5.9428 
 
 

6.1163 
4.5259 

16×10
 

9.95424×10
–4 9.19460×10

5.46571×10–5 

5.5472 
 
 

6.7583 
4.0723 

Tab  Resle 5. ults for Kd wahara eq  

thod L2 I1 plitude CPU (s) 

V Ka uation at t = 5.

me L∞ I2 Am time

MQ(c = 2.6) 
GA(c = 0.2) 

IMQ(c = 0.0001) 

3.7697×1 9 1 41 
3.390 
3.641 

1.0977 × 10–4 
4.7924 × 10–6 
5.0111 × 10–1 

1.8465×10–-5

1.5920×100 
5.97368 
5.95790 

1.27250
1.27250

0.621200 
0.619041 

0–4 5.9735 .27250 0.6212 3.266 

Tab  rate verg t for ple  

 

le 6. atial Sp  of con e  ance  Exam  3.3, t = 5.

N L∞ order L2 order 
MQ 
40 
80 

1.568 –4 

 

3.731 –4 

 

 
4.8553 

160 
 

GA 
40 
80 

160 

 
–23.12550×10  

1.62584×10–3 
 

4.2648 
1.33333×10  
4.60613×10–3 

26×10
 
 

2.6983×10
–4 

–3 

1.4710×10
1.2344×10–5 

2.1471 
 
 
 

4.1971 
3.5749 

 
–1

04×10
 

 

1.1620×10
–3 

–2 

3.2768×10
2.4624×10–4

 

2.7242 
 
 
 

4.7639 
3.7341 

 

 
Figure 4. Solitary wave solution of modified Kawahara 
equation in comparison with exact solution (solid lines show 
numerical solution and dot (.) showing exact solution). 
 
out up to time t = 50 by taking time step Δt = 0.001. For 
our numerical calculations the values of the parameters 
involved in above equation are chosen as: 

1 2 1 2

4 10 8
0, 20, , ,

105
x x A A

 
      

The two solitary waves propagate towards right as the 
time progresses. The process of interaction is sh n in 
Figure 7. During this process the larger wave catches up 
th

ow

e smaller one and then the both waves separate from 
each other maintaining their original shape. From Table 
7, we can see that the invariants of motion remain almost 
conserved as time increases. The variation in the three 

1 2 3 4 5 6 7
0

0.2

0.4

1.4

0.6

0.8

1

1.2

er
ro

r

Shape parameter for MQ  
Figure 5. Error verses shape parameteric for Example 3.3. 

 
conserved quantities is found to be in the range:  

onsider 
Equation (1) with the initial condition 

1

2 3

1

MQ 40.50925 40.48389,

45.83614 45.85093, 32.37219 32.15991,

GA  40.50925 40.41284,

I

I I

I

 
     

 
 

2 345.83614 45.84364, 32.37218 32.14082.I I     

Example 3.5 
For interaction of three solitary waves we c

   
3

2 4

1

,0 sech
4

i
i i

i

A
u x A x x





 
   

 
  
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We use multiquadric and Gaussian radial basis func-
tions in our numerical simulations to solve this problem. 
The spatial domain is selected as [a,b] = [–30,120] with 
Δx = 0.75. The calculation is carried out up to time t = 
50 taking time step Δt = 0.001. The values of the pa-
rameters used in above equation are selected as:  

1 2 3 1 2 3

4 10 8 6
20, 0, 20, , , ,

105
x x x A A A

  
         

The three solitary waves propagate towards right. The 
process of interaction is shown in Figure 8. During this 

rocess the taller wave moves faster and catches up the 
m

 

p
s aller waves and then the three waves separate from 
each other. The shape of the three solitary waves after 
collision is maintained. From Table 8 we can see that the 
invariants of motion remain almost conserved as time 
increases. The variation in the three conserved quantities  

Figure 6. Solitary wave motion of KdV Kawahara equation 
(solid lines show numerical solution and dot (.) showing 
exact solution). 
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Figure 7. Interaction of two solitons for Kawahara equation Example 3.4. 

 
Table 7. Invariants for interaction of two solitons for Example 3.4. 

 MQ GA 

–50–50 

time I1 I2 I3 I1 I2 I3 

0 
10 
20 
30 
40 
50 

40.509259 
40.507987 
40.499950 
40.5207361 
40.55 0 

45.836141 
45.839240 
45.8427481 
45.8359623 
45.8443065 

–32.37219
–32.12856
–32.73918
–32.58956
–32.1

40.509259 
40.492695 
40.466653 

571742 
40.579624 

45.836141 
45.837775 
45.839353 
45.840373 
45.841964 

–32.37218 
–32.12820 
–32.73746 
–32.59560 
–32.12278 

2.14082 
5240

40.4838916 45.8509384 –32.15991 40.412842 45.843648 –3
0125

40.

 
is found to be in the range: 

  

Example 3.6 

he phenomena of wave 
generation for Equatio ). We consider the following 
initial con ion 1I I2

3

1 2

3

MQ 51.47263 51.56859,51.10049 .15838,

33.63806 33.06973,

GA 51.47263 51.47389,51.10049 51.10452,

33.63806 33.39361.

I

I I

I

  
  

   
  

51

In this example we will show t
n (1

dit

   4 1
,0 sech

2 13
ou x x x  

  
 

 

Computational domain [–40,130] with h = 0.625 is 
considered. The scheme is run up to time t = 18. We take 

x x  
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Table 8. Invariants for interaction of three solitons for Example 3.5. 

MQ GA 

tary waves. The serv es, h osi
of three waves are calc ario vel
shown in Table W  of lead

 its oci  from the other 
o o re n in three con-

ies i  be wing range: 

Table 8. Invariants for interaction of three solitons for Example 3.5. 

MQ GA 

le tary wave sp s in to thr oli- wavoli- wav
concon ed quantitied quantiti eight and peight and p tion twtion tw

ulated at vulated at v us time leus time le s as servs as serv
 9.  9. ith passageith passage  time the  time the ing  ing  

e owing toe owing to  faster vel faster vel ty gets farty gets far
 waves as sh waves as sh wn in Figuwn in Figu 9. Variatio9. Variatio
ed quantited quantit s found tos found to in the folloin the follo

time 
I1 I2 I3 I1 I2 I3 

0 
10 
20 
30 
40 
50 

51.472631 
51.631982 
51.688762 
51.664151 
51.601572 
51.568591 

51.100493 
51.094986 
51.103862 
51.127187 
51.14098 
51.15838 

–33.63806 
–33.40011 
–34.23846 
–35. 7 
–33. 3 
–33.06973 

51.472631 
51.835962 

51.4

51.100493 
51.098240 

–33.63806 
–33.39015 

1904
8561

51.848746 
51.690220 
51.493752 

73898 

51.099504 
51.101129 
51.102653 
51.104529 

–34.21111 
–35.15871 
–33.83892 
–33.39361 

Table 9. Invariants for interaction o

S

f three solitons for Example 3.6. 

econd wave Third wave Leading wave 
time 

Height Position Height Position Height Position 
MQ    

0 
2 
4 
8 
12 
18 

10 
13.990228 
13.645838 
14.024270 
1
13.

0 
12.5 
22.5 

43.125 

- 
7.98375
8.471020 
8.3479 24.375 3.427390 7.5 

12.5 
20 

3.93545 
90723 

63.75 
94.375 

8.48316 
8.34579 

36.25 
55 

3.49294 
3.50220 

3 

 
- 

5.625 
11.875 

 
- 

2.964111 
3.247767 

 
- 

–0.625 
1.875 
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Figure 8. Interaction of th olitons for Example 3.5. 
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Figure 9. Generation of waves for Example 3.6. 
 

t = 18 t = 2 

1 2

3

1 2

3

MQ 96.14365 4365,329.65039

329.65039,  875.41604 701.42681,

GA 96.14365 96.14365,329.65039

329.65039, 875.41612 706.85789.

96.1I I

I

I I

I

  
   

  
    

 

 
4. Conclusions 
 
In this paper, we have used method of lines coupled with 
radial basis functions for numerical solution of Kawahara 
type equations. The numerical results describing motion 
of single solitary wave, interaction of two and three soli-
tary wave nd phenomena of wave generation have 
been discussed. The accuracy of the solution depends 
upon the choice of the shape parame

lected experimentally. The numerical results using MQ 
and GA for Kawahara equation are better than the Crank 
Nicolson differential quadrature algorithm [10]. The in-
variants of motion remained conserved during the proc-

ess of computation for all ca wo main advantages of 
this method are mesh less property and use of ODE 
solvers of high quality and their codes to approach the 
solution of PDEs. Also the presented method is simple, 
easy to implement because no mesh is required in the 
problem domain. Only radial distance between the nodes 
is used to approximate the solution.  
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