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Abstract	

Monte	 Carlo	method	 can	 analyze,	 solve	 and	 optimize	many	mathematical	 or	 physical	 problems	
through	generating	a	large	number	of	statistical	random	samples	to	simulating	stochastic	events.	It	
also	can	be	used	to	remarkably	improve	design	quality	of	new	product.	In	new	product	design	proc‐
ess,	setting	distribution	characteristics	of	the	design	variables	is	vital	to	product	quality	and	produc‐
tion	robustness.	Firstly,	response	surface	model	between	output	characteristics	and	design	variables	
in	new	product	design	is	proposed,	and	the	distribution	characteristics	of	design	variables	and	re‐
sponse	output	are	analyzed;	then	position	error	model	of	response	output	and	standard	value	and	
allowed	error	maximum	is	presented;	and	then	the	differences	of	position	error	model	and	allowed	
error	maximum	are	counted,	and	reliability	ratio	 is	built	and	calculated,	and	design	robustness	of	
the	new	product	is	increased	by	adjusting	the	precision	value	of	random	design	variables	in	Monte	
Carlo	experiments.	Finally,	a	case	is	brought	forward	to	verify	the	validity	of	the	method.	
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1.	Monte	Carlo	Method	

Monte Carlo method is a computer-based simulation or experiment method. It approximately simulates and solves 
mathematical or physical stochastic problem with statistical random sampling. Compared with traditional algebraic 
method, due to their reliance on repeated computation of random or pseudo-random numbers, Monte Carlo method 
can apply Normal distribution, Exponential distribution, Weibull distribution etc. to model phenomena with signifi-
cant uncertainty in inputs when it is unfeasible or impossible to compute an exact result with a deterministic algo-
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rithm, and does not need to know parameter’s distribution type and probability parameter [1]-[5]. In new product de-
sign, usually design parameter is a random variable that follows a probability distribution. Design parameter is a key 
impact factor to design robustness, and distribution of these design parameters determines greatly robustness of out-
put response. It is not reliable to optimize this product design problem using traditional deterministic method. How 
to find the optimum value of these design parameters is an important problem to improve the design robustness of 
new product. Here, we propose a robustness optimization method of new product based on Monte Carlo simulation.  

Procedures are as followed [6]-[10]: 
1) To analyze the problem existing in new product design, and define the relationship between design vari-

ables X  and response output as a response surface model    1 2, , , nf x f x x x  ; 
2) To analyze design variables’ distribution types and define design variables’ distribution characteristics, 

such as mean and standard deviation, etc.; 
3) To sample from populations of random design variables X, and get the sample    T

1 2, , ,j j jnx j x x x  ; 
4) To bring sample  x j  into position error model between response surface model and standard value, 
 f x , then get a r position error sample and compose an experiment  

   T

max 1 2, , , , ,i j i j j jn ig x H g x x x B    , ( iB  is response output, 1, 2, ,i n  ); 

5) To check if it meets    max 0j iY f x      ,    is allowed error maximum. 
6) To repeat step 2) to 5) by k times, and calculate the number of 0jY   in all independent samples jY ,  

1

k

T j
j

K UE


 , here TK  is the number of 0jY  , 
0 0

1 0
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j
j
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7) To calculate reliability ratio TP K K . If P D  ( D  is acceptable reliability), then process or product 
is robust, otherwise we need to modify the precision value of random design variables to enhance reliability ra-
tio and robustness of the manufacture process, then the manufacture process is optimized. 

2.	Case	Study	

Considering design of a pressure container, according to mechanics of materials, the pressure container’s axial  

stress is 1 2

pR


 , hoop stress is 
2

2 2
1

2

pR R

H



 

  
 

, here p  is internal pressure of container;   is wall  

thickness of container; R  is internal radius of container; H  is half height of container. Material of container 
is 15 MnV. Through observation of experiment, we defined the design variables and their distribution characteristics 
as followed: internal work pressure of container p  follows lognormal distribution  2~ 14.495,1.4495p LN ,  

the tolerance of p  is (10, 20), the material strength limit S  follows lognormal distribution  2~ 392,19S LN ,  

the tolerance of S  is (340, 420), wall thickness of container   follows normal distribution  2~ 3.0,0.1133N ,  

the tolerance of   is (1.5, 4.5), internal radius of container R follows normal distribution  2~ 88,0.88R N ,  

the tolerance of R is (50, 100), half height of container H follows normal distribution  2~ 220,11H N , the to- 

lerance of H is (130, 210). Our objective is to maximize container’s volume under 95% failure probability (con- 
fidence level) of strength and container size falling Interval 2 2.5H R  . 

As known, our objective function is volume maximum of the pressure container, that is 

       3 24
max , , , , π 2π

3sf p R H R R H R         

Constraints are 
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Firstly we established response surface model of response variables 1 2 3, , ,f g g g  concerned pressure con-
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tainer and constraints condition, and run Monte Carlo experiment 3000 times using Crystal Ball 7. According to 
Anderson-Darling testing, Chi-Square testing and K-S testing [11]-[13], we can fit the probability distribution 
type of all four response variables as Normal distribution, Gamma distribution, Gamma distribution and Beta 
distribution, see Table 1. 

Then we get probability distribution and cumulative probability distribution of response variable and con-
straints as showed in Figure 1. 

1) Robust analysis 

We can know from Figure 2 that probability which product design met constraint g1 is 
0

1d 1 95%g y


  , 

and probability which product design met constraint g2 is 
0

2d 0.5037 95%g y


  , and probability which 

product design met constraint g3 is 
2.5

32
d 0.5052 95%g y    under current design variables value. That is,  

wave range of constraints both g1 and g2 go beyond their allowed range. According to requirements, current re-
sponse output value is not robust and need to improve product design level. 

2) Sensitivity analysis 
We can know from Sensitivity Analysis of Response Variables and Constraints in Figure 3 that the signifi-

cant impact factors of volume function f of pressure container are H  (positive correlation) and R  (positive 
correlation) in order; the significant impact factors of constraint 1g  are p  (positive correlation),

 s  (nega-
tive correlation) and   (negative correlation) in order; the significant impact factors of constraint 2g  are p  
(positive correlation),

 s  (negative correlation) and   (negative correlation) in order; the significant impact 
factors of constraint 3g  are H  (positive correlation) and R  (negative correlation) in order. 

3) Modification of design variables precision 
According to relationships between design variables and response output variable, and contributions to vari-

ance view from Figure 3, we modified parameter values of the design variables , , , ,sp R H   to  
 2~ 16,1.4495p LN ,  2~ 392,19S LN ,  2~ 3.0,0.1133N ,  2~ 74,1R N ,  2~ 180, 4H N , and get 

the corresponding probability distribution and cumulative probability distribution as followed in Figure 4. 
After Modification of design variables precision, we analyze robustness of response variable and constraints 

 
Table 1. Analysis of response variables’ distribution characteristics.                                                

Variables Mean Median Standard deviation Skewness Kurtosis Ceff. of variability Distribution type

f 8568233.77 8568233.77 534933.47 0.00 2.97 0.0624 Normal 

g1 1522.92 1511.21 208.31 0.3379 3.17 0.1368 Gamma 

g2 -0.22 −3.93 47.08 0.4748 3.34 −216.04 Gamma 

g3 2.50 2.50 0.13 0.00 2.97 0.0519 Beta 

 

 

Figure 1. Pressure container chart. 
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Figure 2. Probability distribution and cumulative probability distri-
bution of response variable and constraints.                       
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Figure 3. Sensitivity analysis of response variables and constraints.                                            
 

again, and get the probability that product design met constraints g1 is 
0

1d 1 95%g y


  , and the probability 

that product design met constraints g2 is 
0

2d 0.9922 95%g y


  , and the probability that product design met 

constraints g3 is 
2.5

32
d 0.9993 95%g y   , which reached product design requirements, that is, pressure con- 

tainer is robust enough, and pass percentage of pressure container has been enhanced greatly. And the maximum 
volume of container is 4,525,100f  , product robustness has been greatly improved. Meanwhile, we knew 
from sensitivity analysis of response variables in Figure 3 that we should keep monitoring the fluctuation of the 
significant impact factors of response variables and constraints to hold robustness of pressure container. 

4) Design optimization 
Now we further optimize the pressure container to enhance the design robustness using OptQuest optimizer. 

Here we create the OptQuest model and run simulation experiments 1500 times according to distribution char-
acteristics of design variables and constraints condition [4]-[6], and get the optimum of design variables 

, , , ,sp R H   are  , , , , 17.9259,395.177,3.49114,69.6651,173.633sp R H    in Table 2, then the probabil- 

ity that product design met constraints g1 are 
0

1d 1 95%g y


  , and the probability that product design met 

constraints g2 was 
0

2d 0.9918 95%g y


  , and the probability that product design met constraints g3 is 
2.5

32
d 1 95%g y   from Figure 5, and the maximum volume of container is 4,553, 200f   as Figure 6  

showed, so design robustness of pressure container has been further improved than that of last time. 
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Figure 4. Probability distribution and cumulative probability distribution of 
response variable and constraints after modification of parameter precision.  
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Figure 5. Probability distribution and cumulative probability distribution of response variable and constraints after optimiza-
tion after OptQuest optimization.                                                                           
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Table 2. Optimum design settings of pressure container with OptQuest.                                             

Status Time Remaining: 00 Simulation:1245 

Simulation 
Maximize  

objective mean 
Requirement 

g1 
Requirement 

g2 
Requirement

g3 
p  

s    R  H  

1 4.5380E+06 100.00 98.8506 100.00 15 385 3 75 170 

4 4.5390E+06 100.00 98.7106 100.00 19.6990 414.026 1.65588 79.4806 131.772

12 4.5416E+06 100.00 99.4676 100.00 16.6921 410.204 1.64555 78.5969 143.661

27 4.5426E+06 100.00 99.4423 100.00 19.6574 412.131 1.50000 73.8756 130 

Best: 38 4.5532E+06 100.00 99.1782 100.00 17.9259 395.177 3.49114 69.6651 173.633

 

 

Figure 6. Optimum design performance gragh of pressure container with OptQuest.                                  

3.	Conclusion	

When random changes exist in design variables, traditional determined optimization method cannot guarantee 
robustness of product and process design to the extent. While Monte Carlo method can be used to precision con-
trol and optimization in product and process design, which can avoid increasing cost due to duplicate experi- 
ments and excessive design precision, as well as low pass percentage due to deficient design precision. In robust 
analysis and design, Monte Carlo method also can study on change of response model of product and process 
brought by modification of design variables, get probability distribution and statistical parameters’ values of re-
sponse variables, further improve design robustness of product and process and realize robustness design and 
optimization of product and process. It proved that analysis and optimization of response surface model based 
on Monte Carlo method was a good robustness design method, and can markedly improve robustness, precision 
and pass percentage of product and process.  
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