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Abstract 
Model-based controllers can significantly improve the performance of Proton Exchange Mem-
brane Fuel Cell (PEMFC) systems. However, the complexity of these strategies constraints large 
scale implementation. In this work, with a view to reduce complexity without affecting perform-
ance, two different modeling approaches of a single-cell PEMFC are investigated. A mechanistic 
model, describing all internal phenomena in a single-cell, and an artificial neural network (ANN) 
model are tested. To perform this work, databases are measured on a pilot plant. The identifica-
tion of the two models involves the optimization of the operating conditions in order to build rich 
databases. The two different models benefits and drawbacks are pointed out using statistical er-
ror criteria. Regarding model-based control approach, the computational time of these models is 
compared during the validation step. 
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1. Introduction 
Climate warning issues and fossil fuels depletion stimulate the development of new technologies for energy 
conversion. Apart from infrastructure related to production, storage and transport, hydrogen appears to be a 
suitable alternative to fossil fuels. 

Because it’s a common naturally occurring element, hydrogen represents a promising energy vector. In this 
context, fuel cells (FC) hold great promise for low emission power generation, especially PEM (proton exchange 
membrane) fuel cells (PEMFC) because of their high power density and low operating temperature. Neverthe-
less, their performance remains limited by factors related to gas supply and membrane water content. These 
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converters allow turning hydrogen chemical energy into electricity with low environmental impacts. However, 
their cost has to be reduced, in order to make hydrogen a possible substitute to common power sources. Nowa-
days, lots of researches deal with PEMFC modeling and control challenges to make it competitive and improve 
its performance. 

Many fuel cell models have already been developed for twenty years. They can be sorted by three categories: 
mechanistic, semi-empirical and empirical models. 

Mechanistic models describe physical, chemical and electrical phenomena using algebraic laws. This kind of 
models is used to achieve system supervision, diagnosis [1], or control strategies [2]-[4]. Nevertheless, PEMFC 
systems are characterized by a very short time response (less than 1 s). The complexity of mechanistic approach 
can limit online model-based control. 

For many years, ANNs are commonly used to model complex systems. They can approximate nonlinear func-
tions between inputs and outputs from incomplete databases and with specific accuracy. For the past decade, 
many authors have concentrated their research on ANNs with different levels of complexity to model fuel cell 
systems [5]-[7]. 

This work deals with the comparison between mechanistic and ANN models of a single-cell PEMFC pilot. 
We focus on the identification of the simplest ANN structure in order to develop easily to implement model- 
based control schemes. In a first part, FC system and test bench are described. The second and third parts give 
the different laws forming the mechanistic model and the methodology used to identify the most suitable ANN 
model able to ensure satisfactory accuracy. Then, the analysis of the results is carried out and perspectives are 
developed. 

2. PEMFC Process System 
2.1. FC System 
PEMFC system consists of a polymer electrolyte membrane sandwiched between two electrodes: an anode and a 
cathode. Hydrogen fuel passes through the Gas Diffusion Layer (GDL), and is processed at the anode where 
electrons are separated from protons on the surface of a catalyst. Protons pass through the membrane to the 
cathode side of the cell while electrons travel in an external circuit, generating an electrical current. On the 
cathode side, protons and electrons with oxygen are combined to produce water, which is expelled as the only 
waste product. Oxygen can be provided in a purified form, or extracted at the electrode directly from the ambi-
ent air. Figure 1 describes the main phenomena in PEMFC. 

2.2. Pilote Plant 
The home fuel cell assembling consists of a single-cell, with a 50 cm2 active area. The membrane is made of 
Nafion 115, and the MEA (membrane electrodes assembling) is produced by Paxitech. Bipolar plates are 
clamped at 12 N.m, after torque optimization. The used test station depicted by Figure 2 is manufactured by 
Fuel Cell Technologies. It allows configuring and monitoring a wide range of parameters, described as below: 
 

 
Figure 1. Fuel cell description. 
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Figure 2. Simplified diagram of fuel cell system. 
 
• Fuel cell temperature, measured at cathode side. 
• Humidification temperatures, anodic and cathodic. 
• Inlet gas temperatures, anodic and cathodic. 
• Inlet gas mass flows, anodic and cathodic. 
• Outlet back-pressures, anodic and cathodic. 

All parameters are controlled by a graphic Labview interface developed by Fuel Cell Technologies. An elec-
tronic load allows current or voltage control. This test station enables to build databases, and to implement con-
trol strategies. 

3. Mechanistic Model 
The PEMFC system is a nonlinear, multivariable electrochemical system that is hard to model. Describing this 
system requires the understanding of complex internal phenomena at molecular level. A large number of publi-
cations [8] [9] targets the modelling of fuel cell behavior describing internal phenomena. These mechanistic ap-
proaches are usually focused on the electrochemistry, thermodynamics and fluid mechanics. They describe 
mathematically the entire physical environment of electrochemical reaction. 

The developed model is a one-dimensional and dynamical PEMFC model, extracted from [4]. This model in-
volves two main parts: a dynamical fluidic model and an electrochemical static model, developed in the next 
parts. The model assumptions are summarized: 
• Nafion 115 is used. 
• Gases are considered as ideal. 
• Anode is fed by hydrogen, cathode by compressed air (21% oxygen and 79% nitrogen). 
• Gas are 100% humidified. 
• Temperature is homogenous through the stack. 
• Outlet pressure and inside fuel cell pressure are equal. 
• Thanks to electrochemical reactions high rapidity compared to mass transfer reactions, electrochemical 

model is assumed to be static. 

3.1. Electrochemical Static Model 
This model part enables output cell voltage prediction. Voltage equations are based on Nernst and Tafel equa-
tions, written as below: 

Nernst act ohm concfcV E V V V= − − −                                (1) 
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where NernstE  is the Nernst potential, actually the thermodynamic potential, defined by the Nernst equation 
[10]: 

2 2

0
H O

Nernst
0 0

1ln ln
2 2 2

f p pg RTE
F F p p

 ∆    
= − + +    

     
                        (2) 

with: 
• 0

fg∆ , is the change in molar Gibbs free energy of formation R, is universal gas constant, T is the fuel cell 
temperature, F the Faraday constant. 

• 
2Hp , is hydrogen partial pressure at anode side, and 

2Op  the oxygen partial pressure at cathode side. 
• actV , ohmV  and concV  are activation, ohmic and concentration losses, named over-voltages. 

Activation over-voltageis defined by [11] as: 

( ) ( )
2act 1 2 3 O 4 ln lnV T T c iξ ξ ξ ξ= + + +                              (3) 

( ) ( )2

5
2 H0.00286 0.0002ln 4.3 10 lnfcA cξ −+ ×+=                      (4) 

1ξ , 3ξ  and 4ξ  are constant parametric coefficients, empirically determined, as well as 2ξ  parameters. 
2Oc  and 

2Hc  are oxygen and hydrogen concentrations, and fcA  the active fuel cell area. 
Ohmic losses are given by: 

( )ohm m fcV R r i= +                                  (5) 

where mR  is the membrane resistance, and r  is the resistance of other components (bipolar plates and wires). 
mR  value depends on the membrane water content λ  [12]: 

2 30.043 17.81 39.95 36.0m m ma a aλ = + − +                             (6) 
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where mt  is the membrane thickness, and ma  the average water activity between ana  and caa , the anode and 
cathode water activities: 

water,an water,ca

sat,an sat,ca

wi h
2

,tan ca
m an ca

p pa aa a a
p p

+
= = =                     (8) 

with water,an/cap  is water vapor partial pressures, and sat,an/cap is vapor saturation pressure. 
1 2 3, ,ξ ξ ξ  and 4ξ  empirical parameters are difficult to estimate. Generally a trial and error method is used. 

3.2. Fluidic Model 
3.2.1. Anode Fluidic Model 
At anode side, a part of hydrogen reacts. Hydrogen pressure must be determined in order to estimate cell volt-
age. 

Mass balance equations have to be solved numerically: 

( )2 2
2 2 2

H H
H ,in H ,out H ,reacted

an

d
d
p R T

W W W
t V

= − −                      (9) 

where 
2H ,in/out/reactedW  are inlet or outlet mass flow rates, or the mass flow of hydrogen which reacts at electrode 

surface. 
2HR  is hydrogen gas constant and anV  is anodic volume. 

The water partial pressure depends on v,an,outW , l,an,outW  the outlet vapor and liquid water mass flow rates: 

( )2H O
,an,in ,an,out ,membrane ,an,o

water,an
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d
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t V
= − − −                (10) 
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,an,invW  is inlet vapor mass flow rate, and ,membranevW  the vapor mass flow rate passing through the mem-
brane. 

3.2.2. Cathode Fluidic Model 
Humidified air reacts with electrons and protons at cathode side. This reaction produces water and heat. As an-
ode partial pressures, differential equations have to be solved: 

( )2 2
2 2 2,in

O O
,out ,reacO te

c
O d

a
O

d
d
p R T

W W W
t V

= − −                                    (11) 

( )2 2
2 2,ca,i

N N
n ,ca,ouN

c
N t

a

d
d
p R T

W W
t V

= −                                         (12) 
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where 
22 2/N OO /HR  are gas constants, caV  the cathodic volume and ,ca,genvW  the vapor water generated at cath-

ode side. 

3.2.3. Membrane Hydration Model 
Electro-osmotic and back-diffusion water flows induce water circulation. Water flow has important impacts in 
membrane water content, and thus in ohmic losses. Water mass flow rate across the membrane has to be de-
fined: 

,membrane ,membranev v v fcW N M A=                                (14) 

where ,v membraneN  is the water flow through the membrane, expressed by: 

( ), ,
,membrane

v ca v an
v d w

m

c ciN n D
F t

−
= −                             (15) 

where dn  is the electro-osmotic drag coefficient, , /v an cac  the water concentration at anode/cathode surface and 
wD  the diffusion coefficient. 
Describing all internal phenomena of this system leads to complex nonlinear laws with unknown parameters. 

Generally a trial and error method is used to match the model. 

4. Neural Network Model of a PEMFC 
The development of the mechanistic model highlights two main difficulties: 
• Equations describing the process include numerous empirical parameters. Their estimation leads to develop a 

model characteristic of a particular cell in a particular operating area. 
• Estimation of these parameters needs to implement algorithms of optimization which lead to complex com-

puting [13]. 
Both limit the efficiency of the process control. 
Because they can approximate nonlinear functions with incomplete data and a specific accuracy, ANNs ap-

pear to be suitable to model complex systems such as PEMFC. 
The identification of ANNs models follows the general methodology in four steps. 

4.1. Data Processing 
To build relevant databases for model identification, different operating conditions should be tested. Fuel cell 
experimental data can take a large amount of operation conditions. Temperatures, pressures, hydrogen and oxy-
gen flows, have an impact on FC performance. In order to optimize the richness of databases, nominal standard 
conditions are used in experimental tests for FC supervision: anodic and cathodic inlet pressures are set out to 
300 kPa and different amplitudes of step current signals are injected on FC. With the objective of measuring the 
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system response over a wide range of values, a suitable design of experiments is used to consider two other 
variables simultaneously: 
• FC temperature range is 60˚C to 80˚C: cellT . 
• RH range is 60% to 100%. (RH is influenced by humidifier temperature and preheater temperature. 

Relative humidity (RH) can be determined by the following equation [14]: 

( )
( )

hum

cell

w

w

p T
RH

p T
=                                          (16) 

( ) 2 3 4 5 6
0 1 2 3 4 5 6wp T a a T a T a T a T a T a T= + + + + + +                         (17) 

The coefficients used in the Equation (17) are defined in Table 1. 
A three levels design of experiments is set (levels −1, 0 and +1). Controlled factors levels are based on high 

and low manufacturer advisable bounds. The level 0 is centered on −1 and +1 levels (Table 2). With 3 levels 
and 2 controlled factors, the entire design of experiments includes 9 experiments. The design of experiments is 
described on Table 3. 

4.2. ANN Model Structure 
The identified model consists of a 3 layers network. The activation function in hidden layer is a nonlinear hy-
perbolic tangent function [15] and the number of hidden neurons is set by trial and error method. The output 
layer has a linear activation function. The structure is a nonlinear autoregressive with exogenous input (NNARX) 
model: 

( ) ( ) ( ) ( ) ( )( ) 3ˆ 1 , , , 1 , , , ,NN y i i uy t y t y t n u t u t n iϕ θ= − − − − ∈                 (18) 

 
Table 1. Pressure saturation coefficients. 

Coefficient Value Coefficient Value 

a0 6.11 a3 2.65e−4 

a1 4.44e−1 a4 3.03e−6 

a2 1.43e−2 a5 2.03e−8 

  a6 6.14e−11 

 
Table 2. Factors levels. 

Variable Lower bound: level −1 Centered value: level 0 Higher bound: level +1 

Tcell (˚C) 60 70 80 

RH (%) 60 80 100 

 
Table 3. Design of experiments. 

Test n˚ Tcell (˚C) RH (%) 

1 60 60 

2 60 80 

3 60 100 

4 70 60 

5 70 80 

6 70 100 

7 80 60 

8 80 80 

9 80 100 
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A large number of variables are collected by the acquisition system during experimental recorded tests. 
Ranking these variables using correlation feature can strongly reduce the number of mandatory inputs. All vari-
ables gathered by the instrumentations are computed by probe feature method (PFM), a methodology based on 
Gram-Schmidt orthogonalization and described by Stoppiglia [16]. Not relevant variables are removed from the 
input list. Dominant variables, selected and ranked in the top of the pertinent list, are set for ANN learning. 

Model inputs are appointed as follow: temperature, cathode humidity temperature and current. The output is 
the output voltage. 

4.3. Parameters Estimation 
The model parameters to estimate are the network weights. They are calculated according to a cost function, 
based on classical quadratic convergence criterion: 

( ) ( ) ( )( )( )2

1
ˆ ,

N

i
J y t y x tθ θ

=

= −∑                            (19) 

where θ  is the matrix of network parameters, ( )J θ  is the cost function parameterized by θ , ( )x t  and 
( )y t  are respectively input and output system at instant t and ŷ  is the estimated output. The robust Leven-

berg-Marquardt algorithm is used as optimization method. The stop criteria are based on a number of iterations 
and the mean squared error (MSE). 

4.4. Model Validation 
Validation is carried out on 20% saved database. To check the ANN performance, the sum of squared error 
(SSE) is used and denotes the overall error between estimated and experimental outputs. The root mean squared 
error (RSME) criterion is computed to perform the ANN accuracy. 

5. Results 
5.1. Mechanistic and ANN Models Accuracy 
This section is dedicated to the FC mechanistic and ANN models performance. These models are expected to 
predict the output voltage of the single-cell PEMFC one step ahead once the operating conditions are set out.In 
this aim, various network architectures have been investigated to determine which one will provide the best pre-
diction in terms of computational speed and accuracy. The best-chosen structure is about 3 inputs, 3 hidden 
neurons and one linear output neuron. The following picture shows the mechanistic model output versus ANN 
model output. 

Figure 3 allows comparing the models accuracy. The dynamic of the process is well matched by the two 
models that can reproduce the short time response of this system. Nevertheless, it can be observed that mecha-
nistic model presents some steady state offset. This offset may be important depending of the operating area. 
This is not surprise considering the four empirical parameters of static part of the mechanistic model. 

These results mean that the four parameters haven’t been optimally estimated. Two other reasons can explain 
this offset. The first one is the validity of the model assumptions, and the second one results from the initializa-
tion of the state variables. 

It is important to note that the ANN model is able to match the process behavior all over operating area. To 
quantify the models accuracy three criteria have been calculated: Sum Square Error (SSE), Mean Square Error 
(MSE) and Root Mean Square Error(RMSE).The good performance of the ANN model is confirmed by these 
error criteria shown in Table 4. 

5.2. Computational Time 
Regarding fast dynamic system, the computational time becomes a relevant factor to achieve online control. 
This characteristic is important since the model should be embedded in closed loop control. Figure 4 depicts the 
computational time during the validation step. The computational time between two samples is the same for the 
validated ANN model. Nevertheless, this time fluctuates for the mechanistic model depending on signal varia-
tion. 
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Figure 3. Predicted output voltage. 

 
Table 4. Error criteria. 

Model Mechanistic ANN 

SSE 0.0268 8.3838e−5 

MSE 2.4101e−4 7.5530e−7 

RMSE 0.0155 8.6908e−4 

 

 
Figure 4. Computational time for both models. 

6. Conclusion and Perspectives 
In this work, two different modeling approaches have been investigated to model a PEMFC system. In the one 
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hand, a mechanistic model has been identified. This first approach has required, among other things, the estima-
tion of several parameters. In the other hand, an ANN model has been designed. This model is expected to pre-
dict the output voltage of the PEMFC once temperature, cathode humidity temperature and load current are 
available. Performance of both models, in terms of accuracy and computational time efficiency, has been inves-
tigated through several statistical criteria. Regarding online control purposes, the ANN model turned out to be 
the best candidate. However, the mechanistic model presents one major asset in giving the evolution of a wide 
range of internal variables describing the process progress. Further work is in progress to identify a hybrid 
model. The main idea lies in combining a mechanistic model and a neural network structure in order to avoid the 
complex estimation of the empirical parameters. 
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