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Abstract 
When we study Lorentz transformation in the framework of quantum gauge theory of gravity, we 
will find that the vacuum gravitational gauge field will be changed under gravitational gauge 
transformation, which will change the structure of the physical space-time and cause clock dila-
tion effect. The study in this paper provides us with new insights to understand the essential and 
intrinsic relation between special relativity and general relativity. It provides us with a new way 
to unify special relativity and general relativity. 
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1. Introduction 
It is known that, because of the negative results from Michelson-Morley interference experiment [1] and Lodge’s 
interference experiment [2] [3], the theory of ether drift is abandoned by physical world. In order to explain 
these negative experimental results, George Francis Fitzgerald and Hendrik Antoon Lorentz proposed the con-
traction hypothesis [2]-[6]. In the theory of special relativity, clock dilation effect and ruler contraction effect are 
natural results of Lorentz transformation. It is known that Lorentz transformation is a mathematical transforma-
tion of space-time coordinates of a physical event. From physical point of view, it is only a transformation of the 
state of an observer. It is known that the state of one observer is independent of the clock and the ruler used by 
another observer. Why is the time interval between ticks of a clock and the length of a ruler changed under such 
mathematical transformations? What is the physical mechanism that causes such changes? 

Besides in special relativity, clock dilation effect and ruler contraction effect also exist in general relativity 
[7]-[9]. It is known that, in general relativity, these effects are caused by classical gravity, or say that, they are 
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effects of gravitational interactions. So, there are two kinds of clock dilation effect and ruler contraction effect. 
One is a kind of kinematical effects in special relativity, and another is a kind of effects of gravitational interac-
tions in general relativity. Is there any relation between these two kinds of effects? In other words, are the un-
derlying physics mechanisms of these two kinds of effects the same? What is the physical nature of the clock 
dilation effect and the ruler contraction effect caused by Lorentz transformation in special relativity? 

Quantum Gauge Theory of Gravity (QGTG) is proposed in 2001 [10]-[13]. The motivation to propose QGTG 
is try to unify general relativity with quantum theory in the framework of gauge field theory. In 2003, Quantum 
Gauge General Relativity (QGGR) is proposed in the framework of QGTG [10]-[16]. Unlike Einstein’s general 
theory of relativity, the cornerstone of QGGR is the gauge principle, not the principle of equivalence, which will 
cause far-reaching influence to the theory of gravity. In QGGR, the field equation of gravitational gauge field is 
just the Einstein’s field equation, and in classical level, QGGR returns to Einstein’s general relativity [17]. The 
field equation of gravitational gauge field in QGGR is equivalent to the Einstein’s field equation in general rela-
tivity, so two equations have the same solutions, though mathematical expressions of the two equations are 
completely different. For classical tests of gravity, QGGR gives out the same theoretical predictions as those of 
GR [18]-[20], and for non-relativistic problems, QGGR can return to Newton’s classical theory of gravity [19]. 
Based on the coupling between the spin of a particle and gravitoelectromagnetic field, the equation of motion of 
spin can be obtained in QGGR. In post Newtonian approximations, this equation of motion of spin gives out the 
same results as those of GR [20]. The equation of motion of a spinning test particle in gravitational field can also 
be obtained [21]. It’s found that this motion deviates from traditional geodesic curve, and the deviation effects 
are detectable [22], which is a new classical test of gravity theory. QGGR is a perturbatively renormalizable 
quantum theory, so based on it, quantum effects of gravity [23]-[26] and gravitational interactions of some basic 
quantum fields [27] [28] can be explored. Unification of fundamental interactions including gravity can be ful-
filled in a semi-direct product gauge group [29]-[32]. If we use the mass generation mechanism which is pro-
posed in [33] [34], we can propose a new theory on gravity which contains massive graviton and the introduc-
tion of massive graviton does not affect the strict local gravitational gauge symmetry of the action and does not 
affect the traditional long-range gravitational force [35]. The existence of massive graviton will help us to un-
derstand the possible origin of dark matter. 

In this paper, we first use the language of gauge transformation to formulate Lorentz transformation, and 
study the change of the structure of physical space-time under this gauge transformation. It will help us to un-
derstand the physics behind Lorentz transformation and the nature of Lorentz symmetry. 

2. Quantum Gauge Theory of Gravity 
A simple introduction on the quantum gauge theory of gravity is given in this chapter. Details on this theory can 
be found in literatures [10]-[16]. In quantum gauge theory of gravity, the most fundamental physical quantity is 
gravitational gauge field ( )C xµ , which is a vector in the corresponding Lie algebra. ( )C xµ  can be expanded 
as 

( ) ( ) ( )ˆ , 0,1, 2,3C x C x Pα
µ µ α µ α= =                                (1) 

where ( )C xα
µ  is the component field and P̂ i

xα α

∂
= −

∂
 is the generator of global gravitational gauge group.  

The gravitational gauge covariant derivative is given by 

( ) ( ) ,D igC x G xα
µ µ µ µ α= ∂ − = ∂                                (2) 

where g is the gravitational coupling constant and matrix G is given by 

( ) ( ).G G gCα α α
µ µ µδ= = −                                   (3) 

Its inverse matrix is 

( )1 11 .G G
I gC

µ
α

− −= =
−

                                  (4) 

Using matrix G  and 1G− , we can define two important composite operators 
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,g G Gαβ µ α β
µ

ν
νη=                                       (5) 

1 1 .g G Gµαβ µ α
ν

ν βη − −=                                     (6) 

Quantum gauge theory of gravity is formulated in absolute space-time [9] [17]. Therefore, in quantum gauge 
theory of gravity, space-time is always flat and space-time metric is always Minkowski metric, so gαβ  and 
gαβ  are no longer space-time metric. They are only two composite operators which consist of gravitational 
gauge field. Einstein’s general relativity is formulated in physical space-time, and gαβ  and gαβ  are metric of 
physical space-time. 

The field strength of gravitational gauge field is defined by  

( ) ( )1 ˆ, ,F x D D F x P
ig

α
µν µ ν µν α  = ⋅ −

                               (7) 

where 

.F G C G Cα β α β α
µν µ β ν ν β µ= ∂ − ∂                                  (8) 

The Lagrangian of the quantum gauge theory of gravity is selected to be 

( )1
0det G−=                                       (9) 

where 

1 1 1 1
0

1 1 1 .
16 8 4

g F F G G F F G G F Fµρ νσ α β µρ ν σ α β µρ ν σ α β
αβ µν ρσ β α µν ρσ α β µν ρση η η η− − − −= − − +           (10) 

Its space-time integration gives out the action of the system 
4dS x= ∫  .                                     (11) 

Under gravitational gauge transformations, the gauge transformation of space-time coordinates is 

( )( )ˆ .x y U x x xµ µ µ µ µ→ = = −                              (12) 

The gauge transformation of gravitational gauge field is 

( ) ( ) ( ) ( ) ( ) ( ) ( )( )1 1ˆ ˆ ˆ ˆ .iC x C x U x C x U x U x U x
gµ µ µ µ

− −′→ = + ∂                    (13) 

Using Equation (1), the above relation can be changed into 

( ) ( ) ( ) ( )( ) ( ) ( )( )( )1 1ˆ ˆ ,C x C x U x C x U x f x
g

α α α β α
µ µ β µ µ

−′→ = Λ − ∂                 (14) 

where ( )f x  is a function of space-time coordinates which satisfy 

( ) ( )( )ˆ ,U x f x x=                                     (15) 

and 1α
β
−Λ  is defined by 

( )( )
1 .x x

yx x

α α
α

β β β
− ∂ ∂

Λ = =
∂∂ − 

                                 (16) 

3. Relative Space-Time and Absolute Space-Time 
The fundamental theory for gravitational interactions can be formulated in two completely different pictures [9] 
[17]. In one picture, the space-time exists independently, and the structure of space-time is not affected by gra-
vitational field. Like other gauge fields, gravitational field is a physical field which exists and propagates in 
space-time. This picture is called physical picture of gravity. Classical Newton’s theory of gravity and quantum 
gauge theory of gravity are set up in this picture. In physical picture of gravity, the space-time is absolute space- 
time. In another picture of gravity, the existence of space-time is not independent. The structure of space-time is 
affected by gravitational field in it. Gravity is only an effect of curved space-time. In this picture, there does not 
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exist a physical gravitational field, and the physics of gravity becomes the geometry of space-time. So, this pic-
ture is called geometrical picture of gravity. General relativity is founded in this picture. The space-time in this 
picture is called relative space-time, or physical space-time. 

Two pictures of gravity have completely different transcendental principles, completely different basic physi-
cal notions, and completely different mathematical treatment. But for problems of classical gravity, theories of 
two pictures give out the same theoretical predictions. In other word, for problems of classical gravity, two pic-
tures of gravity are finally equivalent to each other. 

In physical picture of gravity, space-time is always flat, so we call it absolute space-time. A coordinate system 
which is set up in absolute space-time is denoted by 1Σ , and the space-time coordinate of a physical event is 
denoted by xα . The metric of absolute space-time is always the Minkowski metric αβη . In geometrical picture 
of gravity, the space-time is curved when there exists matter in space-time. The space-time in this picture is 
called relative space-time. In relative space-time, the local clock and ruler are affected by gravitational field. In 
other words, an observer in absolute space-time observes the clock and ruler used by a local observer in relative 
space-time, he will find that the time interval between ticks of a clock and the length of a ruler are all changed 
by gravitational field [9], though local observer cannot perceive these changes. Suppose that there are two ob-
servers in two space-times observe the same physical event. The space-time interval observed by the observer in 
absolute space-time is denoted by xα∆ , and that observed by the local observer in relative space-time is de-
noted by yµ∆ . The relation between yµ∆  and xα∆  is given by  

1 .y G xµ µ α
α
−∆ = ∆                                     (17) 

The above equation gives out the relation between two space-times. 

4. Gravitational Gauge Transformation 
Now, let’s study Lorentz transformation. Suppose that we are in absolute space-time. The coordinate system is 

1Σ , and space-time coordinate is denoted by xα . A global Lorentz transformation is expressed by 

,x y xα α α β
β→ = Λ                                  (18) 

where α
βΛ  is the Lorentz transformation matrix. Suppose that the transformation is a boost of the system along 

the direction of positive x axle with the velocity parameter v, then the transformation matrix is 

0 0
0 0

,
0 0 1 0
0 0 0 1

v
vα

β

γ γ
γ γ
 
 
 Λ =
 
 
 

                              (19) 

where 
2

1

1 v
γ =

−
 is the rapidity. In this case, the Lorentz transformation (18) becomes 

( )
( )

0 0 1

1 1 0

2 2

3 3

.

y x vx

y x vx

y x
y x

γ

γ

 = +

 = +

 =


=

                                  (20) 

Next, we will study the above Lorentz transformation in the framework of quantum gauge theory of gravity. 
Gravitational gauge transformation of space-time coordinate is given by Equation (12). Compare Equation (12) 
with (18), we obtain 

.y xα α α= −                                       (21) 

Therefore, the gravitational gauge transformation parameter   is 

( ) .xα α α β
β βδ= −Λ                                   (22) 

It could be seen that the transformation parameter   is a function of space-time coordinate xα , so the gra-
vitational gauge transformation is a local gauge transformation. 
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The gravitational gauge transformation of gravitational gauge field ( )C xα
µ  is given by Equation (14). Using 

Equation (15) and the following relation 

ˆ ,U
x yµ µ

∂ ∂  = ∂ ∂ 
                                    (23) 

we can change Equation (14) into the following form 

( ) ( ) ( )( ) ( )1 1ˆ .
x

C x C x U C x
g y

α
α α α β
µ µ β µ µ

−  ∂
′→ = Λ −   ∂ 




                       (24) 

Using Equations (16) and (22), the above relation can be changed into 

( ) ( ) ( )( ) ( )1 11ˆ .C x C x U C x
g

α α α β ν α α
µ µ β µ µ ν νδ− −′→ = Λ − Λ −Λ                     (25) 

In the above relation, the matrix ( )1ν
µ
−Λ  is the inverse matrix of ( )µ

νΛ . Its explicit expression is 

1

0 0
0 0

,
0 0 1 0
0 0 0 1

v
vν

µ

γ γ
γ γ−

− 
 − Λ =
 
 
 

                               (26) 

It satisfies the following relation 
1 1 .ν α α ν α
µ ν ν µ µδ
− −Λ Λ = Λ Λ =                                  (27) 

Using above relation, we can change Equation (25) into the following form 

( ) ( ) ( )( ) ( )1 11ˆ .C x C x U C x
g

α α α β α α
µ µ β µ µ µδ

− −′→ = Λ − Λ −                     (28) 

Before Lorentz transformation, we are in absolute space-time. Suppose that there is no matter field, and the 
gravitational field vanishes in all points of space-time. That is 

( ) 0.C xα
µ =                                          (29) 

Then, relation (28) is changed into 

( ) ( )11 .C x
g

α α α
µ µ µδ −′ = −Λ                                   (30) 

From above relation, we could see that, after Lorentz transformation, the gravitational field no longer vanish-
es. There exists constant gravitational field in space-time. Because the gravitational field after Lorentz transfor-
mation is constant, its space-time derivative vanishes and the field strength of gravitational gauge field also va-
nishes. Therefore, there is no gravity in the reference frame after Lorentz transformation, and the reference 
frame after Lorentz transformation is still an inertial reference frame as expected. 

5. Clock Dilation Effect 
A basic idea of modern theory on gravity is that the time interval between ticks of a clock and the length of a ru-
ler are all changed by the classical gravitational field, and the structure of physical space-time is also affected by 
the classical gravitational field. Before Lorentz transformation, the gravitational gauge field vanishes every-
where. But after Lorentz transformation, there exists non-trivial gravitational gauge field which is given by Equ-
ation (30). Its explicit form is 

( )( )
1 0 0

1 0 0
.

0 0 0 0
0 0 0 0

v
v

gC xα
µ

γ γ
γ γ
− 

 − ′ =
 
 
 

                               (31) 
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Though all matrix elements in gravitational gauge field gC α
µ′  are constant, there appear non-zero matrix 

elements. 
Next, let’s study its physical implications. The matrix G which is defined by Equation (3) has the following 

explicit form 

( ) ( )1

0 0
0 0

.
0 0 1 0
0 0 0 1

v
v

G Gα α
µ µ

γ γ
γ γ −

− 
 − = = = Λ
 
 
 

                           (32) 

Its inverse matrix 1G−  is 

( ) ( )1 1

0 0
0 0

.
0 0 1 0
0 0 0 1

v
v

G G µ µ
α α

γ γ
γ γ− −

 
 
 = = = Λ
 
 
 

                            (33) 

Next, we perform our study in physical space-time. Because the gravitational gauge field vanishes before Lo-
rentz transformation, according to Equation (17), the absolute space-time and the physical space-time are the 
same. Therefore, before Lorentz transformation, the space-time interval of a physical event can be denoted by 

xα∆ , which is just the space-time interval in absolute space-time. After Lorentz transformation, because of the 
influence of classical gravitational gauge field, the space-time interval of the physical event is changed to yµ∆ . 
According to Equation (17), we have 

1 .y G x xµ µ α µ α
α α
−∆ = ∆ = ∆⋅Λ⋅                                (34) 

The above relation is the same as that given by Lorentz transformation (18). The above relation is deduced 
from the point of view of gravitational gauge transformation. It is a relation that is obtained from the change of 
the space-time structure after gravitational gauge transformation. 

Supposed that there is a clock at rest in the reference frame 1Σ , and the time interval between ticks of the 
clock is denoted by 0t∆ . After Lorentz transformation, the time interval between ticks of the clock is changed 
to t∆ . According to Equation (34), we have 

0.t tγ∆ = ⋅∆                                     (35) 

This is the clock dilation effect given by the change of the gravitational field. 
Suppose that there is a ruler that is at rest in the reference frame 1Σ . The length of the ruler is 0Δ . After 

gauge transformation, we measure the position of the two ends of the ruler at the same time, and obtain the 
length of the ruler is Δ . According to Equation (34), we have 

0
1 .
γ

∆ = ⋅∆                                      (36) 

It is the ruler contraction effect caused by the change of the gravitational gauge field. Relations (35) and (36) 
are familiar results in special relativity. But here, they are deduced from the viewpoint that the time interval be-
tween ticks of a clock and the length of a ruler are all changed when the classical gravitational field is changed. 

6. Summary and Discussions 
In this paper, the transformation law of vacuum gravitational gauge field and the change of space-time structure 
under gravitational gauge transformation are studied. It is found that, when the global Lorentz transformation is 
studied using the method of gravitational gauge transformation, the vacuum gravitational gauge field is changed 
under the transformation, which will cause the change of space-time structure. The clock dilation effect and the 
ruler contraction effect are results of the change of space-time structure. It is known that, in special relativity, the 
Lorentz transformation is only a mathematical transformation of the reference system, or say that it is only a 
transformation of the moving state of the observer. The change of mathematical parameters of a theory generally 
can not affect our clock and ruler. In other words, when we change the mathematical parameters of a theory that 
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describe a physical event, the time interval between ticks of a clock and the length of a ruler generally should 
not be changed accordingly. For a long time, we cannot understand the physical mechanism that causes the 
change of space-time structure under such mathematical transformation. The goal of this paper is to study such 
physical mechanism, and we found that the physical mechanism that causes the change of space-time structure 
under Lorentz transformation is that the change of classical gravitational field causes the change of space-time 
structure, which is familiar for us in general relativity. In the traditional theories, the picture of the change of the 
space-time structure in special relativity is completely different from that in general relativity. In special relativ-
ity, it is traditionally considered to be an effect of kinematics, and in general relativity, it is considered to be a 
result of gravity. From the study of this paper, we found that two pictures can be unified, and they are essentially 
the same. In other words, the clock dilation effect and the ruler contraction effect in special relativity are also 
effects of gravity. What that the space-time structure is changed by classical gravitational field is a more funda-
mental law in physics. 

It is known that the generalization of special relativity is general relativity, which is a theory of gravity. But, 
why will the generalization of special relativity which is a kinematical theory inevitably lead to a fundamental 
theory on gravity? It is hard to understand the physical nature and the inevitability of such generalization just 
from the point of view of symmetry. Now we know that the physical mechanism that hides behind the Lorentz 
transformation is gravity and the influence of gravity to space-time structure. It provides us with new insights to 
understand the essential physical relation between special relativity and general relativity. From physical point 
of view, the nature of the generalization from special relativity to general relativity is a generalization of gravity, 
or say that, it is a generalization from the theory of uniform gravitational field to the theory of arbitrary gravita-
tional field. 

It is generally believed that the classical gravitational field in inertial reference system should vanish. It is 
known that, if the initial reference system is inertial, after Lorentz transformation, it is still inertial. According to 
Equation (31), the classical gravitational field in inertial reference system can be non-zero, and the constant gra-
vitational field can have non-trivial influence to the space-time structure. 

The gravitational gauge field after gravitational gauge transformation is given by Equation (31). Using rela-
tions (5) and (6), we could calculate the metric of physical space-time. We find that the metric of physical space- 
time after Lorentz transformation is still Minkowski metric. So, the gravitational gauge field given by Equation 
(31) is a solution of the field equation of gravitational gauge field. By the way, we should state that results in this 
paper cannot be obtained in the traditional formulation of general relativity; for the gravitational field hµν =  gµν µνη−  is always zero before and after Lorentz transformation. In the introduction of this paper, we have 
stated that, for problems of classical gravity, quantum gauge theory of gravity can return to Einstein’s general 
relativity. Two theories give out the same theoretical predictions on classical tests of gravity. But, we should 
state here that, for problems of classical gravity, quantum gauge theory of gravity can provide us with more in-
formation on gravity and space-time structure than traditional general relativity. 

Equation (17) gives out important relation between two space-times. It is known that the structure of absolute 
space-time is fixed; it cannot be changed by any man-made machine. But with the guide of Equation (17), it is 
possible for us to change local structure of physical space-time, which will have far reaching influence on hu-
man kinds; for example, we can make a machine that can essentially prolong human being’s life by physical 
method. Details on this topic can be found in [9]. We will not repeat it here. 
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