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Abstract 
In this work, we consider statistical diagnostic for general transformation models with right cen-
sored data based on empirical likelihood. The models are a class of flexible semiparametric sur- 
vival models and include many popular survival models as their special cases. Based on empirical 
likelihood methodologe, we define some diagnostic statistics. Through some simulation studies, 
we show that out proposed procedure can work fairly well. 
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1. Introduction 
Statistical diagnosis developed in the mid-1970s, which is a new statistical branch. In the course of development 
of the past 40 years, the diagnosis and influence analysis of linear regression model has been fully developed (R. 
D. Cook and S. Weisberg [1], Bocheng Wei, Guobin Lu & Jianqing Shi [2]). Influence diagnostics for the pro- 
portional hazards model has been fully developed (L. A. Weissfeld [3]), for example, the proportional odds 
model, heteroscedastic linear transformation model, generalized linear transformation model, generalized trans- 
formation model and the other survival models. 

The empirical likelihood method originates from Thomas & Grunkemeier [4]. Owen [5] first proposed the de- 
finition of empirical likelihood and expounded the system info of empirical likelihood. The empirical CDF of  

1 2, , , nX X X  is defined as ( )
1

1 1
i

n

n X x
i

F x
n ≤

=

= ∑  for x−∞ < < ∞ . The empirical likelihood of the CDF F  is 
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( ) ( ) ( )( )
1

n

i i
i

L F F X F X
=

= − −∏ . Zhu and Ibrahim [6] utilized this method for statistical diagnostic, they devel- 

oped diagnostic measures for assessing the influence of individual observations when using empirical likelihood 
with general estimating equations, and used these measures to construct goodness-of-fit statistics for testing 
possible misspecification in the estimating equations. Liugen Xue and Lixing Zhu [7] summarized the applica- 
tion of empirical likelihood method. 

Many authors have successfully applied empirical likelihood to the analysis of survival data. For example, 
Qin and Jing [8] investigated empirical likelihood confidence intervals for Cox’s regression models with right 
censored data; He [9] studied the goodness-of-fit of Cox’s regression models with various types of censored data; 
Gu et al. [10] considered inferences for Cox’s regression models with time-dependent coefficients; Zhou [11], 
Zheng and Yu [12] and Zhou et al. [13] studied empirical likelihood for accelerated failure time models, multi- 
variate accelerated failure time models and heteroscedastic accelerated failure time models respectively. Li et al. 
[14] overviewed some applications of empirical likelihood in survival analysis; Lu and Liang [15] discussed 
empirical likelihood procedure based on estimating equations for a class of flexible survival models-linear- 
transformation models, which includes popular proportional hazard regression models and proportional odds re-
gression models as its special cases. Jianbo Li et al. [16] studied empirical likelihood inference for general trans- 
formation models with right censored data. 

In this paper, we will consider statistical diagnostic for a class of very general survival models-general trans- 
formation models with right censored data in the form of  

( ) ( )( )0 , ,ZS t S t Z β= Φ                                  (1) 

where ( )ZS t  is the conditional survival function of failure time variable T  given covariate vector Z ; 
( )0S t  is a completely unspecified baseline survival function when 0Z = ; ( ), ,u v wΦ  is a known monotoni-

cally increasing function with respect to u  satisfying ( )0, , 0v wΦ =  and ( )1, , 1v wΦ =  for any v  and w ; 
PRβ ∈  is a parameter vector including regression coefficients and possible model transformation parameters in 

Φ . Model (1) includes many popular survival models, for example heteroscedastic linear transformation models, 
as their special cases. Note that when  

( ) ( )( )1, ,u v w h h u v w− ′Φ = +  

where 1h−  is a survival function, Model (1) reduces to the popular linear transformation models (Clayton and 
Cuzik [17]; Dabrowska and Doksum [18]; Bickel [19]; Cheng et al. [20]; Fine et al. [21]). 

So far the diagnosis of the general transformation model with random right censorship based on empirical li- 
kelihood method has not yet seen in the literature. This paper attempts to study it. One advantage of this proce- 
dure is that it is free of baseline survival function and censoring distribution. The class of models we investigate 
is also general than previous studies for survival models. 

The rest of the paper is organized as follows. Empirical likelihood and estimation equation are presented in 
Section 2. The main results are given in Section 3 and Section 4. Section 5 contains some simulation studies as 
well as applications. Conclusions with discussions are given in Section 6.  

2. Empirical Likelihood and Estimation Equation 
Let C  be the censoring variable, ( )min ,Y C T=  be the censored event time variable and ( )T Cδ = <  be  

the censoring indicator. Suppose { } 1
, , n

i i i i
Y Z δ

=
 are n  i.i.d. copies of { }, ,Y Z δ . Denote by 

1

n

n i
i

k δ
=

= ∑  the to- 

tal number of uncensored failure times. *
nℜ , the partial ranking among the nk  uncensored failure times and 

the censored observations between each neighboring pair of uncensored observations. Given the partial ranking 
*
nℜ  and covariate observations ( )1 2, , ,n nZZ Z Z Z=  , Jianbo Li [16] has proposed the empirical log-likelihood 

ratio function for β  can be defined by 

( ) ( ) ( )
1 1 1

2sup log 1, 0, 0 ,
n n n

i i i i i
i i i

L np p p W pβ β
= = =

 
= − = = ≥ 

 
∑ ∑ ∑  

where ( ) ( )( ) *
0 , , ,i i i n nW E S T Z ZZββ ψ β = ℜ  ,  
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=

∂
,  

( )0,1u∈ . 
By Qin and Lawless [22], Owen [5], when 

( )T

1 1 ,
1i

i

p
n Wλ β

=
+

 

the empirical log-likelihood ratio statistic equal to the maximum 

( ) ( )( )T

1
2 log 1

n

E i
i

l Wβ λ β
=

= +∑ , 

where PRλ ∈  and ( )
( )T

1
0

1

n
i

i i

W
W
β

λ β=

=
+

∑ . 

Regard λ  and β  as independent variable and define 

( ) ( )( )1 T

1
, log 1

n

n i
i

Q n Wλ β λ β−

=

= − +∑ . 

Obviously, the maximum empirical likelihood estimates β̂  and λ̂  are the solutions of following equations 

( ) ( ) ( ) ( ){ }

( ) ( ) ( ) ( ){ }

11 T
1,

1

11 T
2,

1

,
, 1 0

,
, 1 0

n
n

n i i
i

n
n i

n i
i

Q
Q n W W

Q W
Q n W

λ β
λ β β λ β

λ
λ β β

λ β λ λ β
β β

−−

=

−−

=

 ∂
= = − + = ∂


∂ ∂ = = − + = ∂ ∂

∑

∑
. 

3. Case-Deletion Influence Measures 
Consider Model (1), where the j-th case ( ),j jt Z  is deleted. 

( ) ( )( )0 , , ,
iZ i i iS t S t Z i jβ= Φ ≠ .                               (2) 

This model is called case-deletion model. Let ( )
ˆ

jβ  is the maximum empirical likelihood estimate of β  in 
model (2). In order to study the influence of the j-th case ( ),j jt Z , and compare the difference between β̂  and  

( )
ˆ

jβ . The important result as follows theorem. 

By Zhu, et al. [6], for model (2), the maximum empirical likelihood estimator of β  is  

( ) ( ) ( ){ }1 1 1
22.1 21 11

ˆ ˆ ˆ 1 1i pj n S S S oβ β η β− − −= − + ,                           (3) 

where 
( ) ( )( ) ( )

( )

T
T

11 12

21 22
0

i
F i i F

i
F

W
E W W E

S S
S

S S W
E

β
β β

β

β
β

 ∂  −  
∂    = =   

  ∂  −   ∂  

, 1
22.1 21 11 12S S S S−= − . 

3.1. Empirical Cook Distance 
Zhu, et al. [6] proposed empirical cook distance. Let M is a nonnegative matrix. The empirical cook distance is 
defined as follows 

( ) ( )( ) ( )( )Tˆ ˆ ˆ ˆ
j j jECD M Mβ β β β= − −                           (4) 
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where 
( )2

2
ˆ

ElM
β β

β
β

=

∂
=

∂
. 

3.2. Empirical Likelihood Distance 

Empirical likelihood distance is advanced from the view of data fitting. Considering the influence of deleting the  
j-th case. In order to eliminate the influence of scale, it is also need to divide the variance of estimator ( )ˆ jVar y∗ .  

Because the keystone is to review the influence of deleting the j-th case. Hence, 2σ̂ ∗  is substituted by ( )2ˆ jσ ∗ . 
Then, the W-K statistic can be expressed as follows 

( ) ( ) ( )( ){ }ˆ ˆ2j E E jELD M l lβ β= −                              (5) 

4. Local Influence Analysis of Model 
We consider the local influence method for a case-weight perturbation nRω∈ , for which the empirical log-li-  

kelihood function ( )El β ω  is defined by ( ) ( ),
1

n

E i E i
i

l lβ ω ω β
=

= ∑ . In this case, 0ω ω= , defined to be an  

1n×  vector with all elements equal to 1, represents no perturbation to the empirical likelihood, because 
( ) ( )0

E El lβ ω β= . Thus, the empirical likelihood displacement is defined as  

( ) ( ) ( ){ }ˆ ˆ2DE E El l lω β β ω = −   

where ( )β̂ ω  is the maximum empirical likelihood estimator of β  based on ( )El β ω . Let ( ) 0a ahω ω= +  
with ( ) 00ω ω=  and  

( ) 0d d aa a hω = =  

where h  is a direction in nR . Thus, the normal curvature of the influence graph ( )( )TT , ELDω ω  is given by  

( ) ( )0
0 TC

E
h LD

h H h
ω

ω =  

where ( )
( ){ }

( ){ }0
0

0

2
1T 2

T ˆ,

ˆ
2 2

E

E
ELD

LD
H lβω ω β

ω

β ω
β

ω ω
−∂

= − = ∆ −∂ ∆
∂ ∂

 in which ( )2 ,ELDβω β ω∆ = ∂  is a p n×   

matrix with ( ),k i -th element given by ( ),k E ilβ β∂ . 
We consider two local influence measures based on the normal curvature ( )0Ch ω  as follows. Let  

1 1 0p p nλ λ λ λ+≥ ≥ ≥ = = = 
 be the ordered eigen values of the matrix ( )0

ELD
H

ω
 and let  

( ){ }T
1, , : 1, ,m m mnv v v m n= =   be the associated orthonormal basis, that is, ( )0

E
m m mLD

H v v
ω

λ= . Thus, the 

spectral decomposition of ( )0
ELD

H
ω

 is given by 

( )0
T

1E

n

m m mLD
m

H v v
ω

λ
=

= ∑ . 

The most popular local influence measures include 1v , which corresponds the largest eigen value 1λ , as well  

as 2

1
j

p

e m mj
m

C vλ
=

= ∑ ,where je  is an 1n×  vector with j-th component 1 and 0 otherwise. The 1v  represents the  

most influential perturbation to the empirical likelihood function, whereas the observation ( ),j jt Z  with a large 
jeC  can be regarded as influential. 
As the discuss of Zhu et al. [6], for the general transformation regression model with random right censorship, 

we can deduce that  

( ){ } ( ){ } ( ){ }1 T 1
22.12 1 1 2 1 1 2 1 1

je j p j p j j pC ELD o ECD o n S o− −= + = + = − ∆ ∆ +                       (6) 
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( )( ) ( )( )
( )( )

T T

22 2, 2T1
ˆ ˆ,

1 ,
1

n
i i

n
i

i

W W
S Q

n W

β β
β

β β λ λ

β λλ β

λ β=
= =

∂ ∂
= ∂ =

+
∑  1

22.1 21 11 12S S S S−= − . 

5. Numerical Studies 
In this section, we simulate data with sample sizes 100n =  from the follow transformation model  

( ) ( )( )0 , ,ZS t S t Z β= Φ  

where ( ) ( )( )1, ,u v w h h u v w− ′Φ = + , ( )0 e tS t −= , ( )1 2,Z z z ′= , ( )1 ~ 0.5z B , ( )2 ~ 0,1z U , where ( )B ⋅  de- 
notes the Bernoulli distribution and ( ),U ⋅ ⋅  denotes the uniform distribution. For the simulation studies, we will  

consider three choices of ( )1h− ⋅ : 1) standard exponential survival function 2) ( ) ( ) 11 1 eth t
−− = + . Note that 

when ( )1h− ⋅  takes standard exponential survival function and ( ) ( ) 11 1 eth t
−− = + , Model (1) corresponds to the  

proportional hazard Cox regression model and the proportional odds regression model. For all two models, we 
will generate censoring times from ( )0,U C . By properly choosing values of C , we consider three censoring 
proportions 10%,20%,30%rC =  for all the cases (Qian Jun, et al. [23]). The survival data simulated by soft- 
ware SAS as follows Table 1. 

In order to check out the validity of our proposed methodology, we change the response variable value of the 
third, 20th, 54th, 80th and 99th data. 

For every case, it is easy to obtain ( )iW β . For the parameters β  and λ , using the samples, we evaluated 
their maximum empirical likelihood estimators for two models. 

Consequently, it is easy to calculate the value of 11 12 21 22, , ,S S S S  and 
ieC . The result of 

ieC  is as following 
figures. 

From all figures, we can see that in most cases, the value of 
ieC  are reasonably close to one fixed value. 

Following the definition and properties of 
ieC , we can diagnose the strong influence points, the value of which 

deviate from the average seriously. From Figures 1-3, we can see from the value of 
ieC  that the third, 20th, 

54th and 80th data are strong influence point. From Figures 4-6, we can see from the value of 
ieC  that the 

third, 20th, 54th, 80th and 99th data are strong influence point. Indeed, our proposed approaches are illustrated. 

6. Discussion 
In this paper, we considered the statistical diagnostic for general transformation models with right censored data 
based on empirical likelihood. We also studied in detail the method of simulating survival data under three dif- 
ferent censored proportions. Through simulation studies, we illustrate that our proposed method can work fairly 
well.  

Zhensheng Huang [24] analyzed empirical likelihood for varying-coefficient single-index model with right 
censored data. In addition, Zhengsheng Huang [25] studied profile empirical likelihood inferences for the single-  
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Table 1. Survival data (Note: the “star” in top right corner represent censored data).                      

The proportional hazard Cox regression model The proportional odds regression model 

10%rC =  20%rC =  30%rC =  10%rC =  20%rC =  30%rC =  

1.01356 1.01356 1.01356 0.56269 0.56269 0.56269 

0.18505 0.18505 0.18505 −1.5931 −1.5931 −1.5931 

1.69378 1.69378 1.69378 1.49065 1.49065 1.49065 

2.55243 2.55243 2.55243 2.47133 2.47133 1.52298* 

0.34637 0.34637 0.34637 −0.8821 −0.8821 −0.8821 

0.71794 0.71794 0.66388* 0.04899 0.04899 0.04899 

1.87884 1.87884 1.439* 1.71306 1.50985 0.81633* 

0.77757 0.77757 0.77757 0.16227 0.16227* 0.16227 

0.93513 0.93513 0.66281* 0.43666 0.43666 0.376* 

1.81876 1.27844* 0.86032* 1.53732* 0.90267 0.48805* 

1.2722 1.2722 1.2722 0.9434 0.9434* 0.9434 

1.04833 1.04833 1.04833 0.61675 0.61675 0.61675 

0.4797 0.4797 0.4797 −0.4852 −0.4852 −0.4852 

0.43034* 0.28165* 0.18953* 0.33868* 0.19887 0.10752* 

0.03155 0.03155 0.03155 −3.4404 −3.4404* −3.4404 

0.17076* 0.11176* 0.07521* −0.5042 −0.5042 −0.5042 

0.18414 0.18414 0.18414 −1.5986 −1.5986 −1.5986 

1.03038 1.03038 0.78983* 0.58897 0.58897 0.44806* 

0.87027 0.75067* 0.50516* 0.32754 0.32754 0.28657* 

0.29389 0.27541* 0.18533* −1.074 −1.074 −1.074 

0.26822 0.26822 0.26822 −1.1789 −1.1789 −1.1789 

0.58557 0.58557 0.5578* −0.2281 −0.2281 −0.2281 

1.16345 1.16345 1.16345 0.78889 0.78889 0.78889 

0.4445 0.4445 0.4445 −0.5803 −0.5803 −0.5803 

1.51748 1.51748 1.51748 1.26996 1.26996 1.26996 

3.65544 3.65544 3.17821* 3.62925 3.33468 1.80295* 

0.72074 0.72074 0.72074 0.05445 0.05445* 0.05445 

1.22426 1.22426 1.22426 0.87615 0.87615 0.87615 

1.00811 1.00811 1.00811 0.55412 0.55412 0.55412 

0.73052 0.73052 0.73052 0.0734 0.0734 0.0734 

0.21338 0.21338 0.21338 −1.4361 −1.4361 −1.4361 

0.95816 0.95816 0.95816 0.47431 0.47431 0.47431 

2.77231 2.77231 2.77231 2.70775 2.70775 1.62699* 

0.06186 0.06186 0.06186 −2.7518 −2.7518 −2.7518 

0.10313 0.10313 0.10313 −2.2197 −2.2197 −2.2197 

0.4418 0.4418 0.4418 −0.5879 −0.5879 −0.5879 

0.45387 0.45387 0.45387 −0.5544 −0.5544 −0.5544 
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Continued 

0.50024 0.50024 0.50024 −0.4321 −0.4321 −0.4321 

0.36092 0.36092 0.36092 −0.8332 −0.8332 −0.8332 

0.15135 0.15135 0.15135 −1.8115 −1.8115 −1.8115 

0.53945 0.53945 0.53945 −0.3354 −0.3354 −0.3354 

0.18829 0.18829 0.18829 −1.5742 −1.5742 −1.5742 

0.30544 0.30544 0.30544 −1.0294 −1.0294 −1.0294 

1.31707 1.31707 1.31707 1.00521 1.00521 1.00521 

0.26613 0.26613 0.26613 −1.1878 −1.1878 −1.1878 

1.51866 1.51866 1.51866 1.27147 1.27147 1.23725* 

0.3611 0.3611 0.3611 −0.8326 −0.8326 −0.8326 

3.15993 3.15993 3.15993 3.11657 3.11657 1.86915* 

0.1697 0.1697 0.1697 −1.6876 −1.6876 −1.6876 

2.26753 2.03874* 1.37196* 2.15819 1.43951 0.77829* 

1.75633 1.75633 1.56763* 1.56677 1.56677* 0.88929* 

0.78722 0.78722 0.78722 0.18006 0.18006 0.18006 

0.13452 0.13452 0.13452 −1.938 −1.938 −1.938 

3.10333 2.52689* 1.70046* 3.03859* 1.78418 0.96465* 

1.23414 1.18896* 0.8001* 0.89011 0.8395* 0.45389* 

0.34156 0.34156 0.34156 −0.8986 −0.8986* −0.8986 

0.53406 0.53406 0.53406 −0.3484 −0.3484 −0.3484 

1.04288 1.04288 1.04288 0.60833 0.60833 0.60833 

0.06254 0.06254 0.06254 −2.7405 −2.7405 −2.7405 

0.16285* 0.10658* 0.07172* 0.12817* 0.07526 0.04069* 

0.61291 0.61291 0.61291 −0.1675 −0.1675* −0.1675 

0.1746 0.1746 0.1746 −1.6567 −1.6567 −1.6567 

0.85724 0.85724 0.85724 0.30501 0.30501 0.30501 

0.45624 0.45624 0.45624 −0.548 −0.548 −0.548 

0.79282 0.79282 0.79282 0.1903 0.1903 0.1903 

1.16317 1.16317 1.16317 0.78848 0.78848 0.78848 

0.60179 0.60179 0.60179 −0.1919 −0.1919 −0.1919 

2.96244 2.96244 2.54782* 2.90936 2.67326 1.44534* 

1.16825* 0.76459* 0.51453* 0.91942* 0.53986* 0.29188* 

0.15084 0.15084 0.15084 −1.8152 −1.8152* −1.8152 

0.12017 0.12017 0.12017 −2.0582 −2.0582 −2.0582 

0.37423 0.37423 0.37423 −0.79 −0.79 −0.79 

0.27104 0.27104 0.27104 −1.1669 −1.1669 −1.1669 

0.37813* 0.24748* 0.16654* −0.1845 −0.1845 −0.1845 

1.16728 1.16728 0.7876* 0.79446 0.79446 0.44679* 

5.31563 4.26107* 2.86746* 5.12394* 3.00864* 1.62667* 
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Continued 

1.56948 1.56948 1.56948 1.33609 1.33609 0.99265 

0.40936 0.40936 0.40936 −0.6815 −0.6815 −0.6815 

0.28091 0.28091 0.28091 −1.126 −1.126 −1.126 

0.0024 0.0024 0.0024 −6.0317 −6.0317 −6.0317 

0.30251 0.30251 0.30251 −1.0406 −1.0406 −1.0406 

0.20861 0.20861 0.20861 −1.4612 −1.4612 −1.4612 

0.08736* 0.05718* 0.03848* −1.6706 −1.6706 −1.6706 

0.31791 0.31791 0.31791 −0.9828 −0.9828 −0.9828 

0.16752 0.16752 0.16752 −1.7017 −1.7017 −1.7017 

1.63361 1.63361 1.63361 1.41642 1.41642 1.11754* 

0.93736 0.93736 0.93736 0.44034 0.44034 0.44034 

1.02706 1.02706 1.02706 0.5838 0.5838 0.5838 

0.2277 0.2277 0.17637* −1.3637 −1.3637 −1.3637 

0.76883 0.76883 0.76883 0.14604 0.14604 0.14604 

0.50306 0.50306 0.50306 −0.425 −0.425 −0.425 

0.07136 0.07136 0.07136 −2.6041 −2.6041 −2.6041 

0.94829 0.94829 0.94829 0.45824 0.45824 0.45824 

0.64409 0.64409 0.64409 −0.1006 −0.1006 −0.1006 

0.9269 0.9269 0.9269 0.42308 0.42308 0.42308 

0.11448 0.11448 0.11448 −2.1095 -2.1095 −2.1095 

0.51525 0.51525 0.51525 −0.3944 -0.3944 −0.3944 

0.25798 0.25798 0.25798 −1.2231 -1.2231 −1.2231 

1.87251 1.87251 1.87251 1.70558 1.70558 1.70558 

1.1215* 0.734* 0.49394* 0.88263* 0.51826* 0.2802* 

 

 
Figure 1. The influence 

ieC  of Model (1) ( )10%rC = .      
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Figure 2. The influence 

ieC  of Model (1) ( )20%rC = .     

 

 
Figure 3. The influence 

ieC  of Model (1) ( )30%rC = .      

 

 
Figure 4. The influence 

ieC  of Model (2) ( )10%rC = .      
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Figure 5. The influence 

ieC  of Model (2) ( )20%rC = .     

 

 
Figure 6. The influence 

ieC  of Model (2) ( )30%rC = .      

 
index-coefficient regression model. All of these will be topics for our further research. 
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