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Abstract 
Possibilities of synchronized oscillations in glycolysis mediated by various extracellular metabo- 
lites are investigated theoretically using two-dimensional reaction-diffusion systems, which ori- 
ginate from the existing seven-variable model. Our simulation results indicate the existence of al- 
ternative mediators such as ATP and 1,3-bisphosphoglycerate, in addition to already known ace- 
taldehyde or pyruvate. Further, it is also suggested that the alternative intercellular communica- 
tor plays a more important role in the respect that these can synchronize oscillations instanta- 
neously not only with difference phases but also with different periods. Relations between inter- 
cellular coupling and synchronization mechanisms are also analyzed and discussed by changing 
the values of parameters such as the diffusion coefficient and the cell density that can reflect in- 
tercellular coupling strength. 
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1. Introduction 
Synchronization in biological systems is widely observed in the natural world. This phenomenon is one of the 
collective behaviors thought to have a crucial role in maintaining the individual life or in giving benefits for 
communities. One of the well-known examples is synchronized flashing of male fireflies [1] [2]. 
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Glycolysis is a biological mechanism to decompose glucose and to store energy in the form of ATP. In this 
chemical process, synchronized variations can be seen for the concentrations of various metabolites [3]-[8]. For 
example, yeast cells exhibit glycolytic synchronized oscillations under certain conditions. A suspension of yeast 
cells with high population densities shows synchronization, whereas that with low densities does not. The emer- 
gence of the collective behavior such as synchronization may occur above a critical cell density. 

The theoretical studies of glycolytic oscillations in yeast cells using differential equations started substantially 
when Sel’kov presented a simple kinetic model of an enzyme reaction with substrate inhibition and product ac- 
tivation [9]. His ordinary differential equation system with two variables showed the occurrence of periodic self- 
oscillations in glycolysis. Another starting point is the allosteric enzyme model by Goldbeter and Lefever and 
Goldbeter, which also consists of two variables that referred to ATP and ADP, respectively [10] [11]. They 
adopted a partial differential equation system, which afterward facilitated a large extent of investigations for 
pattern formation and spatiotemporal structures. As these examples, we exemplify the studies of target pattern 
formation and spatiotemporal chaos by Zhang et al. [12] and of inward rotating spiral waves by Straube et al. 
[13]. Meanwhile, the Sel’kov model is succeeded by Lavlova et al. in the study of inward and outward wave 
propagation [14]. Besides these two streams, Bier et al. proposed a simple conceptual model consisting of glu- 
cose and ATP for explanation of glycolytic synchronized oscillations [15]. 

The epoch-making study was performed by Wolf and Heinrich in order to elucidate the mechanisms of syn- 
chronous behaviors in glycolytic oscillations [16]. Based on the detailed description of glycolytic reaction 
processes, they constructed a seven-variable model, by which the effect of intercellular coupling on oscillatory 
dynamics was theoretically analyzed. Further, Henson et al. connected this model with the cell-ensemble model- 
ling technique and showed that a large ensemble of about 1000 population cells were required to adequately 
capture complex dynamic behaviors in glycolytic oscillations [17]. 

However, it seems that no model has succeeded in demonstrating perfect synchronization of a large number of 
yeast cells that oscillated with different phases and periods. We guess that one of the reasons is that these mod- 
els assumed acetaldehyde or pyruvate to be an intercellular communication substance for glycolytic synchroni- 
zation. 

It is known that acetaldehyde mediates the synchronization of glycolytic oscillations [6]. Various experiments 
demonstrated that acetaldehyde had a very strong synchronization effect on a suspension of yeast cells [8]. 
However, these studies do not exclude the possibility that extracellular nucleotides such as ATP and ADP can 
play an important role in synchronization of glycolytic oscillations in yeast cells. These are signaling molecules 
contained in all tissues [18]. Other studies also showed that Saccharomyces cerevisiae released ATP to extra- 
cellular solutions, suggesting that extracellular ATP, ADP, AMP or adenosine played a role in yeast physiology 
as intercellular communicators [19] [20]. 

Then, we attempted to exchange acetaldehyde or pyruvate to ATP or other metabolites in the original model 
by Wolf and Heinrich [16]. Our present study using these modified seven-variable models shows that glycolytic 
synchronization in yeast cells may occur via intercellular mediators such as ATP and other metabolites, and that 
ATP is the most effective synchronizer even under the condition where individual cells have quite different 
properties. 

2. Mathematical Models 
Our mathematical models are derived from the glycolytic oscillation model originally presented by Wolf and 
Heinrich [16]. Major modifications are the following three: 

1) Extension to two-dimensional partial differential equation systems with the diffusion term, 
2) Exchange of the intercellular coupling substance and, 
3) Non-dimensionalization for variables and parameters. 
The first modification enables us to observe directly various kinds of oscillations including the synchronous 

one, and the possibilities of synchronization significantly increase by the second modification. Moreover, the 
third modification, which leads to the reduction of parameter numbers, eases mathematical analyses of simula-
tion models. 

The schematic diagram of the model is sketched in Figure 1, where the simulation area consists of N × N par- 
titioned square compartments divided at regular intervals. One cell is embedded within each compartment [16] 
[21], whose volumetric ratio φ to the compartment is one of the key control parameters of our models. In this ar- 
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ticle, we adopt N = 11 in all simulations, resulting in the total cell number is N × N (=121). However, the num- 
ber of N can be decided arbitrarily. 

Six major substances are contained within a cell, which are denoted as S1, S2, S3, S4, N2 and A3. These are re-
garded as independent variables, the meanings of which are explained in Table 1. In addition to these six, two 
more substances, N1 and A2, are also contained, which are connected by the relations, N1 + N2 = N and A2 + A3 = A, 
respectively. As N and A are constant, two variables, N1 and A2, are not independent, whose numbers are auto- 
matically identified. In the original model, it is assumed that only S4 can permeate through the membrane, then, 
the substance in the external solution is labeled as 4

exS  [16]. The model of this type, via the S4 intercellular me- 
diator, is also the starting point of our studies. The transmembrane coupling metabolite is later altered to the 
other one such as A3, S3, S2 and N2; thereafter, the variations of system behaviors are investigated. 

The meanings of parameters used in this article are also explained in Table 1, most of which are recycles of 
those in the original model [16]. The dimensionless parameter values are listed in Table 2, which are obtained 
by non-dimensionalization processes such as 

 
Table 1. Variables and parameters in Models I, II, III, IV and V.                                          

Variables and Parameters Descriptions 

S1 Concentration of glucose 

S2 Concentration of pool of glyceraldehyde 3-phosphate and dihydroxyacetone phosphate 

S3 Concentration of 1,3-bisphosphoglycerate 

S4 Concentration of pool of pyruvate and acetaldehyde in cytosol 

N1 Concentration of NAD+ 

N2 Concentration of NADH 

A2 Concentration of ADP 

A3 Concentration of ATP 

2
exS , 3

exS , 4
exS , 3

exA , 2
exN  Concentrations of coupling substances in the external solution 

J0 Input flux of glucose via the cellular membrane 

k2 Rate constant of the glyceraldehyde-3-phosphate dehydrogenase reaction 

k3 
Rate constant of the lumped phosphoglyceratekinase/phosphoglyceratemutase/enolase/ 

pyruvate kinase reaction 

k4 Rate constant of the alcohol dehydrogenase reaction 

k5 Rate constant of non-glycolytic ATP consumption 

k6 Rate constant of the lumped reaction transforming triose phosphates into glycerol 

k7 Rate constant of pyruvate and acetaldehyde consumption 

r Rate constant of the degradation of the coupling substance within the extracellular medium 

κ Kinetic constant of the transmembrane flux of the coupling substance 

q Co-operativity coefficient of ATP inhibitation 

N Sum of the concentrations of NAD+ and NADH 

A Sum of the concentrations of ADP and ATP 

φ Ratio of the total cellular volume to the extracellular volume 

dF Diffusion coefficient 

f0 Coefficient that designates the amplitude of randomization 

Most of variables and parameters were defined by Wolf and Heinrich [16], which are reused in this article. 
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(a)                        (b) 

Figure 1. Schematic diagram of Models I, II, III, IV and V. (a) The 
simulation area is composed of N × N square compartments, in 
which a single glycolytic cell is embedded [16] [21]. In all simula-
tions, the number of N is fixed at 11, thus, the total number of 
cells is N × N (=121). The temporal behaviors of five gray cells, 
one central cell plus four nearest neighbors, are selectively mo-
nitored in Figure 2, Figure 4 and Figure 5 (figures on the left side). 
(b) Each cell contains eight metabolites, S1, S2, S3, S4, N1, N2, A2 
and A3, among which non-independent N1 and A2 are not shown. In 
Model I, the transmembrane substance is S4, whereas in Models II, 
III, IV and V, this is altered to A3, S3, S2 and N2, respectively. In- 
tercellular coupling metabolites diffuse through the boundary be-
tween adjacent compartments, which is expected to be feasible 
mechanisms to induce synchronized glycolytic oscillations. As for 
identification of S1, S2, S3, S4, N1, N2, A2 and A3, see Table 1.       

 
Table 2. Parameter settings in Models I, II, III, IV and V.                               

Parameters Reference Model I Model II Model III Model IV Model V 

J0 0.111 0.09 0.26 0.14 0.17 0.111 

k2 0.06 0.06 0.06 0.06 0.06 0.06 

k3 0.16 0.16 0.16 0.16 0.16 0.16 

k4 1.0 1.0 1.0 1.0 1.0 1.0 

k5 0.0246 0.0246 0.0246 0.0246 0.0246 0.05 

k6 0.12 0.12 0.12 0.12 0.12 0.12 

k7  0.01 0.01 0.01 0.01 0.01 

r 0.025 0.02 0.077 0.077 0.05 0.025 

κ 0.25 0.25 1.0 1.0 0.15 0.25 

q 4.0 4.0 4.0 4.0 4.0 4.0 

N 1.92 1.92 1.92 1.92 1.92 1.92 

A 7.69 7.69 7.69 7.69 7.69 7.69 

φ 0.1 0.1 0.5 (0.1) 0.5 (0.1) 0.5 (0.1) 0.5 

dF  1.0 (0.01) 1.0 (0.01) 1.0 (0.01) 1.0 (0.01) 1.0 

f0  0.25 0.1 0.1 0.1 0.1 

Numerical analyses are performed using these parameter values. A parameter k7 is newly introduced for stabiliza- 
tion of the system. The diffusion coefficient dF and the parameter f0 that defines the amplitude of randomization 
are also employed. When f0 = 0.1, for example, randomized items such as initial values and parameter values are 
scattered within the range from 90% to 110% around the above values. As for two control parameters, φ and dF, 
two different values are provided in Model II, III and IV, while only dF is varied in Model I. Reference values are 
converted by non-dimensionalization procedures from those in the original model by Wolf and Heinrich [16]. 
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Two parameters, k1 and KI, are eliminated by these processes [21]. Besides, the original parameter k is renamed r, 
and a new parameter k7 is employed. The system is stabilized by the addition of k7, especially when the trans- 
membrane substance is changed to A3, S3, S2 or N2. As a result, our seven-variable, two-dimensional reac- 
tion-diffusion model with S4 being the intercellular mediator reads as follows. 
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Here, the diffusion term is incorporated in the last equation, which describes the intercellular coupling via S4. 
This basic model described by Equations (1) is referred to as Model I in this article. 

Next, we exchange the coupling substance in the external medium in order to examine other candidates that 
can produce synchronous oscillations. It should be noted that a new parameter k7 takes an important role as a 
stabilizer in these models. For example, when the substance that functions as the communicator is A3, the ma- 
thematical model is described such as 
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                         (2) 

To be accurate, one more variable A2 or 2
exA  should be added besides 3

exA , however, it is confirmed that the 
addition of either variable hardly influences the simulation result. The system described by Equations (2) is re- 
ferred to as Model II in this article. 
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Similarly, we can construct the system with the intercellular communicator S3 (Equations (3)) and the system 
with the intercellular communicator S2 (Equations (4)). These are referred to as Model III and Model IV, respec- 
tively. 
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In above formulations of Equations (3) and Equations (4), several equations are omitted, which are the same as 
those in Equations (1). Moreover, we can construct Model V, where the intercellular mediator is N2, in the same 
manner, formulations of which are not shown explicitly. 

Although two parameters are eliminated by non-dimensionalization procedures, there are still twelve parame- 
ters in our models except for two control parameters dF and φ. In principle, we try to use parameter values of the 
reference state converted from the original model [16], which are listed in Table 2. If it is impossible to make 
stable limit cycle oscillations using these values, we adjust the values of such parameters as J0, r and κ, which 
are thought to be comparatively easy to manipulate. The exception is Model V, where the value of k5 is varied. 
Besides the reference [16], the parameter values in the reference [17] are also referred to. 

It is also important to choose properly the initial value of each variable. We determine these values in refer- 
ence to fixed points, which are calculated in advance. Table 3 is a list of initial values used to create synchron- 
ous oscillations. In the case of Model II, for example, the initial value of S1 is fluctuated within the range from 
4.68 (= 5.2 × 0.9) to (5.72 = 5.2 × 1.1), S2 = 0.43 (= 4.3 × 0.1), and so on. 

 
Table 3. Fixed points and initial values of variables corresponding to synchronous oscillations 
in Models I, II, III and IV.                                                         

Variables 
Model I Model II Model III Model IV 

FP Initial values FP Initial values FP Initial values FP Initial values 

S1 5.0 ×0.75~1.25 5.2 ×0.9~1.1 8.3 ×0.9~1.1 4.5 ×0.9~1.1 

S2 1.4 ×0.1 4.3 ×0.1 2.2 ×0.1 1.9 ×0.1 

S3 0.2 ×0.1 1.1 ×0.1 0.3 ×0.1 0.3 ×0.1 

S4 0.4 ×0.1 4.7 ×0.1 0.9 ×0.1 2.1 ×0.1 

N2 0.3 ×0.1 0.1 ×0.1 0.2 ×0.1 0.1 ×0.1 

A3 3.8 ×0.1 2.7 ×0.1 3.9 ×0.1 3.0 ×0.1 

4
exS  0.2 ×0.1       

3
exA    2.3 ×0.1     

3
exS      0.3 ×0.1   

2
exS        1.1 ×0.1 

“FP” denotes the fixed point. For detailed calculations, see Appendix. 
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3. Simulation Results 
3.1. Synchronization and Desynchronization in Model I 
Figure 2 displays the temporal changes in N2 concentrations from dimensionless time t = 7500 to t = 8000 in 
Model I, where the transmembrane metabolite is assumed to be S4, and only initial values of S1 are randomized 
within the fluctuation range from 75% to 125% around the main value. It should be noted that the perturbation 
of initial values causes the difference of phases only. Two figures (a) and (b) are the simulation results for dF = 1.0 
and φ = 0.1, and (c) and (d) are those for dF = 0.01 and φ = 0.1. Meanwhile, (a) and (c) exhibit the temporal 
changes in central five cells, one central cell plus four nearest neighbors, and (b) and (d) do those in mean N2 
concentrations for total 121 cells. In the case of dF = 1.0 and φ = 0.1, as shown in (a) and (b), the tightly syn- 
chronized oscillation is observed, which is strongly certified by the fact that wave patterns of five central cells 
are nearly overlapped and almost equal with the averaged one. In the case of dF = 0.01 and φ = 0.1, on the other 
hand, it seems that oscillations continue to be out of phase, as shown in (c), thus, Model I does not generate 
synchronous oscillations in this case. 

The time series of two-dimensional distributions of N2 concentrations are illustrated in Figure 3. Upper three 
figures (a), (b) and (c) exhibit the synchronous oscillation, where dF = 1.0 and φ = 0.1, while lower three (d), (e) 
and (f) do the asynchronous oscillation, where dF = 0.01 and φ = 0.1. For each case, three drawing times are 
chosen so that the central cell at (5, 5) just passes the mean N2 value of the amplitude. Thus, they are slightly 
proceeded compared with the exact times, t = 2000, 4000 and 8000. As a result, it is confirmed that six central 
cells in Figure 3 are drawn by the same color. It should be noted that the synchronization processes in Model I 
advance comparatively at a slow pace. 

We also examine the case where not only initial S1 values but also values of nine parameters, J0, k2, k3, k4, k5, 
k6, k7, r and κ, are randomized. In this case, oscillation periods are also disturbed as well as phases. However, it 
seems impossible to annihilate these differences, which leads to the conclusion that oscillations in Model I are 
asynchronous for randomization of both initial S1 values and nine parameter values, i.e., for disturbances of both 
oscillation phases and periods. 

Assuming that the diffusion coefficient dF = ∞, our Model I corresponds exactly with the original model by 
Wolf and Heinrich [16]. However, the simulation results are not altered significantly compared with the case of  

 

 
Figure 2. Temporal changes in N2 concentrations in Model I, 
t = 7500 - 8000. Two figures on the left side show the temporal 
changes of central five cells specified in Figure 1 (a), while two 
on the right side show those averaged for total 121 cells. (a) and (b) 
show the synchronous oscillation, where dF = 1.0 and φ = 0.1. 
Meanwhile, (c) and (d) show the asynchronous oscillation, where 
dF = 0.01 and φ = 0.1. In both cases, only initial values of S1 are 
randomized. Other parameter values are fixed in accordance with 
Table 2. It is recognized that the oscillations of five central cells 
are overlapped with each other, as shown in (a), and extremely 
similar with the averaged one, as shown in (b), indicating that al-
most all the cells oscillate with the same phases and periods.              
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Figure 3. Time series of two-dimensional distributions of N2 concentrations in 
Model I. Parameter settings are the same as those in Figure 2. (a), (b) and (c) 
show the evolution to the synchronous oscillation, where dF = 1.0, φ = 0.1 and 
(a) t~2000, (b) t~4000, (c) t~8000, respectively. Meanwhile, (d), (e) and (f) 
show the succession of the asynchronous oscillation, where dF = 0.01, φ = 0.1 
and (d) t~2000, (e) t~4000, (f) t~8000, respectively. Elapsed time is slightly 
adjusted such that the central cell at (5, 5) takes the mean N2 value of the os-
cillation amplitude.                                                 

 
dF = 1.0, thus, we can expect almost the same results for simulations in the range of dF ≥ 1.0. These situations 
are also true for Models II, III, IV and V as well. 

3.2. Synchronization and Desynchronization in Models II, III, IV and V 
Despite almost complete synchronization for randomization of initial S1 values, we did not succeed in detecting 
any synchronous oscillation for randomization of parameter values. Then, we exchange the intercellular media- 
tor S4 to other substances in an attempt to synchronize oscillations with different periods. 

Figure 4 exhibits the simulation results of Model II, where the transmembrane substance is A3, and both ini- 
tial S1 values and nine parameter values of J0, k2, k3, k4, k5, k6, k7, r, and κ are disturbed at the same time. Two 
figures (a) and (b) are the simulation results for dF = 1.0 and φ = 0.5, (c) and (d) are those for dF = 0.01and φ = 0.5 
and (e) and (f) are those for dF = 1.0 and φ = 0.1, respectively. Meanwhile, three figures (a), (c) and (e) on the 
left side represent the temporal changes in central five cells, while (b), (d) and (f) on the right side do those in 
mean N2 concentrations for total cells. Different from the case of Model I, it is clear that the differences of both 
phases and periods disappear, and that synchronization occurs even for oscillations with different periods when 
dF = 1.0 and φ = 0.5, as shown in (a) and (b). Moreover, synchronization is fully completed until t~500, which is 
much faster than in Model I (Figure 2(a) and Figure 2(b)). However, oscillations continue to be asynchronous 
when dF = 0.01 and φ = 0.5, as shown in (c) and (d), and the system behavior results in the convergence to the 
fixed point when dF = 1.0 and φ = 0.1, as shown in (e) and (f). 

Simulation results of Model III are also presented in Figure 5(a) and Figure 5(b), where the transmembrane 
substance is S3, and both initial S1 values and nine parameter values are simultaneously randomized. Temporal 
behaviors are also classified into three modes as well as in the case of Model II, namely, synchronous oscilla-
tions for dF = 1.0 and φ = 0.5 (Figure 5(a) and Figure 5(b)),asynchronous oscillations for dF = 0.01 and φ = 0.5 
(not shown) and the convergence to the fixed point for dF = 1.0 and φ = 0.1 (not shown). Meanwhile in the case 
of Model IV, in which the coupling substance is S2, we confirmed no more than two modes of temporal beha- 
viors. These are synchronous oscillations for dF = 1.0 and φ = 0.5 (Figure 5(c) and Figure 5(d)), andasyn- 
chronous oscillations for dF = 0.01 and φ = 0.5 (not shown). 

In the end, we examine Model V with the N2 intercellular mediator. Despite a large extent of surveys, we 
failed in finding any parameter set that realized synchronous oscillations. Figure 5(e) and Figure 5(f) exhibit 
one of the examples that display asynchronous oscillations. Both initial S1 values and nine parameter values are 
randomized as well as in Models II, III and IV. Needless to say, this does not necessarily exclude the possibility 
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Figure 4. Temporal changes in N2 concentrations in Model II. Three figures on 
the left side show the temporal changes of central five cells, while three on the 
right side show those averaged for all cells. (a) and (b) show the synchronous 
oscillation, where dF = 1.0, φ = 0.5 and t = 500 - 1000. Meanwhile, (c) and (d) 
show the asynchronous oscillation, where dF = 0.01, φ = 0.5 and t = 7500 - 8000. 
Further, (e) and (f) show the convergence to the fixed point, where dF = 1.0, φ = 0.1 
and t = 7500 - 8000. The initial values of S1 and the values of nine parameters, 
J0, k2, k3, k4, k5, k6, k7, r, and κ, are simultaneously randomized. Other parameter 
values are fixed in accordance with Table 2. It should be noted that the oscilla- 
tions in Model II synchronize more rapidly, as shown in (a) and (b), compared 
with that in Model I (Figure 2).                                        

 
that N2 is concerned with synchronization. 

These simulation results in five models are summarized in Table 4. The oscillation period of Model II is ex- 
tremely short and almost half compared with those of other models. 

4. Discussion 
4.1. Two Levels of Synchronization 
It seems to be two levels in synchronization of oscillations, namely, synchronization of phases and that of pe- 
riods. In general, perturbations of initial values cause merely phase shifts. Meanwhile, perturbations of parame- 
ter values are at least required to cause the difference of oscillation periods. Thus, it is likely that synchroniza- 
tion of different periods is more difficult and essential than that of phase differences. Taking this inference into 
consideration, we cannot say that synchronization is completed or perfect until oscillations become in phase 
even for randomization of parameters. In this sense, synchronization in Model I (Figure 2(a) and Figure 2(b)) 
via the S4 communicator is imperfect, while those of Models II (Figure 4(a) and Figure 4(b)), III (Figure 5(a) 
and Figure 5(b)) and IV (Figure 5(c) and Figure 5(d)) via the A3, S3 and S2 communicators are perfect. 

Comparing three kinds of synchronization in Models II, III and IV, it seems that overlapping of oscillatory 
patterns in Model II is more outstanding than the other two. Thus, it could be speculated that synchronization via 
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Figure 5. Temporal changes in N2 concentrations in Models III, IV and V. Three figures on the 
left side show the temporal changes of central five cells, while three on the right side show those 
averaged for all cells. (a) and (b) show the synchronous oscillation in Model III, where dF = 1.0, 
φ = 0.5 and t = 500 - 1000. Moreover, (c) and (d) show the synchronous oscillation in Model IV, 
where dF = 1.0, φ = 0.5 and t = 500 - 1000. Meanwhile, (e) and (f) show the asynchronous oscil- 
lation in Model V, where dF = 1.0, φ = 0.5 and t = 7500 - 8000. The initial values of S1 and the 
values of nine parameters, J0, k2, k3, k4, k5, k6, k7, r, and κ, are simultaneously randomized. Other 
parameter values are fixed in accordance with Table 2.                                    

 
Table 4. Correlations among transmembrane communicators, randomized items and oscillation modes.      

Transmembrane Communicators 
Randomized items 

Periods Models 
Initial S1 values Initial S1 and nine parameter values 

S2 Synchronous Synchronous 74.0 Model IV 

S3 Synchronous Synchronous 70.6 Model III 

S4 Synchronous Asynchronous 63.0 Model I 

N2 Asynchronous Asynchronous  Model V 

A3 Synchronous Synchronous 36.8 Model II 

Synchronous oscillations are observed for randomization of initial S1 values in Model I. Meanwhile in Models II, III and IV, syn- 
chronous oscillations can also take place for randomization of both initial S1 values and values of nine parameters J0, k2, k3, k4, k5, k6, 
k7, r and κ. However, any synchronous oscillation is not detected in Model V when N2 is an intercellular mediator. Dimensionless 
time periods corresponding to synchronous oscillations are listed for reference. 
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the A3 intercellular metabolite is the most perfect, indicating that the exchange of A3 is the most feasible me- 
chanism for glycolytic synchronization in yeast cells. 

4.2. Quantification of Synchronization 
In order to certify above inference numerically, the standard deviations of N2 concentrations are calculated for 
total 121 cells in Models II, III, IV and V, among which the former three are the synchronous cases and the last 
is the asynchronous case. The abscissae of Figures 6(a)-(d) are exactly the same as those of Figure 4(b), Fig- 
ure 5(b), Figure 5(d) and Figure 5(f), respectively. Standard deviations of N2 concentrations are divided by the 
mean value at each time for normalization, which guarantees the proper comparison between different models. 

It is supposed that these normalized standard deviations reflect the degree of synchronization, and that the 
smaller value, the more perfect is synchronization. Among three synchronous cases in Figure 6, the values of 
Figure 6(a) are smaller than those of Figures 6(b) and 6(c), indicating that synchronization in Model II is more 
perfect than that in Model III or IV. This is the reason why we predict that A3 is the most probable metabolite in- 
volved in synchronous glycolytic oscillations in yeast cells. 

Meanwhile, Figure 6(d) is the asynchronous case where normalized standard deviations keep high values. 
Moreover, any periodic structure is not detected, which is thought to be a typical characteristic of asynchronous 
oscillations. 

4.3. Dependencies on Diffusion Coefficient and Cell Density 
It is well known that glycolytic oscillations initiate synchronization under the densely populated condition 
[3]-[8]. Considering that high population densities mean intense coupling between cells, it is thought that collec- 
tive properties of synchronization in glycolytic oscillations is triggered by the increase in such parameters as the 
diffusion coefficient dF, the volumetric ratio of the cell to the compartment φ, the kinetic constant relating to the 
permeability κ, and so on. These are connected with such parameters as the compartment size L, the compart- 
ment volume V, the cellular surface area Ac, the cellular volume Vc and the permeability of the cellular mem- 
brane P, by the following relations [16] [21]. 

2 , , .c c
F

c

V A
d L P

V V
ϕ κ−∝ = =                                      (5) 

 

 
Figure 6. Temporal changes in normalized standard deviations of N2 concen-
trations in Models II, III, IV and V. The standard deviations of N2 concentra-
tions are divided by the mean value at each time. Four figures correspond to 
Figure 4(b), Figure 5(b), Figure 5(d) and Figure 5(f), respectively. These 
normalized standard deviations are introduced to estimate the degree of syn-
chronization, and the smaller value means more perfect synchronization. It is 
clear that synchronization in Model II is the most perfect, as shown in (a), 
where A3 is the intercellular communicator. The last figure (d) shows the case 
of the asynchronous oscillation, where not only the values of standard devia-
tions are high, but also no periodic structure is recognized.                  
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In particular, we focus on dF and φ among these parameters in this article. 
According to our simulation results of Models II, III and IV, the increase in dF gives rise to the transition from 

the asynchronous oscillation (for example, Figure 4(c) and Figure 4(d)) to the synchronous one (for example, 
Figure 4(a) and Figure 4(b)). This phenomenon can be called the Kuramoto transition [22]. On the other hand, 
the direct transition from the convergence to the fixed point (for example, Figure 4(e) and Figure 4(f)) to the 
synchronous oscillation (for example, Figure 4(a) and Figure 4(b)) is induced with the increase in φ in Models 
II and III. The characteristic of this phenomenon is that the shift to the synchronous oscillation proceeds directly 
without passing through the intermediate asynchronous oscillation. Thus, it could be speculated that the shifts to 
synchronization with the increases in the density parameter φ are due to mechanisms of the dynamical quorum 
sensing [23]-[25]. 

5. Conclusions 
1) Glycolytic oscillations with different phases can be synchronized by means of intercellular coupling via 

such substances as S4, A3, S3 and S2, as demonstrated in Models I, II, III and IV. Meanwhile, synchronization of 
oscillations with different periods can be mediated by intercellular coupling substances such as A3, S3 and S2, as 
demonstrated in Models II, III and IV. The latter synchronization is characterized by speedy convergence to the 
synchronous oscillatory state. 

2) Among three candidates that can induce synchronization for different periods, A3 could be the most re- 
sponsible for the phenomenon, because the normalized standard deviations of N2 concentrations in Model II are 
the smallest compared with those in Model III or IV. 

3) The transition from the asynchronous to the synchronous oscillation is observed with the increase in the 
diffusion coefficient dF, which could be referred to the Kuramoto transition mechanism. On the other hand, the 
direct transition from the convergence to the fixed point to the synchronous oscillation is observed with the in- 
crease in the density parameter φ, which could be referred to the dynamical quorum sensing. 
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Appendix 
Calculations of Fixed Point 
It is useful to know in advance the coordinates of fixed points for estimations of the initial values in numerical 
simulations. Fixed points are the solutions of the simultaneous equations in which all time derivatives equal zero. 
As for the fixed point of Model I, N2 is calculated by solving the quadratic equation for the first time, then, those 
of S2, S4, 4

exS , A3, S3, S1 are computed in this order, such as 
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Here, the diffusion term is neglected. 
For another example, the fixed point of Model II is computed, as follows. 
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Similarly, we can identify the coordinates of fixed points for Models III, IV and V as well. We would like to 
stress that coordinates of fixed points for each parameter value are calculated or identified precisely in all mod-
els presented in this article. 
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