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Abstract 
In dynamical systems, the system suddenly becomes unstable due to parameter perturbation 
which corresponds to environmental changes or major incidents. To avoid such instabilities in en-
gineering systems, tuning system parameters is very important. In this paper, we propose a me-
thod for obtaining optimal parameter values in a parameterized dynamical system. Here, the op-
timal value means the farthest point from the bifurcation curves in a bounded parameter plane. As 
illustrated examples, we show the results of continuous-time and discrete-time systems. Our algo-
rithm can find the optimal parameter values in both systems. 
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1. Introduction 
The aim of our study is to construct a system that is robust to sudden environmental changes and major incidents. 
Such changes trigger instabilities in the system, called bifurcations. In biological systems, for example, dynami-
cal diseases such as Cheyne-Stokes respiration and chronic granulocytic leukemia are caused by bifurcations 
due to variations in system parameters [1] [2]. The ability to predict bifurcations in a parameter space is very 
important to preventing such diseases. Several methods of predicting and controlling bifurcations have proposed 
such as, using the averaged harmonic method [3], constructing a feedback system [4]-[6], and minimizing the 
maximum eigenvalues of symmetric matrices through optimization [7]-[9]. The methods in cited studies aim to 
minimize the maximum eigenvalues of the linearized system (Jacobian matrix), which correspond to rapid re-
covery from a perturbed state. 

However, a parameter value with a minimum eigenvalue does not have the longest margin to bifurcations in 
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the parameter space. Dobson proposed a method of calculating the closest-bifurcation from the operating para-
meter values [10]. This method and its extensions have been applied to hydraulic systems [11], gene systems 
[12], power systems [13] [14], and bifurcations of arbitrary codimension [15]. Moreover, another method using 
support vector machine (SVM) and particle swarm optimization (PSO) was proposed [16]. However, in all of 
the above cases, the considered bifurcations are only for equilibrium points. 

In this paper, we propose a method to calculate the closest-bifurcation for periodic solutions by constructing 
vector fields along bifurcation curves. Moreover, we extend the notion of the closest-bifurcation in order to 
search for the optimal parameter value, which means the farthest point from the bifurcations in the parameter re-
gion under consideration. As a result, we can set appropriate parameter values that correspond to constructing a 
system which is robust to unexpected parameter changes. 

2. Method 
2.1. Dynamical System 
We consider the following autonomous dynamical system: 

( ) 1d , , , ,
d

n m
af R R

t
ξ ξ λ ξ λ+= ∈ ∈                                 (1) 

where λ  is a controllable parameter and ξ  is a state variable. We assume that there exists a periodic solution 
in Equation (1) with an initial condition 0ξ ξ=  at 0t t= , denoted by ( ) ( )0, ,t tξ ψ ξ λ=  for all t. We take a 
local section Γ , that the solution crosses transversely, as follows: 

( ){ }1 0 ,nR zξ ξ+Γ = ∈ =                                    (2) 

where ( )z ξ  is a scalar valued function of ξ  in 1nR + . Let us define h as a local coordinate of Γ  

( ): ;nh R x hξ ξΓ →Π ⊂ =                                  (3) 

and its inverse 1h−  as an embedding map 

( )1 1: ; ,h x h xξ− −Π → Γ =                                  (4) 

where ξ  satisfies ( ) 0z ξ = . Pick a point ξ ∈Γ  and let Π ⊂ Γ  be some neighborhood of ( )x h ξ= . Then 
the Poincaré map T is defined by the following composite map for a point x∈Π : 

( )( ) ( )( )( )1 1: ; , , ,T x h h x h xψ τ λ− −Π →Π                            (5) 

where τ  denotes the time during which the trajectory emanating from a point ξ ∈Γ  hits the local cross-sec- 
tion Γ  again. The time τ  is called the return time. 

Similarly, for a non-autonomous system, 

( )d , , , , ,
d

n m
n

x f x t x R R
t

λ λ= ∈ ∈                                (6) 

we can construct the Poincaré map T as 

( ) ( ): ; , , , ,n nT R R x T x L xλ ψ λ→ =                             (7) 

where L is the period of the function nf : 

( ) ( ), , , , .n nf x t L f x tλ λ+ =                                 (8) 

For a discrete system, the map T is directly obtained by 

( ) ( ) ( )( ) ( )( ): ; 1 , , , , .n n n m
dT R R x t x t T x t f x t x R Rλ λ λ→ + = = ∈ ∈              (9) 

For all dynamical systems, the fixed point of the map T is given by 
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( ) ( ), , 0.F x x T xλ λ∗ ∗ ∗= − =                                 (10) 

In the differential equations, we can obtain a one-to-one correspondence between the periodic solution of Eq-
uation (1) or Equation (6) and the fixed point of the map T. Hence, the analysis of the periodic solution can be 
reduced to an analysis of the fixed point of the map T. The characteristic multiplier µ  of the fixed point x∗  is 
obtained by solving 

( ) ( )( ), det 0,G x D Iλ λ µ∗ = − =                               (11) 

where 

( ) ( ),
: .

x x

T x
D

x
λ

λ
∗=

∂
=

∂
                                 (12) 

If all absolute values of the characteristic multipliers are less than one, then the fixed point is stable. The 
change in stability due to a parameter perturbation is called a bifurcation. The codimension-one bifurcations are 
as follows: when 1µ = , 1µ = −  and ( )( )exp 0, πiµ θ θ= ≠ , the tangent, period-doubling, and Neimark- 
Sacker bifurcations occur, respectively. 

2.2. Search for Optimal Parameter Values 
Here, we describe our method of searching for the optimal parameter values that are farthest points from bifur-
cations in the parameter region under consideration. For this, we extend the idea of the closest-bifurcation me-
thod proposed by Dobson [10]. This method determines the minimum distance to bifurcations along selected di-
rections in the parameter space. It searches a local region of the parameter space in order to find the point on a 
bifurcation surface. Its searching performance is determined by the initial search direction and local topology of 
the bifurcation curve. A global search was proposed by Kremer [11]. These methods use the normal vectors at a 
bifurcation curve in a parameter plane. However, these calculation methods using eigenvectors are only for 
equilibria. 

Here, we show the method of calculating a normal vector to a bifurcation curve for periodic solutions by con-
structing a vector field along the bifurcation curve. Differentiating Equations (10) and (11) yields 

d d 0,

d d 0.

F Fx
x
G Gx
x

λ
λ

λ
λ

∂ ∂
+ =

∂ ∂
∂ ∂

+ =
∂ ∂

                                 (13) 

We can rewrite Equation (13) as 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
1 2 1 2

1 1
1 2 1 2

dd d d d
,

1 1 1
i

i n n
i

xx x
A x A x A x A A

λ λ
λ λ− += = = = = =

− − − −
             (14) 

where 
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
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1 1 2

1 1 2

1 1 2

,
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F F F F F
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x x x
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x x x

λ λ
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λ λ

∂ ∂ ∂ ∂ ∂
∂ ∂ ∂ ∂ ∂

= ∂ ∂ ∂ ∂ ∂
∂ ∂ ∂ ∂ ∂

∂ ∂ ∂ ∂ ∂
∂ ∂ ∂ ∂ ∂

 

    

 

 

                      (15) 

where the hat indicates the elimination of the column. Equating Equation (15) to ds yields the following vector 
equations along a bifurcation curve: 
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



                           (16) 

Thus, the normal vector to the bifurcation curve at ( )1 2,λ λ  in the parameter plane is given by 

( )
( )

2

1 2

2 11

d
d .
d
d

As
A

s

λ
λ λ
λ λλ

 
    

= ± = ±    
    −  

                             (17) 

Now let us outline our algorithm for obtaining the normal vector to the bifurcation surface of periodic solu-
tions. Note that this algorithm is also applicable to equilibria. We use this normal vector to obtain the optimal 
parameter values. The procedure is summarized as follows: 

1) Set the initial parameter value as iλ λ= . 
2) Using the normal vectors (Equation (17)), find the closet-bifurcation point [10] by searching several direc-

tions. To find a bifurcation point, we use the method described in [17]. 
3) Change the parameter values in the opposite direction of the closet-bifurcation obtained in Step 2. 
4) Repeat Step 2 and Step 3. 

3. Results 
Here, we show the results of our method on discrete-time and continuous-time systems. 

3.1. Discrete-Time System 
We find the parameter values with the largest margin to bifurcation sets in the Kawakami map [18] [19]: 

( ) ( ) ( )
( ) ( )

1 1 2

2
2 1

1

1 .

t tx t ax x

x t btx

=

=

+ +

+ +
                               (18) 

There are three kinds of bifurcation in the parameter range: [ ]2.0,2.0a = −  and [ ]2.0,1.0b = − , as shown in 
Figure 1. A stable fixed point exists in the shaded region surrounded by these bifurcations. Note that although 
the bifurcations curves are shown in Figure 1, we assume that the bifurcation structure is unknown. We only 
know the operating point at which the system has a stable fixed point. In the parameter region shown in Figure 
1, our algorithm searches for the optimal parameter values, which means the farthest point from the three bifur-
cations. The simulation results are shown in Figure 1. Each colored circle is an initial parameter value of our six 
trials. From Figure 1, we can see that from any initial parameter value in the shaded region, our method finds 
the optimal parameter values denoted by the open circle corresponding to almost the center of the gray region. 
We consider that if the parameter value is set near this point, we can construct a system that is robust to parame-
ter perturbation. 

3.2. Continuous-Time System 
An example of a continuous-time system is one described by Duffing’s equation: 

( ) ( )

1
2

32
2 1 0

d
d
d

cos , 0 .
d

x x
t
x kx x B B t k
t

=

= − − + + >
                         (19) 

In this system, the Neimark-Sacker bifurcation never appears, because using Liouville’s theorem, the product 
of the two eigenvalues of the Jacobian matrix (Equation (12)) is given by ( )exp 2πk− . Typical phenomena ob-
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served in this system include nonlinear resonance and chaos due to successive period-doubling bifurcations [20] 
[21]. 

Figure 2(a) shows the results of searching for parameter values with the maximum margin to bifurcations 
when 0.05k = . In this parameter region, there are at most three fixed points. Two of them are stable. The red 
bifurcation sets in Figure 2 are related to the fixed point which we treat here. Two initial values denoted by the 
red and blue circles in Figure 2(a) are chosen. From the blue point, our method can obtain a local optimal pa-
rameter value. From the red point, our method also reaches a local optimal parameter value: the farthest point 
from the bifurcations denoted by the red curves. To achieve a global search, we use the third parameter k. Fig-
ure 2(b) shows the results when changing the value of parameter k. The red circle indicates the initial parameter 
values when k = 0.05. From this point, we can find the optimal parameter values denoted by the open circle. In 
this case, our method can escape the complicated bifurcation area and reach parameter values far from them 
when k = 0.25. 

4. Conclusion 
We proposed a method of determining parameter values that are far from bifurcations in a parameter space. We  
 

 
Figure 1. Bifurcation diagram and result of our method. A stable fixed point exists in the 
shaded region. The six colored points are the initial parameter values. From each initial val-
ue, we can obtain the optimal parameter values denoted by the open circle. 

 

     
(a)                                           (b) 

Figure 2. Results for Duffing’s equation. Red curves indicate the bifurcation sets of the 
fixed point corresponding to the non-resonant state. Chaotic states generated by successive 
period-doubling bifurcations exist in period-doubling bifurcation sets. (a) k = 0.05; (b) Using 
the third parameter k. Bifurcation sets are for k = 0.25. 
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described the method of calculating the normal vector to the bifurcation curves for periodic solutions. Our deci-
sion method uses the normal vector to find parameter values which are far from bifurcations. As illustrated ex-
amples, we showed the results of discrete-time and continuous-time systems. Our method could find optimal 
parameter values in both systems. Open problems are to extend the method so that it can deal with complicated 
bifurcation structures in a parameter plane and systems including uncertainty. 
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