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Abstract 
In this paper, an improved algorithm for the solution of Generalized Burger-Fisher’s Equation is 
presented. A Maple code is generated for the algorithm and simulated. It was observed that the 
algorithm gives the solution with less computation. The solution gives a better result when com-
pared with the numerical solutions in the existing literature. 
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1. Introduction 
Generalized Burger-Fisher equation, being a nonlinear partial differential equation, is of great importance for 
describing the interaction between reaction mechanisms, convection effects, and diffusion transports. Since there 
exists no general technique for finding analytical solution of nonlinear diffusion equations so far, numerical so-
lutions of nonlinear equations are of great importance in physical problems. 

Many researchers [1]-[13] have used various numerical methods to solve Generalized Burger-Fisher. Recently 
Javidi [10] used modified pseudospectral method for generalized Burger’s-Fisher equation. Kaya [2] introduced 
a numerical simulation of the generalized Burger’s-Fisher equation. Ismail [8] presented a restructive pade ap-
proximation for the solution of the generalized Burger’s-Fisher equation. Hassan et al. [3] studied Adomian 
Decomposition Method (ADM) for generalized Burger’s-Huxley and Burger’s-Fisher equations.  

Unlike some previous methods that used various transformations and several iterations, we present a new 
Modified Variational Iteration Method (MVIM) for the numerical solutions of generalized Burger-Fisher equa-
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tion. 
In Table 1, the results of MVIM were compared with those of ADM and VIM when  

0.001, 0.001,  and 1α β δ= = = . 

In Table 2, we compared MVIM, ADM and VIM results for 1, 1,  and 2α β δ= = =  while in Table 3 the 
results are compared for 1, 0,  and 3α β δ= = = . 

Figure 1 and Figure 2 show the graphical representation of gBF for various values of , ,  and α β δ . 
Figure 3 shows the graph of exact solution and MVIM solution. Figure 4 also represents graph of gBF when 

1, 1,  and 10α β δ= = = . 

2. Modified Variational Iteration Method (MVIM) 
The idea of variational iteration can be traced to Inokuti [9]. The variational iteration method was proposed by 
J.-H. He [4]-[7], In this paper, a Modified Variational Iteration Method proposed by Olayiwola [11]-[14] is  
 
Table 1. The Absolute error for 0.001, 0.001,  and 1α β δ= = = .                                                 

x T Exact solution MVIM solution MVIM (error) ADM (error) [3] VIM (error) [3] 
0.1 0.005 4.9998900000E−01 4.9998875030E−01 2.4970000001E−07 9.6876300000E−06 1.0164970000E−04 

 0.001 5.0001300000E−01 4.9998775010E−01 2.5249900000E−05 1.9375300000E−06 3.4664990000E−04 
 0.01 4.9999000000E−01 4.9999000060E−01 5.9999999413E−10 1.9375200000E−05 1.1780600000E−05 

0.5 0.005 4.9993900000E−01 4.9993875030E−01 2.4970000001E−07 9.6869100000E−06 2.7914970000E−04 
 0.001 4.9996300000E−01 4.9993775010E−01 2.5249900000E−05 1.9373800000E−06 9.8702499000E−03 
 0.01 4.9994000000E−01 4.9994000060E−01 5.9999999413E−10 1.9373800000E−05 3.7400600000E−05 

0.9 0.005 4.9988900000E−01 4.9988875030E−01 2.4970000001E−07 9.6861900000E−06 2.7149700000E−05 
 0.001 4.9991300000E−01 4.9988775010E−01 2.5249900000E−05 1.9372400000E−06 9.4249900000E−05 
 0.01 4.9989000000E−01 4.9989000060E−01 5.9999999413E−10 1.9372400000E−05 6.3789999994E−08 

 
Table 2. The Absolute error for 1, 1,  and 2α β δ= = = .                                                        

x t Exact solution MVIM solution MVIM (error) ADM (error) [3] VIM (error) [3] 
0.1 0.0005 6.9542600000E−01 6.9542575300E−01 2.4700000001E−07 1.4017700000E−03 2.5700000001E−07 

 0.0001 6.9526600000E−01 6.9526613430E−01 1.3429999990E−07 2.8039600000E−04 7.0939600000E−04 
 0.001 6.9562500000E−01 6.9562523130E−01 2.3129999993E−07 2.8030100000E−03 2.8031223000E−03 

0.5 0.0005 6.4629700000E−01 6.4629716130E−01 1.6130000002E−07 1.3452600000E−03 9.7961300000E−05 
 0.0001 6.4613000000E−01 6.4612989020E−01 1.0979999998E−07 2.6909400000E−04 6.1166980000E−04 
 0.001 6.4650600000E−01 6.4650622380E−01 2.2379999998E−07 2.6900000000E−03 1.0022380000E−04 

0.9 0.0005 5.9548100000E−01 5.9548126730E−01 2.6729999991E−07 1.2769900000E−03 1.7717300000E−05 
 0.0001 5.9531000000E−01 5.9531045390E−01 4.5390000003E−07 2.5543800000E−04 7.5383900000E−05 
 0.001 5.9569500000E−01 5.9569477720E−01 2.2280000000E−07 2.5534600000E−03 −2.8407720000E−04 

 
Table 3. The Absolute error for 1, 0,  and 3α β δ= = = .                                                        

X t Exact solution MVIM solution MVIM (error) ADM (error) VIM (error) 
0.1 0.0005 7.8367000000E−01 7.8367007490E−01 7.4899999980E−08 4.4532000000E−04 1.3729000000E−06 

 0.0001 7.8366000000E−01 7.8365991220E−01 8.7800000048E−08 4.4637900000E−04 4.7808780000E−04 
 0.001 7.8368300000E−01 7.8368277800E−01 2.2200000005E−07 4.4399700000E−04 7.8652220000E−03 

0.5 0.0005 7.4129600000E−01 7.4129553480E−01 4.6519999997E−07 1.8547400000E−03 6.2595200000E−05 
 0.0001 7.4128500000E−01 7.4128455150E−01 4.4849999992E−07 1.8605700000E−03 1.4364850000E−04 
 0.001 7.4130900000E−01 7.4130926350E−01 2.6350000004E−07 1.8474600000E−03 5.3236350000E−04 

0.9 0.0005 6.9616900000E−01 6.9616894960E−01 5.0400000062E−08 9.1958200000E−04 7.3303040000E−04 
 0.0001 6.9615700000E−01 6.9615741750E−01 4.1750000002E−07 9.3180300000E−04 7.6593400000E−05 
 0.001 6.9618300000E−01 6.9618336460E−01 3.6459999997E−07 9.0429700000E−04 7.1159460000E−04 
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            Figure 1. Graph of Burger-Fisher for 1, 1 and 1α β δ= = = .                               
 

 
            Figure 2. Graph of gBF when 1, 1 and 10α β δ= = = .                                   
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            Figure 3. Graph of Exact /MVIM against  when 1, 1 and 10t α β δ= = = .                    
 

 
            Figure 4. Graph of gBF when 1, 1 and 10,000α β δ= = = .                                
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presented for the solution of the generalized Burger-Fisher equation. 
To illustrate the basic concept of the MVIM, we consider the following general nonlinear partial differential 

equation: 

( ) ( ) ( ) ( ), , , ,Lu x t Ru x t Nu x t g x t+ + =                        (1.0) 

where L is a linear time derivative operator, R is a linear operator which has partial derivative with respect to x , 
N is a nonlinear operator and g is an inhomogeneous term. According to MVIM, we can construct a correct 
functional as follows: 

( ) ( ) ( )0 1, ,0u x t u x g x t= +                             (1.1) 

( ) ( ) [ ]1 0
, , d

t
n n n n nu x t u x t Lu Ru Nu gλ τ+ = + + + −∫                    (1.2) 

where ( )1g x  can be evaluated by substituting ( ),0u x in (2.1) and at 0t = . 
λ  is a Lagrange multiplier which can be identified optimally via Variational Iteration Method. The subscript 

n  denote the nth approximation, nu  is considered as a restricted variation i.e., 0nuδ = .  

3. MVIM for the Solution of Generalized Burger-Fisher Equation 
The following generalized Burger-Fisher (gBF) equation problems arising in various field of science is consi-
dered. 

( )
2

2 1 ,   0 1,   0.u u uu u u x t
t x x

δ δα β∂ ∂ ∂
+ − = − ≤ ≤ ≥

∂ ∂ ∂
                     (1.3) 

with the initial condition 

( ) ( )

1

1 1,0 Tanh
2 2 2 1

u x x
δαδ

δ

  
= + −    +  

                           (1.4) 

And the boundary conditions 

( ) ( )
( )

1

11 10, Tanh ,   0.
2 2 2 1 1

u t t t
δβ δαδ α

δ δ α

  + 
= + + ≥     + +   

                 (1.5) 

( ) ( )
( )

1

11 11, Tanh 1 ,   0.
2 2 2 1 1

u t t t
δβ δαδ α

δ δ α

   + 
 = + − + ≥      + +    

               (1.6) 

, ,  and α β δ  are parameters such that 0, 0β δ≥ > . When 1δ = , Equation (1.3) reduces to Burger’s-Fisher 
(BF) equation 

We used Maple to code (1.1 - 1.2) for the solution of (1.3 - 1.6) and the following results were obtained after 
one iteration: 

When 1,  and 0α β= =  (1.3) is reduced to the generalized Burger’s equation. The comparison between the 
absolute error for the exact solution and approximate solution is presented in Table 3. 

4. Results and Discussion 
Tables 1-3 shows that the MVIM is the best approximant when compared with VIM and ADM. Figure 2 is the 
graph of Exact solution for the generalized Burger-fisher when 0.001, 0.001,  and 10α β δ= = = . 

Figure 3 compares the graph of Exact with the MVIM. It is also to be noted that both graphs of Burger-Fisher 
and generalized Burger-Fisher as shown in Figure 1 and Figure 3, respectively, justify the conclusion that the 
two equations approaches the same steady state. However, as δ  grows u  becomes independent of t  as 
shown in Figure 4. 
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5. Conclusions 
There are some important points to note here. First, the MVIM provides the solutions in terms of convergent se-
ries with easily computable components. Second, it is clear and remarkable that approximate solutions using 
MVIM are in good agreement. Third, the MVIM technique requires less computational work than many existing 
approaches. The MVIM was used in a direct way without using linearization, perturbation or restrictive assump-
tions.  

The MVIM provides more realistic series solutions, very high accuracy, fast transformation and possibility of 
implementation of algorithm. The Algorithm makes it easier for the system to predict the next series. 
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