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Abstract 
We will use the author’s Two Nonzero Component Lemma to give a new proof for the Greub- 
Reinboldt Inequality. This method has the advantage of showing exactly when the inequality be-
comes equality. It also provides information about vectors for which the inequality becomes 
equality. Furthermore, using the Two Nonzero Component Lemma, we will generalize Greub- 
Reinboldt Inequality to operators on infinite dimensional separable Hilbert spaces. 
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1. Introduction 
Many authors have established Kantorovich inequality and its generalizations such as Greub-Reinboldt 
Inequality by variational methods. In a variational approach, one differentiates the functional involved to arrive 
at an “Euler Equation” and then solves the Euler Equating to obtain the minimizing or maximizing vectors of the 
functional involved. Solving these Euler Equations is tedious and generally provides little information (see [1], 
subsection 4.4 for an example of this method). Others have established Kantorovich-type inequalities for posi- 
tive operators by going through a two-step process which consists of first computing upper bounds for suitable 
functions on intervals containing the spectrum of suitable matrix and then applying the standard operational 
calculus to that matrix (see [2]) for an example of this method. This method, which we refer to as “the 
operational calculus method”, has the following two limitations: 

First, it does not provide any information about vectors for which the established inequalities become equali- 
ties. Second, the operational calculus method is futile in extending Kantorovich-type inequalities to operators on 
an infinite dimensional Hilbert space. A number of Kantorovich-type inequalities are discussed in [3]. 
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In this paper we use the author’s Two Nonzero Component Lemma to prove, improve and extend matrix form 
of Greub-Reinboldt Inequality. 

2. The Two Nonzero Component Lemma 
In his investigation on problems of antieigenvalue theory the author has discovered a useful lemma which he 
calls it the Two Nonzero Component Lemma (see [4]-[6]). Although this Lemma is implicitly used in all of the 
papers just cited, it was not until 2008 that he stated a formal description of the Lemma in his paper titled, 
“Antieigenvalue Techniques in Statistics”. Below is the statement of the lemma. For the proof of the lemma 
please see the author’s work cited above. 

Lemma 1 (The Two Nonzero Component Lemma) Let 1l
+  be the set of all sequences with nonnegative terms 

in the Banach Space 1l . That is, let  

 ( ){ }1 1, 0 .i il t l t+ = = ∈ ≥t  (1) 

Let  

 ( )1 2, , , mF x x x  (2) 

be a function from mR  to R . Assume ( ) k
k i ig c t= ∑t  for ( ) 1

k
ic l+∈ , 1l

+∈t , and 1 k m≤ ≤ . Then the  

minimizing vectors for the function  

 ( ) ( ) ( )( )1 2, , , mF g g gt t t  (3) 

on the convex set ( ){ }1 : 1i iC t l t= ∈ =∑  have at most two nonzero components.  

What make the proof of the Lemma possible are the following two facts: First, the convexity of the set  

 ( ){ }1 : 1 .i iC t l t+= ∈ =∑  (4) 

Second, a special property that the functions  

 ( ) ( ) ( )( )1 2, , , mF g g gt t t  (5) 

involved possess. If we set  

 ( ) ( ) ( ) ( )( )1 2 3 1 2, , , , , , mD t t t F g g g= t t t  (6) 

then all restrictions of the form  

 ( )1 2 1 1, , , ,0, ,i iD t t t t− +   (7) 

of  

 ( )1 2 3, , ,D t t t   (8) 

have the same algebraic form as ( )1 2 3, , ,D t t t   itself. For example if  

 ( ) 1 1 2 2
1 2 22 2

1 1 2 2 3 3

, , , ,n n
n

t t t
D t t t

t t t
β β β

λ λ λ

+ + +
=

+ + +







 (9) 

then we have  

 ( ) 2 2
2 22

2 2 3 3

0, , , n n
n

t t
D t t

t t
β β

λ λ

+ +
=

+ +







 (10) 

which has the same algebraic form as  

 ( ) 1 1 2 2
1 2 22 2

1 1 2 2 3 3

, , , .n n
n

t t t
D t t t

t t t
β β β

λ λ λ

+ + +
=

+ + +







 (11) 

Indeed, for any j , 1 j n≤ < ; all restrictions of the function  
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 ( ) 1 1 2 2
1 2 22 2

1 1 2 2 3 3

, , , n n
n

t t t
D t t t

t t t
β β β

λ λ λ

+ + +
=

+ + +







 (12) 

obtained by setting an arbitrary set of j  components of ( )1 2, , , nD t t t  equal to zeros have the same algebraic 
form as ( )1 2, , , nD t t t . Obviously, not all functions have this property. For instance, for the function 
( )1 2 1 1 2, 2G t t t t t= + , ( )1 1,0 2G t t= , which does not have the same algebraic form as ( )1 2,G t t . 

3. Greub-Reinboldt Inequality 
Let ( )1 2, , , nx x x x=   and ( )1 2, , , ny y y y=   be two real n-tuples. Suppose that 1m , 1M , 2m , 2M  are 
constants such that 1 1im x M≤ ≤  and 2 2im y M≤ ≤ . Then, for iw o>  we have  

 
( )2 2

1 2 1 22 2

1 1 11 2 1 2

.
4

n n n

i i i i i i i
i i i

M M m m
w x w y w x y

m m M M= = =

+  ≤  
 

∑ ∑ ∑  (13) 

A slightly different form of the above inequality was proved by J. W. S. Cassels in 1951 (see Appendix 1 of 
[7]). In the following section we provide a proof for the matrix form of Greub-Reinboldt Inequality based on the 
Two Nonzero Component Lemma. The proof is completely different than the proofs given by others, including 
Greub and Reinboldt themselves (see [8]). This proof has the advantage of providing information about when 
the inequality becomes equality and gives information about vectors which make the inequality equality. 
Furthermore, as we will discuss in the Section 5, our method will indeed extend the Greub-Reinboldt Inequality 
to operators on an infinite dimensional Hilbert space.  

4. The Matrix Form of Greub-Reinboldt Inequality  

Theorem 2 Let S  and T  be two commuting positive operators with eigenvalues { } 1

n
i i

α
=

 and { } 1

n
i i

b
=

 
respectively. Assume  

 1 1 1nm Mα α≤ ≤ ≤ ≤  (14) 

and 
 2 1 2 .nm Mβ β≤ ≤ ≤ ≤  

Also assume S  and T  are diagonalized with diagonal elements { } 1

n
i i

α
=

 and { } 1

n
i i

β
=

 respectively , then  

 ( )( ) ( ) ( )
2

21 2 1 2

1 2 1 2

, , ,
4

M M m m
Tx Tx Sx Sx Tx Sx

m m M M
+

≤  (15) 

for every vector x . In this, case if x  is any unit vector which makes the inequality (15) an equality then we 
have 

 2
1

1 1

n n

n n

x
α β

α β α β
=

+
 (16) 

and 

 2 1

1 1
n

n n

x αβ
α β α β

=
+

 (17) 

and  
 0 if 1ix i n= < <  (18) 

where ix  is the projection of x  on the eigenspace corresponding to eigenvalue iα . 
Proof. Without loss of generality we can assume 1x = . Consider the functional  

 
( )( )

( )2

, ,
.

,

Tx Tx Sx Sx

Tx Sx
 (19) 
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(19) can be written as 

 
( )

2 2

2 .
,

Tx Sx

Tx Sx
 (20) 

The reciprocal of (20) is  

 
( )2

2 2

,
.

Tx Sx

Tx Sx
 (21) 

The square root of (21) is 

 ( ),
.

Tx Sx
Tx Sx

 (22) 

To prove (15) we first find  

 ( )
1

,
inf .
x

STx x
Tx Sx=

 (23) 

Since S  is invertible, by a change of variable we have  

 ( ) ( )1

11 1

,,
inf inf .
x x

TS x xSTx x
Tx Sx TS x x

−

−= =
=  (24) 

By the spectral mapping theorem the inf on the right hand side of (24) can be represented as  

 

2

1

22

1

inf

n

i i
i

n

i i
i

x

x

λ

λ

=

=

∑

∑
 (25) 

over the set  

 2

1
1,

n

i
i

x
=

=∑  (26) 

where { } 1i i
λ ∞

=
 is the set of eigenvalues of 1.TS −  The fact that S  and T  commute implies that  

 1
i i iλ α β−=  (27) 

for 1 i n≤ ≤  and  

 1 1
1 2 1 2andm M m M m M− −= =  (28) 

where 

 { } 1
min ,n

i i
m λ

=
=  (29) 

and 

 { } 1
max .n

i i
M λ

=
=  (30) 

If we set 2
i ix t=  the problem is reduced to finding  

 1

2

1

inf

n

i i
i

n

i i
i

t

t

λ

λ

=

=

∑

∑
 (31) 
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over  

 
1

1.
n

i
i

t
=

=∑  (32) 

By the Two Nonzero Component Lemma we need to look at  

 
2 2

inf i i j j

i i i i

t t

t t

λ λ

λ λ

+

+
 (33) 

over the convex set 
 1i jt t+ =  (34) 

for pairs of i  and .j  Notice that since the expression in (33) is positive, for simplicity, we can first compute 
the infimum of the square of that expression on the convex set (34) and then take square root of the result 
Therefore, the problem is now reduced to finding  

 
( )2

2 2inf i i j j

i i i i

t t

t t

λ λ

λ λ

+

+
 (35) 

on (34). By substituting 1j it t= −  in (35) the problem is now reduced to finding  

 
( )( )
( )

2

2 2

1
inf

1
i i j i

i i i i

t t

t t

λ λ

λ λ

+ −

+ −
 (36) 

for 0 1it≤ ≤ . To find (36), simply differentiate the expression in (36) and set its derivative with respect to it  
equal to zero (we omit the straight forward computations). The expression in (36) is minimized when  

.j
i

i j

t
λ

λ λ
=

+
 

Substituting this value of it  in (34) and the expression in (36) gives us  

 i
j

i j

t
λ

λ λ
=

+
 (37) 

and 

 
( )( )
( ) ( )

2

2 2 2

1 4
.

1
i i j i i j

i i i i i j

t t

t t

λ λ λ λ
λ λ λ λ

+ −
=

+ − +
 (38) 

Hence  

 
2 2

2
inf i ji i j j

i ji i i i

t t

t t

λ λλ λ
λ λλ λ

+
=

++
 (39) 

and the inf in (39) is attained at  

 j
i

i j

t
λ

λ λ
=

+
 (40) 

and  

 .i
j

i j

t
λ

λ λ
=

+
 (41) 

Assume that i j< . Now we show that we must have 1i =  and j n= . To prove this we must show  

 1

1

22 i ji n

n i j

λ λλ λ
λ λ λ λ

≤
+ +

 (42) 
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for 1 i n≤ ≤  and 1 .i n≤ ≤  Squaring both sides of (42) gives us  

 
( ) ( )

1
2 2

1

44
.i jn

n i j

λ λλ λ

λ λ λ λ
≤

+ +
 (43) 

Thus instead of proving inequality (42) we can prove inequality (43). Let 
1

nu
λ
λ

=  and .j

i

v
λ
λ

=  It is obvious 

that  
 1 .y x≤ ≤  (44) 

If we substitute 1n uλ λ=  and j ivλ λ=  in (43) we get  

 
( ) ( )

22
1

2 22 2
1

44
1 1

i

i

vu
u v

λλ
λ λ

≤
+ +

 (45) 

which is equivalent to  

 
( ) ( )2 2

4 4 .
1 1

u v
u v

≤
+ +

 (46) 

Hence proving inequality (42) is reduced to proving inequality (46). To prove (46), note that based on (44) 

 
( ) ( )

( )( )
( ) ( )2 2 2 2

14 4 0.
1 1 1 1

u v uvu v
u v u v

− −
− = ≤

+ + + +
 (47) 

Therefore, we must have  

 ( ) 1

1
1

2,
inf .i n

x
n

STx x
Tx Sx

λ λ
λ λ=

=
+

 (48) 

The inequality  

 1

1

2 2n

n

mM
n M

λ λ
λ λ

≥
+ +

 (49) 

can be proved the same way we just proved (42). Hence we have  

 
( )

( )

2 1 1
1 2 1 2

2 2 21 1
1 2 2 1 2

, 4
.

STx x M m m M
Tx Sx M m m M

− −

− −
≥

+
 (50) 

The right side of 50 is simplified to  

 
( )

1 2 1 2
2

1 2 1 2

4
.

m m M M
M M m m+

 (51) 

Thus (50) becomes  

 
( )

( )

2
1 2 1 2

2 2 2
1 2 1 2

, 4
.

STx x m m M M
M M m mTx Sx

≥
+

 (52) 

Finally (50) is equivalent to 

 ( )( ) ( ) ( )
2

21 2 1 2

1 2 1 2

, , , .
4

M M m m
Tx Tx Sx Sx Tx Sx

m m M M
+

≤  (53) 

5. Generalizing Greub-Reinboldt Inequality to Operators on a Separable Hilbert 
Space 

There are many proofs for Greub-Reinboldt Inequality in the literature. A significant advantage of proving 
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Greub-Reinboldt Inequality by The Two Nonzero Component Lemma is that we can generalize this inequality to 
the case of positive operators S  and T  on an separable infinite dimensional separable Hilbert space. This is 
because, as the statement of the Two Nonzero Component Lemma shows, this lemma is also when the functions 

( ) k
k i ig c t= ∑t  infinite linear combinations of 1 2 3, , ,t t t   Thus we can replace finite summations in (25), (26), 

(31), (32) with infinite sums and the arguments made in this paper remain valid. However, in this case it seems 
difficult to the pinpoint the exact pair of i  and j  for which the projections ix  and jx  of minimizing unit 
vectors are nonzero. 

Theorem 3 Let S  and T  be two commuting positive operators on a separable Hilbert space such that  
( ) [ ]1 1,S m Mσ ⊆  and ⊆)(Tσ  ( ) [ ]2 2,T m Mσ ⊆  where ( )Sσ  and ( )Tσ  represent the spectrums of S  

and T  respectively, then  

 ( )( ) ( ) ( )
2

21 2 1 2

1 2 1 2

, , ,
4

M M m m
Tx Tx Sx Sx Tx Sx

m m M M
+

≤  (54) 

for any vector x . In this, case if x  is any unit vector which makes the inequality (54) an equality then there 
exist a pair of i  and j  such that  

 2 j j
i

i i j j

x
α β

α β α β
=

+
 (55) 

and 

 
2 i i

j
i i j j

x
α β

α β α β
=

+
 (56) 

and  
 0  if  and kx k i k j= ≠ ≠  (57) 

where ix  is the projection of x  on the eigenspace corresponding to eigenvalue iα . 
There are other generalizations of Greub-Reinboldt Inequality. For example in ([9]) Gustafson extends this 

inequality to pair noncommuting positive matrices A  and B . However, he replaces the standard norm of the 
Hilbert space with the norm relative to B . 

Conclusion 4 The Two Nonzero Component Lemma provides an effective way of proving the Greub- 
Reinboldt Inequality and extending it to positive operators on separable infinite dimensional Hilbert spaces. The 
author has also utilized this lemma to prove other Kantorovich-type inequalities. Please see ([4]-[6] [10] [11]).  
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