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Abstract 
 
Signal transmission control protocol sources with the objective of managing queue utilization and delay is 
actually a feedback control problem in active queue management (AQM) core routers. This paper extends 
AQM control design for single network systems to large-scale wired network systems with time delays at 
each communication channel. A system model consisted of several local networks is first constructed. The 
stability condition guaranteeing overall stability is subsequently derived using Lyapunov stability theory. 
The results developed have been successfully verified on a network simulator. 
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1. Introduction 

Traffic characterization and modeling are generally rec-
ognized as two important steps toward analysis and con-
trol of network transmission performance. With the aid 
of the characterized model, control theory can be effi-
ciently applied in solving the congestion control problem. 
There have been various delayed differential equation 
models developed in [1-3], in which the fluid-flow model 
utilized in [1] was previously proposed in [2]. Those 
characterized data traffic as fluid used a set of differen-
tial equations to describe the Active Queue Management 
(AQM) policy and the router queuing process. In [4], the 
end-to-end congestion control mechanisms were em-
ployed in transmission control protocol (TCP) flow con-
trol. 

While a bunch of research focusing on modeling and 
analysis of network control systems have been published, 
most approaches addressed the issue for a single sender- 
receiver network connection [5]. 

This paper is motivated by the requirement of an ap-
proach for modeling and stabilization of large-scale 
communication networks. An extension of the fluid- 
based model in wireless networks was proposed in [6,7], 
in which their parameters for representing the probability 
of data transmission failure was applied in system de-
velopment. A system for mixed wired and wireless net-
works was concerned in [6], in which a more general 

fluid-based model compared with that in [1] was pro-
posed. A robust H  controller design was proposed in 
[7], in which the stability analysis was conducted by 
Lyapunov theory and modern control theory was ex-
tended to deal with the network congestion problem. Fur- 
thermore, linear matrix inequalities were proposed in 
control design and less oscillation under TCP was 
achieved. Packet dropout not only affects stability in data 
transmission, but also plays an important role in the net-
work control systems. The authors in [8-10] have inves-
tigated stability for the network control systems with 
packet dropout. 

To the best of the authors’ knowledge, while the Lya-
punov stability theory has been widely applied to the 
stability analysis of large-scale systems [11-13], investi-
gation for stability of the large-scale network control 
systems (LWNCSs) are quite rare. This motivates this 
research. The presented work shows that an appropriate 
control design based on an appropriate Lyapunov func-
tional ensuring asymptotic stability of the LWNCS can 
be constructed when there are a large number of signal 
flows. 

The major contributions can be summarized as fol-
lows. 

1) A control strategy for congestion control in the 
large-scale wired network is constructed. 

2) All local networks are interconnected according to 
the dropping probability. That is, how the local net- 
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works mutually affect each other within a wired 
network scheme is modeled via a particular form of 
the dropping probability. 

An example is given to demonstrate validity of the re-
sult using the network simulation platform NS2 [14]. 

2. Modeling of Large-Scale Wired Network  

The large-scale wired network under consideration is as 
illustrated in Figure 1, which consists of s  locally 
wired networks within TCP under random early detec-
tion (RED). In each TCP loop, signal packets are trans-
mitted from a sender to a receiver, which is also the 
sender to next TCP loop. Furthermore, they are sequen-
tially passed from 1TC  to P sTCP . Some packets are 
dropped in the congested router under RED, in which the 
dropping probability is computed by the proposed con-
troller. Regarding the topology illustrated in Figure 1, 
the current dropping probability not only determines the 
seriousness of transmission congestion in the present 
router, but also affects those in other congested routers in 
the large-scale wired network. 

Referring to [1], a simplified version of a fluid-flow 
model of TCP behavior involving the key network vari-
ables could be modeled as 
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where  is the average TCP window size (packets), 
 is the average queue length (packets/sec), 

W
q  R t  is  

the round trip time (RTT),  is the link capacity 
(packets/sec), N is the loading factor (the number of TCP 
sessions), and 

C

[0,1]p  is the probability of packet 
mark. The queue length  0,q q m  and the window size 

 0, mW W  where mq  and mW  denote the buffer ca-
pacity and the maximum window size respectively. Let 
 R t  denote the RTT for  and is assumed to be 0t 

    pR t q t C T            (3) 

where p  is the fixed propagation delay and T  q t C  
models the queuing delay. One is referred to [1] for the 
details of the mathematical modeling of the fluid-flow 
model of TCP. 

Suppose that each dynamic model of TCP constructs a 
sub-network, which belongs to an interconnected bottle-
neck network, then a large-scale wired network com-
posed of s  interconnected bottleneck networks i , S

1, 2, ,i s   can be shown as in Figure 2, where 
    ,  1, ,i i i ipR t q t C T i s    , with  being the 

propagation delay for iTCP and 
ipT
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( )tq  . From (1) and (2), the large-scale linearized 

differential equations can be written in the matrix form as 
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Figure 1. Topology of the large-scale wired network under consideration.  
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Figure 2. Block diagram of the large-scale wired network. 
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where ij  is the transmission time between the bottleneck 
networks i  and 

h
S jS ; , 0δ i i iw w w  δ iq  0iq q , 

0j jq q q   , and 0; 0 0 0i  denoting 
our operating point; i  and 

δp pi i ip   iw q , , p
q jq

iN

 denote data packets 
belonging to the ith and jth sub-networks respectively; 

i  denotes the ith expected TCP sending window; i  
denotes the link capacity;  denotes the number of the 
ith TCP sessions; 

w C

0 0i i ipR q C 

maxp

T p; i  is the probabil-
ity of packet mark; RED consists of a proportional con-
troller and packet-marking profile, shown as in Figure 3, 
where ,  and  are configurable parame-
ters and pi  denotes the slope of the active queue 
management control law which computes i  as the func- 
tion of the measured queue length 

miq n

K

maxq

p

iq  by the AQM pol-
icy; ij  is the flow distribution ratio from the bottle-
neck network 

d
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Figure 3. RED drop function. 
 

The form of (5) is determined based on the following 
considerations. 

1) While each sub-network is interconnected through 
(5), the feedback signal applied for the controller is 
treated as the combination of all the queue lengths 
in the large-scale network. Thus, the term 

 01
δ

s

ij j ijj
d q q t h


     in (5) was claimed. It 

was further multiplied with piK , which denotes 
the slope of the active queue management control 
law. 

2) The term  
0

0
δ d

i
iR

p t v v
v




  denotes the differ- 

ence between the current and delayed values of the 
dropping probability adopted in the ith TCP. Con-
sidering the fluid-flow model, the current queue 
length variation is affected by the delayed dropping 
probability while the current one is applied in real 
world. Considering this fact, while constructing (5), 

the term  
0
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i
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
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  is added. 

3) 0ip  is added to cancel 0ip  while computing  
where δ

ip

0i i ip p p  . 
4) Additional terms in the AQM controller law are 

added to obtain the transformed system (6) with the 
controller (7). 

5) Now, substituting  0δ ,i ip t R , defined by (5), into 
(4) gives a new system. Based on (4), a large-scale 
wired network system consisting of s local net-
works can be expressed in the state-space repre-
sentation as follows 
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with 0ij pi ijK d   F  and    i i it K t u x  being 
the AQM control law for the ith subsystem, and 
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Equation (6) represents the linearized system of the 
large-scale wired network while considering coupling 
effects induced by the locally wired networks. The term 

 implies the dropping probability while concerning 
the interconnection of local networks. The term 

 i tu
 i tu  

is to be determined in the stability analysis. Equation (7) is 
treated as the control input such that     0i ip t t p u i  
is applied as the dropping probability. 

 i tu  can be derived in the following steps: 
Step 1) Consider (5), which models how local net-

works may mutually affect each other in the large-scale 
wired networking environment. 

Step 2)Substitute  0δ ,i ip t R  into (4) and use i x  
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From (8) and (9), the gain reduction tolerance is given 
by 
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3. Stability of LWNCS 

The following theorem states the main result which cha-
racterizes the stability condition for the LWNCS. 

Lemma: For any scalar 0   and any real vectors 
X  and Y  with appropriate dimension, then 

T T T 1


   TX Y Y X X X Y Y        (11) 

Theorem: The large-scale wired network system de-
scribed by (6), which satisfies (10), would be asymptoti-
cally stable, if the state feedback control law of each 
sub-network is given by 
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in which 1  is a positive constant, 2( )i i i i      4  
and  : max , 1,2, ,i ji j s     with ji  satisfying 

Proof: The stability analysis is derived around the ori-
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for . The set  1,2, ,i  s  0 0 0, ,i iq p w  chosen as the 
equilibrium point of the fluid-flow model corresponding 

to  is determined by iTCP
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It is obtained that  0 0i V while 0i u and 

 for . Taking differentiation with re-
spect to time t and using (6) while ignoring 
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It is easily obtained from (11) that 
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Furthermore 
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Therefore, it can be obtained that 
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where 1 0  . After substituting (12) into (10), one 
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From (12)-(15), it can be concluded that i.e. 
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where ,        
TT T T

1 1i i i s ist t t h t h    x x x

   T T
1 +1 0i ii i i ii i n i i i i i i ns s           J A P P A P I B B P I  

 

and T T
1 , ,ij n ij i i ij i j I F B B F   and i  satisfies 

(13). This completes the proof. 

4. Design Process 

Control design procedure is given bellows to summarize 
the previous analysis. 

Step 1) Set parameters of the LWNS including i , 

i , 0i , ip , w , , and 
C

N R T b qb pb . The system model of (6) 
is then constructed. 

Step 2) Consider the model defined by (6) and (7) with 
the positive constant 1 , the parameter ij  is chosen to 
satisfy (15). 

Step 3) Find i , ima g , i , i , i  and to solve for 
the Riccati matrix inequality (14). The solution 

 can be calculated by transforming (14) into  T 0i i P P

linear matrix inequalities and solved via the available 
computational software. 

Step 4) Obtain the control gain T 2i i i iK  B P . The 

AQM control law  i tu  is determined by (7) with  

   i i it t u K x . 

5. Illustrative Example 

Consider a large-scale wired network described by (4) 
with 0 175q   packets, , , 1 60N  2 50N  3 20N  , 

4N 5 , , 20 , , 

40 , 
10R

0.1 s C
0.2 s

1 3,750
0.1 s RR  30 0.1 s

R   packets/s,  pack-
ets/s, 

2 4,C  000

3 4,0C 00  packets/s, 4  packets/s, 
and 1

4,000C
0.001  . The large-scale wired network consists 

of four sub-networks described, respectively, by 
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Select 0.04ij 

W p qb b b 
 for each  and as-

sume  so that , 
1,  2,  3,  4i

1 40mg 


200 2 3m mg g  
. Referring to [1], 4mg 20 0 0i iw R C i Ni  and 

. From 2
0 0i iw p 2 0 0i i im qp g    then , 

2 3 4

1  0.2
0.1     , and 1 2 3 4 0.4        are 

chosen to meet (13). Solving for the Riccati matrix ine-
quality (14) gives 

1 2

3 4

0.321   0.017 0.028   0.006
,

0.017   0.002 0.006   0.003

0.0009   0.0007 0.00004  0.00004
,

0.0007   0.0018 0.00004  0.0042

   
    
   
  

   
  

P P

P P

,





 

and the corresponding control gain matrices are obtained 
as  1 27.07 1.45  K ,  2 9.22 2.01  K , 

 3 , and 2.77 2.05  K  4 2.16 1.92  K  re-
spectively. The size of the packet is assumed to be 500 
bytes. 

The numerical experiments are conducted on a net-
work simulator-NS2 [14]. The simulation results with the 

chosen parameters show satisfactory performance of the 
queuing response in the presence of random delays, see 
Figure 4. It is found that larger TCP flows cause higher 
link utilizations, but with larger queuing delays. 

The results for the case of 1 , 2100N  50N  , 

3 20N  , 4 5N   are displayed in Figure 5. As it can 
be seen from Figure 5(a), large queue oscillations may 
cause considerable variations in the RTT of packets for 
the corresponding sub-network. However, with the pro-
posed controllers, the network still remains to be stable 
when it holds a large number of data flows. 

6. Conclusions 

This paper has modeled and analyzed stability of large- 
scale wired networks under control where the AQM stra- 
tegy uses RED to fulfill the queue management. The 
problem of feedback control has been solved for the 
LWNS with delayed perturbations in the interconnections 
and a new condition ensuring the overall loop stability is  
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(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 4. Transient response of queueing with 1 60N  , 

2 , 350N  20N   and 4 . (a) Queue size for TCP1; 
(b) Queue size for TCP2; (c) Queue size for TCP3; (d) 
Queue size for TCP4. 

5N 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 5. Transient response of queueing with 1 100N  , 

2 50N  , 3 20N   and 4 5N  . (a) Queue size for TCP1, 
(b) Queue size for TCP2; (c) Queue size for TCP3; (d) 
Queue size for TCP4. 
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presented. The simulation study conducted on the NS2 
has been verified successfully. 
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