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Abstract 
 
In this paper, we provide general closed-form solutions to the incomplete-market random-coefficient dy-
namic optimization problem without the restrictive assumption of exponential or HARA utility function. 
Moreover, we explicitly express the optimal portfolio as a function of the optimal consumption and show the 
impact of optimal consumption on the optimal portfolio. 
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1. Introduction 
 
Dynamic optimization has been used extensively in the 
economic and financial literature. Examples include in-
complete markets, stochastic volatility and random coef-
ficients models. The contemporary literature usually ado- 
pts random coefficient models (the parameters of the mo- 
del are dependent on a random external economic factor) 
or non-tradable assets models. Examples include Bayrak- 
tar and Young [1], Bayraktar and Ludkovsky [2], Algha-
lith [3], Focardi and Fabozzi [4], and Fleming [5]. 

In order to derive explicit solution to the optimization 
problem, the previous studies relied exclusively on expo- 
nential or HARA utility functions. This assumption is re- 
strictive and sometimes unrealistic, since other common 
and more appropriate functional forms exist. 

In this paper, we relax the exponential or HARA util- 
ity assumption. In doing so, we derive general closed 
form solutions to the random-coefficient incomplete- 
market dynamic optimization problem without imposing 
restrictions on the functional form of utility. Furthermore, 
we explicitly derive a functional relationship between the 
optimal portfolio and optimal consumption and show the 
impact of consumption on the optimal portfolio. 

In Section 2, we present the theoretical model and the 
results. In Section 3, we draw conclusions. 

2. The Model 
 
We consider a standard investment-consumption model, 
which includes a risky asset, a risk-free asset and a ran-
dom external economic factor (see, for example, Fleming 
[5] for background information on the investment-con- 
sumption model). This implies a two-dimensional stan- 
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where x  is the initial wealth,  ,
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The investor’s objective is to maximize the expected  
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where  .V  is the value function,  .u  is a differenti-
able, bounded and strictly concave utility function. 

The value function satisfies the Hamiltonian-Jacobi- 
Bellman PDE
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where  tR c  is the remainder. Our objective is to mi- 
nimize  tR c  
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The solution yields 
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Now since t̂c  depends on the value of a , choose a 
specific value of a a  such that t̂ tc c ; hence 
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The above equation can be rewritten as 
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where ib  is a constant. Using the same procedure we 
obtain the following exact expansion of  .xV   

       1 2

3 4 5

. ( ) ( )

        .

x x xx xyV V V x V y

b b x b y

        

  
 (3) 

Since    2 . ,t xu c V    we obtain 

 6 4 5 2 .tc b b x b y b     

Substituting (2) and (3) into (1) yields 
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This is a general explicit formula that holds for any 
utility function. Moreover, this formula allows us to de-
termine the impact of consumption on the portfolio. To 
show this 
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by the concavity of u . 
This approach is empirically very convenient since the 

parameters in (4) b1, b2, b4 and b5 can be easily estimated 
using a nonlinear regression based on historical data. 
 
3. Conclusion 
 
This approach is superior to the existing approaches in 
several ways. First, we can obtain closed-form solutions 
without the assumption of exponential or HARA utility 
function. Secondly, we can easily obtain comparative 
statics results. For example, there is a trade-off between 
consumption and investment. Moreover, our approach 
can be easily utilized by future empirical studies. 
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