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Abstract 
We present a detailed discussion of the boundary conditions of the directed crystallization prob-
lem, a formulation of the model considering temperature fields of external sources, the mechan-
ism of attachment of particles to the growing solid surface, the influence of interphase component 
absorption on the phase distribution ratio of the components as well as the calculation of the pe-
riod of the morphological interface instability which is made with due regard of all the aforemen-
tioned conditions. 
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1. Introduction 
So far the problem of interface behavior upon phase transition has not yet acquired a satisfactory mathematical 
formulation due to a variety of the physical phenomena involved. Analytical solutions exist only for elementary 
problems describing the free interface behavior in directed crystallization conditions, for instance, for those im-
plying a clearly shaped isothermal interface (ellipsoid, paraboloid, hyperboloid) [1] [2]. Numerical calculations 
of the interface behavior also present significant difficulties since the instability of moving interface does not 
enable calculations by means of known algorithms. The mathematical description of the moving interface prob-
lem includes transfer equations for each phase with corresponding initial and boundary conditions which should 
be specified in each phase as well as on the interface. The general solution of this problem does not seem possi-
ble now, so quantitative analysis of phase transition is made after significant simplifications of the problem 
commonly reduced to the so-called quasi-equilibrium problem setting which has been used in a number of pa-
pers [2]-[4]. Quasi-equilibrium problem setting was used for calculation of numerous technological processes [2] 
[4]-[6] that are successfully used in crystal growth, metallurgy and materials science. It was used to study the 

http://www.scirp.org/journal/aces
http://dx.doi.org/10.4236/aces.2014.42014
http://dx.doi.org/10.4236/aces.2014.42014
http://www.scirp.org
mailto:guskov@issp.ac.ru
http://creativecommons.org/licenses/by/4.0/


A. Guskov 
 

 
104 

reasons for the interface instability during phase transition. However, the solutions of the quasi-equilibrium 
problem are, as a rule, inherently qualitative. For instance, attempts have been made to use the results of inter-
face stability analysis during crystallization for description of periodic eutectic structure [7]. In [8] [9] a linear 
analysis of interface stability under the directed crystallization was made with regard to the kinetics of particle 
condensation to the growing crystal surface and the kinetics of the non-equilibrium solution layer in front of the 
interface. The problem setting allowed for kinetic overcooling which was shown to be responsible for the inter-
face instability, the latter in its turn can lead to spatial distortions as well as temporary fluctuations of the tem-
perature and concentration of the components on the interface during phase transition. The analysis of interface 
movement dynamics made in [10] revealed the existence of modes responsible for the periodic distribution of 
the solution component concentration on the planar interface. It was assumed that the mode corresponds to eu-
tectic structure formation. Numerical calculations have been made of the interface component distribution pe-
riod as a function of the interface velocity for a quadratic dependence between the interface velocity and kinetic 
overcooling [11]. This coincided with the experimental dependences of the eutectic structure period on the in-
terface velocity. These dependences are known to be well approximated by rate power −1/2. This result was 
used to obtain analytical dependences of the period of morphological interface instability on the interface veloc-
ity for different growth mechanisms [12] [13]. The dependences obtained coincided with the experimental de-
pendences of the eutectic structure period on the interface velocity [14]. However, this failed to explain decay of 
the liquid solution in front of the interface without analyze of the stability of the overcooled solution. The analy-
sis made in [15] showed that the overcooled solution in the vicinity of the eutectic point is not stable. In [16] it 
was also shown that unstable solution may decay with a period equal to that of morphological interface instabil-
ity. 

Crystallization of two-component liquid solution is described by the system of heat conduction and diffusion 
equations for solid and liquid phases as well as the corresponding boundary conditions. The boundary crystalli-
zation problem is described in detail in a number of studies. For instance in [2], the heat conduction and diffu-
sion equations should be fulfilled in each phase volume 

r r
r r r r

r r

T TT Tχ χ
τ τ
′∂ ∂′ ′= ∆ = ∆

∂ ∂
                                    (1) 
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Here the values related to the solid phase are denoted by the prime, index r indicates the dimensional quan- 
tities, the overline indicates that the functions are written in the lab coordinates, T is the temperature, C 
concentration, χ  thermal diffusivity, t time, D diffusion coefficient. The diffusion coefficient of the solid 
phase is assumed to be equal to zero. The problem does not take into account the liquid convection and crystal 
anisotropy. The heat transfer is written as a heat conduction equation. The interface thickness is assumed to be 
zero and on the interface have to be fulfilled the temperature continuity condition  

solid liquidr rT T′ =                                          (3) 

and the heat flow continuity condition 

solid liquid
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Here, nv  is the interface velocity along the normal to the interface toward the liquid phase. The mass flow 
condition should also be fulfilled  

( )
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                            (5) 

Here n  is the direction of the normal to the interface surface. These boundary conditions express the general 
conservation laws between the contacting phases. In analysis of interface stability in the one-dimensional case 
the interface temperature and infinitely remote point temperatures are specified [2]. In case a multi-component 
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solution is crystallized, the system contains diffusion Equation (2). In the solid phase diffusion is normally 
neglected. For problems on infinite interval, the initial concentration of the liquid solution and the distribution  
coefficient are given. The concrete form of the boundary conditions depends on the crystallization conditions 
and the degree of the simplifying conditions that are used to obtain a practically convenient solutions. 

The quasi-equilibrium problem setting is the most popular approximation for directed crystallization problems. 
The quasi-equilibrium setting implies that the interface temperature is equal to the equilibrium temperature of 
the phase transition with due allowance made for the effect of the interface curvature, i.e. the Gibbs—Thomson 
effect. The distribution ratio is assumed to be equilibrium. The temperature distribution is found from homoge-
neous heat conduction Equation (1) and specified are the values of the temperature phase gradients on the inter-
face rather than the temperature in infinitely remote points. Such problem setting enabled to obtain a number of 
simple and practically useful solutions of directed crystallization problems [2]-[4]. However, comparison of the 
calculated and experimental data reveals that the solutions obtained do not take into account all the conditions of 
phase transition that can have qualitative effects on the processes involved in the problems in question. We have 
recently published several papers in which the setting of the directed crystallization problem includes nonequili- 
brium processes affecting heat-and-mass transfer during phase transitions, [8] [9] [11]-[13] [17]. The quantita- 
tive agreement between the calculated data and the experimental dependences of the eutectic structure period on 
the interface velocity indicate that the problem setting in the above papers takes into consideration the condi- 
tions which can qualitatively affect the heat-and-mass transfer processes during phase transitions. We present a 
detailed discussion of the boundary conditions of the directed crystallization problem, a formulation of the mod- 
el considering temperature fields of external sources, the mechanism of attachment of particles to the growing 
solid surface, the influence of interphase component absorption on the phase distribution ratio of the compo- 
nents as well as the calculation of the period of the morphological interface instability which is made with due 
regard of all the aforementioned conditions. 

2. Environmental Heat Exchange 
We introduce environmental heat transfer into the heat conduction equation for two reasons. First, it enables us 
to state a problem with specified temperature values in infinitely remote points, second, it allows for eliminating 
physically unrealizable solutions of the stationary problem. Such solutions may occur due to the fact that in in-
terface stability problems material heating is frequently simulated by specified temperature gradients. Such 
boundary conditions can be accepted provided the aim is to show the feasibility of unstable stationary modes of 
interface movement. However, in the experiments a temperature field is usually formed in the material by way 
of environmental heat exchange or induction heating [5]. In controlled crystallization the material is heated 
above its melting temperature followed by liquid phase cooling. In the case of environmental heat exchange 
crystallization occurs in the area of the controlled temperature gradient which is formed between the heater and 
the cooling unit. The temperature field is formed by different heat exchange units. The measurement of the in-
terface temperature gradient is a complicated technological problem. The gradient values are generally found by 
solving the corresponding heat conduction problem. A homogeneous heat conduction Equation (1) is obtained if 
environmental heat exchange is neglected. In one of the phases the solution of the homogeneous equation exhi-
bits a divergence away from the interface, i.e. it yields a physically unrealizable function. Yet, the solution has 
relatively simple analytical forms and allows understanding the processes occurring at the interface. The situa-
tion changes in case material heating is considered and the equation includes the terms describing the so-called 
internal source field (ISF). Hence, the problem becomes inhomogeneous and more complicated since the inter-
face coordinate in the lab coordinate system depends on its stationary velocity, the external temperature field 
and the thermophysical parameters of the crystallized material which determine kinetic overcooling. In the gen-
eral case, in the coordinates that are stable with respect to the moving bar, the ISF position is time and coordi-
nate dependent. In the lab coordinate system, in which the bar moves at a specified constant rate, the tempera-
ture field is independent of time. In accordance with [18], we will formally specify the ISF by the exponential 
function in each phase. It is a convenient approximation since the exponent is the solution of the inhomogeneous 
heat conduction equation when the bar velocity is equal to zero. On the interface, which is at the origin of coor-
dinates, the ISF should satisfy the condition of temperature and heat flow continuity, i.e. the external field is 
given by the temperatures of the heater and the cooler and the temperature gradient on the interface. The tem-
perature on the interface is equal to that of the phase transition. This means that the distribution of temperature 
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in the stationary bar can be specified using external heat sources by way of heat transfer through the thin bar 
surface. Since transverse heat transfer is not considered, the temperature distribution is one-dimensional. When 
the finite stationary interface velocity is given, the position of the interface is shifted with respect to the speci-
fied heat source density function. In [18] this shift was determined by the known interface temperature which 
was calculated by the specified dependence of interface velocity on kinetic overcooling. This means that the sta-
tionary problem with the given external temperature field involves an additional condition, namely, the position 
of the interface with respect to the lab coordinate system. Let-in of the ISF allows to set the liquid and solid 
phase temperatures in infinitely remote points as boundary conditions. The temperature of the bar in infinitely 
remote points is equal to that of the heater and the cooler. The interface temperature is determined by the preset 
interface velocity. Hence, the position of the interface changes with respect to the lab coordinate system and the 
condition required for its determination will be specified when solving the stationary problem. Such problem 
setting was briefly considered in [18]. The distribution of external temperature in the vicinity of each phase is set 
as a sum of the constant term and the exponential function. The temperature distributions in the phases are 
joined on the interface by the following conditions. 

1) Temperature continuity in point 0z = . 
2) Heat flow continuity in point 0z = . 
3, 4) Phase temperatures T'inf and Tinf are set in infinitely remote points in the vicinity of the liquid and solid 

phases. 
5) Temperature gradient 0φ  is set in point 0z = . 
6) Temperature is set in point 0z = . 
The function satisfying the first five conditions has the form 
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Here x  is an unknown parameter to be found on solving the stationary problem. 

3. Consideration of Solid Phase Growth Kinetics 
Let us consider the value of interface temperature. In the quas-equilibrium problem setting the interface temper-
ature is assumed to be equal to equilibrium temperature of phase transition. However, from statistical physics it 
is known that for phase transition particles have to overcome a potential barrier, so transition occurs at a temper-
ature which is different from equilibrium phase transition temperature. This temperature difference is known as 
kinetic overcooling. The interface velocity is a function of kinetic overcooling. The function form depends on 
the growth mechanism. If the temperature of the interface is equal to that of the phase transition, the kinetic 
overcooling is zero. In this case, in accordance with the thermodynamics law, any growth mechanism yields a 
moveless interface. If the problem involves equal interface and phase transition temperatures, the velocity is in-
dependent of the phase transition non-equilibrium grain. Then the goal is to find the movement of the geometric 
surface where the temperature is equal to that of the phase transition, rather than the interface. If kinetic over-
cooling is neglected, then linearization of the problem involving a moving interface disregards the linear ap-
proximation of the interface velocity related to the growth kinetics. And it should be noted that the interface 
temperature in the stationary mode practically coincides with the equilibrium temperature of the phase transition. 
This follows from the limiting transition when the kinetic coefficient tends to zero as it is shown in [3] [4]. 

Consider the expression for interface temperature and the terms of the linear expansion of the boundary-value 
problem which are lost if no account is taken of the dependence of the interface velocity on kinetic overcooling. 
Let us write the interface velocity as a function of kinetic overcooling  

( )r r krV V T= ∆                                           (7) 

Here 

boundaryboundarykr er rT T T∆ = −                                  (8) 
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is kinetic overcooling, erT  is the equilibrium temperature of the phase transition. Expand the velocity by 
kinetic overcooling into a Maclaurin series 

0
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∆ =∆ =

∂ ∂
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Here the kinetic coefficient is introduced  
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From (8,9) we find  
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Crystallization temperature is a function of the equilibrium temperature of the phase transition for the given 
component concentration and interface curvature [3]. 

( ) ( )0 0boundary boundary boundary boundary, r
r e r r r e r r r r r

r

VT T m C C T Cκ= + − + Γ −
Λ

          (10) 

where rκ  is the interface curvature, rΓ  is the surface tension coefficient. At large values of the kinetic 
coefficient the last term becomes small and the equation takes the form 

( ) ( )0 0boundary boundary boundary boundary,r e r r r e r r r r rT T m C C T Cκ= + − + Γ  

i.e. the interface temperature is equal to the temperature of phase transition. This is the limiting case considered 
in the works on directed crystallization. There is a formal reason to take the interface temperature as equal to the 
temperature of phase transition at the nonzero velocity. Here the smallest term rather than kinetic overcooling is 
neglected. A different situation occurs when the dependence of interface velocity on kinetic overcooling is 
neglected, and interface perturbation is used instead of temperature and concentration perturbation expansion of 
the velocity If the kinetic overcooling in (9) is assumed to be equal to zero, then 0rV = . This result conceals an 
error which occurs when solving nonstationary problems, in particular, in analysis of the stability of the 
stationary regime of interface movement. Consider expansion of velocity by kinetic overcooling in the vicinity 
of the stationary crystallization regime for small perturbations of stationary temperature and concentration 
values. Then kinetic overcooling is written as a sum of perturbation and the stationary part  

kr krS krmT T T∆ = ∆ + ∆  

Then the linear approximation of Taylor series expansion of rate in the vicinity of the stationary value of 
kinetic overcooling takes the form  
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Here the following notations are used 
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For the stationary mode expansion (10) can be written as  
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Here expansion (9) is used for function (11). For sufficiently large values of the kinetic coefficient the 
interface temperature is equilibrium which does not imply that kinetic overcooling is zero. In any case, formal 
substitution of zero kinetic overcooling leads to a zero interface velocity. When solving the stationary problem, 
kinetic overcooling is not introduced not due to its smallness, rather due to its constant value which is 
unambiguously related to the stationary interface velocity. Yet, decomposition of velocity into its stationary part 
and small perturbation, r Sr mrV V V= + , without considering kinetic overcooling has no physical meaning in the 
problem involving perturbation of stationary concentration and temperature distribution. It does not allow for the 
fact that the velocity is a function of kinetic overcooling which, in its turn, is a function of phase transition and 
interface temperatures. At zero kinetic overcooling the equation r Sr mrV V V= +  means that the interface is 
shifted with respect to the liquid phase without regard for the kinetics of particle attachment to the growing solid 
phase surface and the effect of the thermodynamic conditions on the liquid phase in front of the interface. As 
such an approach is applied to problems of linear analysis of interface stability, the initial perturbation is com- 
monly that of the interface. Consider the physical values for the corresponding problem of small perturbations [1] 
[19]. In the stationary mode the interface is usually assumed to be planar and perturbation is taken as a small 
harmonic deviation of the interface from the stationary regime plane under the assumption that concentration 
and temperature deviations from the stationary solution are the results of spatial interface distortion. Then small 
spatial interface perturbations from the stationary solution plane are connected by the relationships in which 
concentration and temperature perturbations turn to zero at zero amplitude of small spatial interface pertur- 
bations. Such problem setting is fairly objectionable. If no account is taken of the dependence of interface velo- 
city on kinetic overcooling, then no equations can be obtained revealing that small concentration and tem- 
perature perturbations cause small spatial interface perturbations (which is also referred to time pulsations). The 
equation describing interface velocity as a function of interface kinetic overcooling connects the temperature, 
concentration and spatial perturbations of the interface. From this dependence it does not follow that the inter- 
face is necessarily curved at nonzero deviations of the stationary solutions of temperature and concentration. In 
such problem setting the cause and effect are interchanged. Indeed, it is not the spatial deviation of the interface 
from the stationary solution which is responsible for the deviations of the stationary solutions of temperature and 
concentration, rather perturbations of the temperature and concentration stationary regime can either lead to or 
fail to lead to spatial perturbations of the interface [8]. Spatial perturbations of the interface are determined only 
by rate fluctuations caused solely by kinetic overcooling. Therefore, the quantitative description of the cry- 
stallization process should involve variation of spatial interface position only as a function of interface velocity 
caused by variation of kinetic overcooling. 

4. Consideration of Interface Adsorption 
The use of the equilibrium distribution coefficient requires a more precise definition of the diffusion problem 
since it results in the fact that phase redistribution of components is independent of interface velocity. This is 
inconsistent with the experimental data. Phase transition is a nonequilibrium process and the value of the 
equilibrium distribution coefficient is taken from the equilibrium phase diagram. The latter is calculated at equal 
chemical phase potentials. The values of the chemical potentials correspond to an infinite volume of each phase. 
It is known, however, that component adsorption occurs on the interface [20]. Interphase adsorption results from 
the requirement of the equality of chemical potentials on the interface. In phase transition the interphase com- 
ponent redistribution is affected by the adsorption layer. The behavior of the adsorption layer upon planar 
interface movement was considered by Hall [21] [22]. According to Halls theory, there is relaxation time be- 
tween the component concentrations in the layer and in the solid phase. Therefore, the interface velocity must be 
compared not only to the diffusion constant, but also the component relaxation rate in the adsorption layer. Hall 
introduced an effective distribution coefficient which is equal to the ratio of component concentration in the 
solid phase and component concentration in liquid solution. The effective distribution coefficient was calculated 
by the expression 

( )0 0 exp ads
eff ads

r

v
k k k k

V
 

= + − − 
 

                              (12) 

Here effk  is the effective distribution coefficient, k0 the equilibrium distribution coefficient, adsk  the equili- 
brium adsorption distribution coefficient, adsv  the adsorption rate constant. The formula has the following phy- 



A. Guskov 
 

 
109 

sical meaning. To maintain the composition of the adsorption layer, the rate of component atom diffusion from 
the melt to the crystal must be higher, the higher the growth velocity rV . This may give rise to a dissolved 
component concentration gradient in the melt in the direction opposite to the previous one and, as a result, a 
component depleted zone may form instead of an accumulation region corresponding to the equilibrium phase 
diagram without regard for interphase adsorption. In this case the effective distribution coefficients pass from 
region 1adsk <  with the equilibrium distribution coefficient 0k  into the region where 1adsk > . In the high 
interface velocity limit the distribution coefficient will approach the adsorption distribution coefficient, adsk . In 
the quasi-equilibrium boundary conditions interphase adsorption is commonly neglected. We present linear 
analysis of interface stability with due regard for the distribution coefficient as a function of interface velocity 
(12) and derive the period of morphological instability structure.  

5. Model 
With allowance made for distribution of ambient temperature, heat conduction Equation (1) take the form 

( ) ,r
r r r r rext

r

T T T Tχ φ
τ
′∂ ′ ′ ′= ∆ − −

∂
                              (13a) 
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T T T Tχ φ
τ
∂

= ∆ − −
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                              (13b) 

Here φ  is the heat-transfer coefficient. The second term of Equation (13) is the density of heat sources. It 
takes into account the heat exchange with the environment. In this approximation it is not take into account the 
temperature distribution over the cross section. The thickness of the rod is assumed to be small. Mass flow 
balance condition (5) with due account of the effective distribution coefficient and the one-dimensionality of the 
problem takes the form  
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Introduce dimensionless parameters into Equations (2)-(4), (13), (14). To this end, multiply heat conduction  
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0 0Cαχ − , respectively. Interface coordinate bz  in the lab coordinate system us written as  
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Interface velocity is connected with vn by the expression 
2

1 n
FV v
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 ∂
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Now let us write the boundary-value problem in the moving coordinate system rigidly bound to the interface. 
Note that the introduced coordinate system is curved with respect to the lab coordinate system. It is connected to 
the interface, whose velocity, in the general case, is a function of the temperature and concentration of the 
component, rather than to the interface moving in the stationary regime, i.e. in the lab coordinate system with a 
constant velocity. New variables are introduced in accordance with the expressions  

( ), ,by y z z F y z τ= = −  

In Equations (1)-(5), we neglect the solid phase diffusion coefficient, and in the moving coordinate system 
which is rigidly bound to the interface the equations have the form 
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These conditions should be supplemented with specified temperature in infinitely remote points 

( ) ( )ext extz zT T T T
→−∞ →∞

′ = −∞ = ∞                           (22) 

The interface velocity as a function of kinetic overcooling (7) is also specified. Let the melt overcooling 
conditions be such that in the stationary regime the planar crystallization front moves in the lab coordinate 
system with constant rate SV . We study the stability of the stationary crystallization mode to small temperature 
and concentration perturbations in the linear approximation. To obtain the linear approximation of boundary 
problem (16)-(22) we assume that the solutions take the form 
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where 
( ) ( ) ( ), ,S S ST z T z C z′  

are the solutions of the stationary problem. Equation (15) for the constant rate yields SF V τ=  Boundary 
problem (16)-(22) for stationary concentration and temperature distribution takes the form  
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Hence, the solution of the stationary problem is  
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Here a , a′  is the constant of integration determined from boundary conditions (24), (25), g , g ′  are the 
characteristic numbers of homogeneous equations. In the stationary problem the interface velocity is specified 
which, thus, determines the interface temperature whose deviation from equilibrium temperature of phase transi- 
tion is defined by the growth mechanism. Parameter x is found by equating the solution of the problem to this 
temperature. We do not present the detailed solution of the stationary problem. The numerical calculations are 
given in the brief communication [17]. The solution of the stationary diffusion problem takes the form 

( ) ( )
1

1 expeff
S

eff

k
C z V z D

k
−

= + −  

This solution is different from the known one by the distribution coefficient which is here equal to the 
effective distribution coefficient (12). The linear approximation for small perturbations is 

( ) ( )
2

2 2
2 0m m S ext m

S m
T T T T V

V K T K z
z z Fz

χ χ ω χ ω φ
ω

′ ′ ′∂ ∂ ∂ ∂ ′ ′ ′ ′+ + − = − − −∞ < ≤ ∂ ∂ ∂∂  
     (26) 

( ) ( )
2

2 2
2 0m m S ext m

S m
T T T T V

V K T K z
z z Fz

χ χ ω χ ω φ
ω

∂ ∂ ∂ ∂ ′ + + − = − − ≤ < ∞ ∂ ∂ ∂∂  
        (27) 

( ) ( )22
2

2 0m m S
S m m

DKC C C
D V DK C V z

z zz

ω
ω

ω

−∂ ∂ ∂
+ + − = ≤ < ∞

∂ ∂∂
                (28) 

0 0 0 0

m m
m

z z

T T
V

z z
χ χ ε

= − = +

′∂ ∂′ − =
∂ ∂

                                              (29) 

0 0 0 0
0m m m mz z z zT T T T

= − = + →−∞ →∞
′ ′= = =                                       (30) 

( )( )
0 0

1 effm
eff S m S m S S m

z

kC
D k V C C V V C V

z V= +

∂∂
= − + +

∂ ∂
                             (31) 

0m zC
→∞

=                                                                (32) 

Let interface velocity as a function of kinetic overcooling (7) be written as  

( ) ( )( )( )0, , , 0, , ,kV V T T y C yτ τ κ= ∆                              (33) 

Consider linearization of kinetic Equation (33). It describes the dependence of the interface velocity on the 
kinetics of molecule attachment to the growing surface. The form of dependence ( )kV T∆  is set by the model 
of mechanism growth. In accordance with the above change of variables, kinetic overcooling (8) is given by the 
expression  

( )( ) ( ) ( )( ) ( )1 0, , 1 0, , , 0, , 0, ,kT m C y T y C y T yτ κ τ τ τ∆ = + − + Γ −  

which is general for any growth model. Expansion of rate (33) into a Maclaurin series by small temperature and 
concentration perturbations takes the form  

( )S m mV V T mC κ≈ + Λ ⋅ − + + Γ                               (34) 
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For the model of normal growth [23]  

n k n nV h T h= ∆ Λ =                                         (35) 

For the model of screw dislocation growth 
2 2d k d d SV h T h v= ∆ Λ =                                     (36) 

For growth involving two-dimensional nucleation 

2 2
1

2 1

exp lnS S
d

k

V VhV h
T h h

   
= − Λ =   ∆   

                           (37) 

Write linear approximation (34) by small temperature and concentration perturbations as  

0 0S m S T CV V V V f fθ γ≈ + = + +                                   (38) 

Here mV  denotes the small perturbation of the interface velocity, the small perturbations of temperature and 
concentration take the form 

( ) ( )0 0 expT mf T Ky ωτ= +  

( ) ( )0 0 expC mf C Ky ωτ= +  

We will seek mV  as the linear combination of the temperature and concentration perturbations: 

0 0m T CV f fθ γ= +                                       (39) 

where θ  and γ  are as yet unknown expressions. Substituting (39) into (34) yields  

( )0 0 0 0T C T Cf f f mfθ γ κ+ = Λ + + Γ                         (40) 

By definition, the curvature is given by 

( )
( )

2

,1
div div

1
y

y

F

F
κ

 −
 = − = −
 + 

n                           (41) 

To explain the curvature in temperature and concentration perturbations, we first find an expansion for the 
function F . To this end, we pass to the curvilinear coordinates in (15): 

( ) ( ) ( ){ } ( )
( )

0 0

1
0 0

0, , 0, , , 0, , d dk S T C

S T C S

F y V T T y C y V f f

V f f F f

τ τ τ τ θ γ τ

τ θ γ ω−

= ∆ = + +  

= + + = +

∫ ∫           (42) 

where 

0 0T Cf f
f

θ γ
ω
+

=                                         (43) 

Differentiating (42), we derive from (41) 

( )
( )

( )

( )( )

32 4

322 22 2

, ,

1 , 1 ,

K f y K f y

K f y K f y

τ τ
κ

τ τ

= −
+ +

 

Expansion into series gives the expression  

( ) ( ) ( )( )3 72 43, , O ,
2

K f y K f y f yκ τ τ τ≈ − +  

In the linear approximation 
2 .K fκ =                                           (44) 

Substituting (43) in (40) yields 
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( )0 0T Cf f mfω κ= Λ ⋅ − + + Γ                                 (45) 

From Equations (44) and (45), we find expressions for f and that are linear in temperature and concentration 
perturbations: 

( )0 0
2

T Cf mf
f

K ω
Λ −

=
ΛΓ −

                                  (46) 

( )2
0 0
2

T CK f mf
K

κ
ω

Λ −
=

ΛΓ −
 

It follows from (46) and (43) that 

( )0 0 0 0
2

T C T Cf mf f f
K

θ γ
ωω

Λ − +
=

ΛΓ −
 

Grouping the coefficients by the temperature and concentration perturbations, we derive a set of equations for 
the unknown coefficients. From this set, we find 

2K
ωθ

ω
= Λ

ΛΓ −
                                        (47) 

2m m
K
ωγ θ

ω
= − Λ = −

ΛΓ −
                                (48) 

A similar calculation was made in [13]. The dispersion equation is also found as in [18]. Find the solution of 
problem (26)-(32), (38). On the interface the solution yields a linear system of equations with respect to co- 
efficients ( )0 0m mT T=  and ( )0 0m mC C=  

( ) 0 0 0T T m mS S T Vη′ − − =                                    (49) 

( ) ( )0 0
2

2 1 1 0V
eff m eff m

eff

k
S k C k V

k
ξ

 
 + − − − + =     

                (50) 

(49) is the solution of the heat conduction equation, (50) is the solution of the diffusion problem. Here TS ′ , 
TS , S  are the roots of the characteristic equations for Equations (26)-(28), η  and ξ  are dependent on the 

parameters of the system with 0ξ ≠  at 1effk = . Substituting (38) in (49), (50), we obtain a dispersion 
equation in the form 

( ) ( ) ( )2 2
1 (2 ) 1 0V V

T T eff eff
eff eff

k k
S S S k k

k k
γ

ηθ ξγ ξ ηγθ
   

′ − − + − + + + − − =      
      

       (51) 

where η  and ξ  are the parameters depending on time frequency and the wave number. The following 
notation is also introduced 

d
d

S

eff
V

V V

k
k

V
=

=  

To obtain an analytical solution for the instability period, consider dispersion Equation (51) at zero frequency 
2 0ω = . In this case all the parameters of the dispersion equation are real numbers. We consider a stationary 

mode with 1effk ≈ , but with fulfilled inequalities 1effk >  and 1Vk  . Let the dispersion equation be written 
as  

2
1 0

2
V

T T
V

k
S S

S k
γ

ηθ
γ

 
′ − − + = + 

 

The fraction in the brackets is expanded into series by the small parameter 

2
1 0V

T T
k

S S
S
γ

ηθ ′ − − + = 
 

                                 (52) 
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For further simplifications the results of numerical calculations are required. To this end, we specify the 
values of the segregation coefficient ( ) 1.03k eff = . The parameter value ( )k eff  is difficult to explain only by 
the influence of adsorption. In [24] [25] it is shown that at concentrations close to the eutectic in front of the 
interface it may be formed layer of non-equilibrium solution. Layer non-equilibrium solution gives yields a 
value of distribution coefficient close to unity but less than unity. However, there are several works, such as [26] 
[27], in which it is shown that the dependence of ( )k eff  on V can be an increasing function. Consequently, in 
the case of non-equilibrium layer, a small adsorption effect leads to the values of the distribution coefficient is 
more than unity. As in [8] [9] [11] [12] assume the external field temperature gradient be 4 1

0 10 Kmrφ −= , 
6 2 15 10 m s ,rχ
− −= × ⋅  6 110 J kg ,rε

−= ⋅  8 2 110 m srD − −= ⋅ , 112.2 10dh = × , 0.05m = − , 510−Γ = . η  can be 
expressed as  

( )2 1
SV
εη β= +  

As shown by the numerical calculations made in [18], 1β  . Substitution of this condition in (52) yields 

22 1 0V
T T

S

k
S S

V S
γε θ ′ − − + = 

 
                         (53) 

Characteristic numbers TS ′  and S  take the form 
2

21 1T
YS

DD
χ χ δ′ ′

′ = − + + +                               (54) 

2

21 1T
YS

DD
χ χδ

= − + + +  

1 1S Y δ= − + + +  
where 

1
2

4

S

D
V
ω

δ =  

2 2
2

2

4

S

D KY
V

=  

Substitution of the numerical values leads to the relationships  
2

2 2

41
S

Y
DV D

χ φ χ δ χ′ ′ ′
    

2

2 2

41
S

Y
DV D

χφ χδ χ
    

1 Yδ   
which bring the characteristic numbers (54) to the form 

1TS Y
D
χ′′ = − +  

1TS Y
D
χ

= − −  

1S Y= − −  
Substituting the expressions for the characteristic numbers in dispersion Equation (53) 

( ) ( )2 2 0V
S

Y Y k
D V

εθχ χ γ′ + − − =  

Whence we find 
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( )
( )4

1 1 V S

S

k VDY
V D

γ χ χεθ
χ χ εθ

 ′ +
 = ± −
 ′ +  

 

At 0Vk =  the minus before the root gives the trivial value 0Y = . Therefore, we consider the solution with 
a positive root. Linearize the expression by Vk . 

( )
2 2 0V

S

DY k
V

εθ γ
χ χ

− + =
′ +

                            (55) 

Expression (39) is written as 

1Y
Y D

θ
δ

ΛΓ = Λ − ΛΓ + 
                                (56) 

And substitute (56) and (40) in (55). Following elementary transformations, the equation obtained is written 
as a fraction. Equating the numerator to zero, we arrive at an equation as related to Y  

( ) ( ) ( ) ( )( )
3

2 0S S V SV Y DV Y D k mV Dχ χ χ χ δ ε χ χ δ′ ′ ′+ ΛΓ + + + + + Λ =        (57) 

Instead of δ , we introduce the relationship NYδ = , where N Yδ= . According to the numerical cal- 
culation [11], at the parameters specified  

Yδ                                            (58) 
Thus,  1N  and from (57) we find  

( )( )
( )( )

2 V S

S

D N D k mV
Y

V DN
ε χ χ

χ χ

′Λ + +
=

′ + ΛΓ +
 

Whence we find the period of spatial perturbations  

( )
( )1

2π
1

V S NDD k mV
χ χ

λ
ε χ χ−

′ + ΛΓ = + ′Λ + +  
                          (59) 

The expression obtained is distinguished from the time expression in [13] by the dependence of time on the 
liquidus slope and the diffusion coefficient. In the limit 0Vk =  we obtain the expression of [13]. 

Condition (58) is essential for obtaining the desired solution. The validity of this condition follows from the 
numerical calculations of the solutions of the system dispersion equation [11] [12]. Substituting expressions (35) 
- (37) in (59), for normal growth model we find 

( )
( )1

2π
1 n

n
n V S

h
Dh D k mV

χ χ
λ

ε χ χ−

′ + Γ = + ′+ +  
 

It should also be noted that in contrast to the case when interface diffusion is neglected, in normal growth the 
time depends on the rate of the stationary mode. For the screw dislocation growth model  

( )
( )1

22π
1

2
S n

d
d S V S

V h
Dh V D k mV

χ χ
λ

ε χ χ−

 ′ Γ+
= × +  ′+ +  

                   (60) 

The growth model for two-dimensional nucleation yields  

( )

( )

2
2

2
11

2
1

2π
1 ln

ln

S S
e

S
S V S

V h V
D hVV h D k mV

h

χ χ
λ

ε χ χ−

 ′ +  Γ = × +       ′+ + 
 

           (61) 

The expressions obtained for the morphological instability period are distinguished from the similar depen- 
dences in [13] by the presence of the parameters of the diffusion problem. But these expressions for small values 
of kV are equal expressions obtained in [13]. In this case the expressions (60,61) can be rewrite as  

1d A R Bλ = +  and ( ) 12 2
1 2 lne R A A R Bλ

−−= + +  accordingly. Here 1 2
SR V −= , A1, A2 and B are constant. In 
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the Figure 1 we have plotted several dependences ( )d Rλ  and ( )e Rλ . Values of 1A , 2A  and B  con- stant 
correspond to the experimental dependence of the eutectic pattern period on the interface velocity reported in 
[14]. These dependences can be divided into three families. Most of them are straight lines coming from the 
origin. They correspond to plots 1 ( )2 3 2Al O ZrO− , 2 ( )Pb Sn− , 3 ( )2ZrO MgO− , 4 ( )2 4MgO MgAl O−  
and 5 ( )2 2 3ZrO Y O−  in Figure 1. For the plot 6 ( CaO NiO−  composition), the dependence is a straight line 
intersecting the axis of ordinates above the origin. For the plot 7 ( 5 4 11 2 4Zn B O ZnB O−  composition), the depen- 
dence is an increasing nonlinear curve. The analytical dependences plotted in the Figure 1 coincide with the 
experimental data up an accuracy of construction. 

6. Discussion and Conclusions 
The accomplished analysis of the boundary conditions reveals the reasons for interface instability and enables 
their simple physical explanation. Interface instability indicates that at small concentration or temperature 
perturbations the interface velocity increases and (in the linear approximation) tends to infinity. Let us outline 
the reasons for interface instability. Kinetic overcooling is driving force of the crystallization. The interface is 
moveless if the kinetic overcooling is zero and the interface velocity increases monotonically with increasing 
kinetic overcooling. The latter changes for two reasons: on changing the equilibrium temperature of phase 
transition or interface temperature. One of the reasons of instability is the change of the temperature of phase 
transition due to the changing concentration on the interface caused by interface adsorption. According to Hall 
[21] [22], to maintain the composition of the adsorbed layer, the component atoms must diffuse from the melt to 
the crystal the more quickly, than interface velocity is more. Hence, a sufficiently high velocity of interface 
movement may give rise to a concentration gradient of the dissolved component in the melt in the direction 
opposite to that corresponding to low velocity. The change of the gradient direction corresponds to the transition 
of the effective distribution coefficient through unity. In this case a component-depleted region, rather than an 
accumulation region corresponding to the equilibrium phase diagram, is formed in front of the crystal. The 
values of the effective distribution coefficient will pass from the region 1effk <  with equilibrium distribution 
coefficient 0k  into the range of values 1effk > . In this range the increasing stationary interface velocity leads 
to decreasing component concentration on the interface, increasing equilibrium temperature of phase transition 
and, as a result, increasing kinetic overcooling and further increase of the interface rate. This instability can be 
illustrated by a simple diagram. Consider the distribution of concentration at 1k >  and 0m < . The diagram of 
instability occurrence can be shown as  

( ) ( )0 0e kC T T V C↑⇒ ↓⇒ ∆ ↓⇒ ↓⇒ ↑  

Let the stationary phase transition regime proceed in the system. Assume that with constant ( )0T  the 
concentration on the interface ( )0C  increases by ( )0C∆ . Since in this case 1k >  and 0m < , the equili- 
brium temperature of the liquid phase transition on the interface becomes somewhat smaller along with the  

 

 
Figure 1. Dependences period of spatial perturbations on R for 
experimental dependences of [13].                        
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kinetic overcooling. This also involves a decrease in the interface velocity and, hence, an increased concen- 
tration of liquid on the interface. Therefore, the initial increase of concentration leads to its further increase. The 
system is unstable. In the interface velocity region, where 1effk < , the component concentration on the interface 
increases with increasing interface rate, the equilibrium temperature of phase transition decreases which results 
in decreasing kinetic overcooling and interface velocity. The system is stable. 

The well-known concentration instability related to the so-called concentration overcooling is caused by a 
simultaneous change of equilibrium temperature of phase transition and interface temperature. If the temperature 
gradient of the liquid solution on the interface is less than the gradient of the equilibrium temperature of phase 
transition, the interface stability may fail. This can be schematically described as follows. Let interface tem- 
perature ( )0T  decrease by virtue of fluctuations. Decreasing temperature involves an increase in kinetic over- 
cooling and, hence, an increase of the interface velocity. This manifests itself as a ridge occurring in the region 
of concentration overcooling, i.e. the equilibrium temperature of phase transition on the interface gets higher. 
This change involves a further increase of the kinetic overcooling and the interface velocity. Thus, the region of 
concentration overcooling brings about interface instability. On the other hand, at 1effk < , in the situation in 
question, the increase in the interface velocity leads to increasing component concentration on the interface and, 
as a consequence, to decreasing kinetic overcooling and interface velocity. These two opposite processes can be 
illustrated by a diagram. 

eT v⇒ ↑⇒ ↑  

0 kT T v↓⇒ ∆ ↑⇒ ↑  

0 eC T v⇒ ↑⇒ ↓⇒ ↓  

We have obtained opposite changes of equilibrium temperature of phase transition. On the one hand, it 
increases due to a local movement of the interface upon temperature fluctuation, on the other hand, it decreases 
due to edging of the component by the interface and the change of kinetic overcooling. The two opposite 
processes can lead to or fail to lead to interface instability which depends on the external conditions as well as 
the physical parameters of the system. 

In conclusion, an additional comment should be made on the setting of liquid solution crystallization 
problems. In [11]-[13] the obtained dependence of the component distribution period on the interface on the 
interface velocity was used to explain the dependence of the eutectic structure period on the crystallization rate. 
This dependence coincided with the experimental data. However, it does not seem possible to relate interface 
stability to liquid solution component decay in the stable mode using the mechanism of displacement of one of 
the components by the growing interface. Component redistribution becomes apparent when assuming that the 
overcooled liquid solution in front of the interface is unstable and disintegrates into two phases corresponding to 
the eutectic temperature [15]. In this case the interface instability determines the period of solution decay [16]. 

The assumption as to the existence of an unstable solution layer complicates significantly the setting of the 
problem. Hence, two situations are feasible. The case of metastable solution is considered in the directed crys- 
tallization theory and has been analyzed in the present paper. The unstable solution in the non-equilibrium layer 
exhibits outward diffusion and tends to decay into equilibrium zones. This creates a region where the diffusion 
of the components differs from their diffusion in solid and liquid quasi-equilibrium solutions. In such a problem 
there occurs an additional interface separating the non-equilibrium and quasi-equilibrium liquid phases. Then 
the component distribution is described by three rather than two diffusion equations. As a result, the equilibrium 
phase diagram cannot be used to determine the values of concentration in the overcooled layer, or, more pre-
cisely, the condition of equality of chemical potentials is not valid on the solution interface. Therefore, one has 
to apply the conditions connecting the parameters of the system on the basis of the dynamics of the physical 
process. All the phases differ in component concentrations and diffusion coefficients. The analysis of the prob-
lem is outlined in [24] [28]. The setting and the solution are based on thermodynamics of multicomponent solu-
tions involving a concept of osmotic pressure. The latter is caused by the difference in the mobility of the com-
ponents [29] which occurs on the interfaces in question. To obtain the boundary conditions for interfaces with 
non-equilibrium solutions, it is sufficient to abandon the mobility equality condition, i.e. the component diffu-
sion coefficients. The idea is not new and has been used to explain the Kirkendall effect in the known experi-
ments on atomic plane displacement in different contacting solid materiales [29]. In the one-dimensional case 
the stationary diffusion problem consists of three equations whose solutions are determined by six integrations 
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constants. Four of them are defined by the following boundary conditions. 
1) Specified concentration in infinitely remote point of quasi-equilibrium solution. 
2) Zero diffusion coefficient in solid phase. 
3) Equality of constant concentration plane velocity on both sides of solid phase-non-equilibrium liquid inter- 

face. 
4) Equality of constant concentration plane velocity on both sides of non-equilibrium liquid - quasi-equili- 

brium liquid interface. 
The other two constants are found from the condition of mass component flow conservation. Besides these 

conditions, the concentration in the solid phase and the quasi-equilibrium phase concentration on the non- 
equilibrium solution interface are bound by an equilibrium phase diagram which determines the coordinate of 
the interface between the non-equilibrium and quasi-equilibrium phases. The problem has an analytical solution 
at a small difference between the component diffusion coefficients [24] [28]. The analysis of the problem is 
beyond the scope of this paper. 

Purpose of the article is to build a model of crystallization, which takes into account the processes that signi- 
ficantly affect on the phase transition from liquid to solid phase. For this we use the boundary value problem 
heat and mass transfer, which takes into account the following phenomena. 

1) Heat exchange with the environment, which forms the temperature field in the crystallizing solution. 
2) Nonequilibrium redistribution of components between the liquid and solid phases due to interface adsorp- 

tion and various solubility of components in the phases. 
3) Kinetics of attachment of particles to the surface of the solid phase, the growth rate of which depends on 

the overcooling of the solution in front of the interface. 
4) In this paper, we also take into account the state of the overcooled solution. Overcooled solution can be 

found in the metastable or nonequilibrium state [15] [16]. 
The resulting model can describe many cases of the component distribution in the solid phase. For example, 

the periodic eutectic structure is formed due to the interaction of the instability of the phase boundary, spinodal 
decay of an unstable solution, due to the kinetics of attachment of particles to the growing solid phase and due to 
the interphase adsorption. Environmental heat transfer does not affect the dependence of the period eutectic 
structure on the growth rate because of the smallness of the corresponding term in the dispersion equation of the 
system. This explains the unsuccessful attempts to control the structure of the eutectic composites by environ- 
mental heat transfer in the crystallization zone. 
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