

On the Structure of Infinitesimal **Automorphisms of the Poisson-Lie Group** $SU(2,\mathbb{R})$

Bousselham Ganbouri

Department of Mathematics, Faculty of Sciences, Ibn Tofail University, Kenitra, Morocco Email: g.busslem@gmail.com

Received 6 January 2014; revised 6 February 2014; accepted 15 February 2014

Copyright © 2014 by author and Scientific Research Publishing Inc. This work is licensed under the Creative Commons Attribution International License (CC BY). http://creativecommons.org/licenses/by/4.0/

0 3 **Open Access**

Abstract

We study the Poisson-Lie structures on the group $SU(2,\mathbb{R})$. We calculate all Poisson-Lie structures on $SU(2,\mathbb{R})$ through the correspondence with Lie bialgebra structures on its Lie algebra $su(2,\mathbb{R})$. We show that all these structures are linearizable in the neighborhood of the unity of the group $SU(2,\mathbb{R})$. Finally, we show that the Lie algebra consisting of all infinitesimal automorphisms is strictly contained in the Lie algebra consisting of Hamiltonian vector fields.

Keywords

Poisson-Lie Structure, Lie Bialgebra, Hamiltonian, Poisson Automorphism, Linearization

1. Introduction

Let G be a Lie group. A Poisson-Lie structure on G is a Poisson structure on G for which the group multiplication is a Poisson map. Then as is usual in [1]-[3], this is equal to giving an antisymmetric contravariant 2-tensor π on G which satisfies Jacobi identity and the relation

$$\pi(xy) = l_{x_*}\pi(y) + r_{y_*}\pi(x), \quad \forall x, y \in G,$$
(1)

where $l_{x_{x_{x_{x}}}}$ and $r_{y_{x_{x}}}$ respectively denote the left and right translations in G by x and y. We note that a Poisson-Lie structure π has rank zero at a neutral element e of G, *i.e.*, $\pi(e) = 0$.

If we choose local coordinates (x_1, x_2, \dots, x_n) in a neighborhood U of neutral element e of G, the Poisson-Lie structure π reads

How to cite this paper: Ganbouri, B. (2014) On the Structure of Infinitesimal Automorphisms of the Poisson-Lie Group $SU(2,\mathbb{R})$. Advances in Pure Mathematics, 4, 93-97. <u>http://dx.doi.org/10.4236/apm.2014.44015</u>

$$\pi(x) = \sum \pi_{ij}(x) \partial x_i \wedge \partial x_j, \quad x \in U,$$
(2)

where π_{ii} are smooth functions vanishing at e and

$$\left\{x_{i}, x_{j}\right\}\left(x\right) = \pi_{ij}\left(x\right), \quad x \in U,$$
(3)

where $\{.,.\}$ is the Poisson bracket associated to π . By this Poisson bracket, $C^{\infty}(G)$ becomes a Lie algebra.

Let \mathcal{G} be a Lie algebra of G. The derivative of π at e defines a skewsymetric co-commutator map $\delta: \mathcal{G} \to \mathcal{G} \land \mathcal{G}$ such that:

1) The map δ is a 1-cocycle, *i.e.*,

$$\delta([X,Y]) = ad_X \delta(Y) - ad_Y \delta(X), \quad \forall X, Y \in \mathcal{G}.$$
(4)

2) The dual map $\delta^* : \mathcal{G}^* \wedge \mathcal{G}^* \to \mathcal{G}^*$ is a Lie bracket on \mathcal{G}^* .

The map δ is said a Lie bialgebra structure associated to π . Conversely, if *G* is simply connected, any Lie bialgebra structure $\delta: \mathcal{G} \to \mathcal{G} \land \mathcal{G}$ on the Lie algebra $\mathcal{G} =: Lie(G)$ can be integrated to define a unique Poisson-Lie structure π on *G* such that $d_e \pi = \delta$.

The bialgebra structure δ is called a *coboundary* one when there exists an skewsymmetric element r of $\mathcal{G} \wedge \mathcal{G}$ (the classical r-matrix) such that

$$\delta(S) = ad_S r, \quad \forall S \in \mathcal{G}.$$
⁽⁵⁾

Both properties 1) and 2) imply that the element r has to be a constant solution of the modified classical Yang-Baxter equation (mCYBE) [4]-[6]:

$$ad_{s}[r,r] = 0, \qquad S \in \mathcal{G}. \tag{6}$$

Therefore, a constant solution of mCYBE r on a given Lie algebra \mathcal{G} provide a coboundary Poisson-Lie structure π on (connected and simply connected) group G given by

$$\pi(s) = r_{s_*}r - l_{s_*}r, \quad \forall s \in G, \tag{7}$$

where l_{s_*} and r_{s_*} denote respectively the left and right translations in G by s.

Finally, recall that for semisimple Lie algebras, all Lie bialgebra structures are coboundaries, and the corresponding Poisson-Lie structures can be fully solved through the classical r-matrices.

In this work, We shall treat the case of the Poisson-Lie group $SU(2,\mathbb{R})$. We will calculate, firstly, all Poisson-Lie structures through the correspondence with Lie bialgebra; secondly, we will show that these Poisson-Lie structures are linearizable in a neighborhood of the unity e of the group $SU(2,\mathbb{R})$ and, finally, we shall study infinitesimal automorphism of $SU(2,\mathbb{R})$ with a linear Poisson-Lie structure, and show that the Lie algebra \mathcal{A} , consisting of all infinitesimal automorphisms is strictly contained in the Lie algebra \mathcal{H} consisting of Hamiltonian vector fields.

2. The Group $SU(2,\mathbb{R})$ and Lie Algebra $su(2,\mathbb{R})$

The special unitary group $SU(2,\mathbb{R})$ is defined by

$$SU(2,\mathbb{R}) = \left\{ \begin{pmatrix} \alpha & \beta \\ -\overline{\beta} & \overline{\alpha} \end{pmatrix} : \alpha, \beta \in \mathbb{C}, \alpha \overline{\alpha} + \beta \overline{\beta} = 1 \right\}.$$

Let $\alpha = x + iy$ and $\beta = z + it$. $SU(2, \mathbb{R})$ can be identified with the unit sphere \mathbb{S}^3 in \mathbb{R}^4 with the unity e = (1, 0, 0, 0).

The Lie algebra $su(2,\mathbb{R})$ of group $SU(2,\mathbb{R})$ is defined by

$$su(2,\mathbb{R}) = \{S \in \mathbb{C}^{2\times 2} : {}^{t}\overline{S} + S = 0 \text{ and } Tr(S) = 0\}.$$

Let

$$e_1 = \begin{pmatrix} i & 0 \\ 0 & -i \end{pmatrix}; e_2 = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}; e_3 = \begin{pmatrix} 0 & i \\ i & 0 \end{pmatrix};$$

a basis of $su(2,\mathbb{R})$. The Lie bracket on $su(2,\mathbb{R})$ is defined by

$$[e_3, e_1] = 2e_2; [e_3, e_2] = -2e_1; [e_1, e_2] = 2e_3.$$

Through a straightforward computation, the left invariant fields associated to this basis had this local expression

$$\begin{split} X &= -y\partial_x + x\partial_y + t\partial_z - z\partial_t, \\ Y &= -z\partial_x - t\partial_y + x\partial_z + y\partial_t, \\ Z &= -t\partial_x + z\partial_y - y\partial_z + x\partial_t. \end{split}$$

3. The Lie Bialgebra Structure on $su(2,\mathbb{R})$ and the Poisson Lie Structure on $SU(2,\mathbb{R})$

3.1. Lie Bialgebra Structures on $su(2,\mathbb{R})$

Recall that the Lie algebra $su(2,\mathbb{R})$ is semisimple. Then, all Lie bialgebra structures on $su(2,\mathbb{R})$ are coboundaries, there exists an skew symmetric element r of $su(2,\mathbb{R}) \wedge su(2,\mathbb{R})$ such that the cocommutator δ is given by

$$\delta(S) = ad_S r, \quad \forall S \in su(2, \mathbb{R}).$$

We stress that the element r satisfies the classical Yang-Baxter Equation (CYBE) (6). Through a long but straightforward computation, we show that these solutions are of the form

$$r = k \cdot e_1 \wedge e_2, \quad k \in \mathbb{R}^*_+. \tag{8}$$

So any Lie bialgebra structure of $su(2,\mathbb{R})$ can be written as

$$\delta(e_1) = -2ke_3 \wedge e_1, \quad \delta(e_2) = 2ke_2 \wedge e_3, \quad \delta(e_3) = 0.$$
(9)

3.2. Poisson-Lie Structures on $SU(2,\mathbb{R})$

Since the Lie bialgebra structures δ on $su(2,\mathbb{R})$ are coboundaries, the Poisson-Lie structures on $SU(2,\mathbb{R})$ corresponding to δ are given by

$$\pi(s) = r_{s_*}r - l_{s_*}r, \quad \forall s \in SU(2,\mathbb{R}),$$

where *r* is the solution of Yang-Baxter equation given by (8) and r_{x_*} and l_{y_*} respectively denote the right and left translations in $SU(2,\mathbb{R})$ by *s*. Then, using $\alpha = x + iy$, $\beta = z + it$ and $x^2 + y^2 + z^2 + t^2 = 1$, one gets

$$\pi(x, y, z, t) = 2k(xz - yt)Y \wedge Z - 2k(xy + zt)Z \wedge X + 2k(y^2 + z^2)X \wedge Y.$$
(10)

Let

$$\pi_1 = 2k(xz - yt); \quad \pi_2 = -2k(xy + zt); \quad \pi_3 = 2k(y^2 + z^2), \tag{11}$$

be the components of π in the basis $(Y \land X, Z \land X, X \land Y)$ of the bivector field.

4. Linearization of Poisson-Lie Structures on $SU(2,\mathbb{R})$

By taking back the formula (2), The Taylor series of the functions π_{ii} reads

$$\pi_{ij}\left(x\right) = c_{ij}^{k} x^{k} + \theta_{ij}^{k}\left(x\right) x^{k}, \qquad (12)$$

where $c_{ij}^{k} = \frac{\partial \pi_{ij}}{\partial x^{k}}(e)$ are the structure constants of a Lie algebra \mathcal{G}^{*} , dual of a Lie algebra \mathcal{G} , and the θ_{ij}^{k} are smooth functions vanishing at e.

The term $c_{ii}^k x^k$ of (12) definines a linear Poisson structure, called the linear part of π . The *linearization*

problem for a structure π around e is the following [7] [8]:

Linearization problem. Are there new coordinates where the functions θ_{ij}^k vanish identically, so that the *Poisson structure is linear in these coordinates*?

Let us notice that the Lie bialgebra structure δ associated to π defines a linear Poisson-Lie structure on the additive group \mathcal{G} ($\mathcal{G} \simeq \mathbb{R}^n$) that can be expressed as follows

$$\delta(a) = \sum c_{ij}^k a_k \partial_i \wedge \partial_j, \quad a = (a_1, \cdots, a_n) \in \mathbb{R}^n, \tag{13}$$

where $(\partial_1, \dots, \partial_n)$ is the canonical basis of \mathbb{R}^n .

Let us notice that (13) coincides with the linear part of π , so, the linearization problem would be the following:

There is a local Poisson diffeomorphism $\varphi: G \to \mathcal{G}$ of a neighborhood in e of G to a neighborhood of 0 in \mathcal{G} ?

If $(\varphi_1, \dots, \varphi_n)$ are the components of φ , then φ is solution of the system of equations

$$\left\{\varphi_i,\varphi_j\right\} = \sum c_{ij}^k \varphi_k, \quad 1 \le i < j \le n.$$
(14)

For the Poisson-Lie structure on $SU(2,\mathbb{R})$ given by (10), the system of equations (14) would be

$$\{\varphi_1, \varphi_2\} = 0, \quad \{\varphi_2, \varphi_3\} = 2k\varphi_2, \quad \{\varphi_3, \varphi_1\} = -2k\varphi_1.$$
 (15)

With the identification of the subgroups of the singular points and the symplectic leaves of $SU(2,\mathbb{R})$ and $su(2,\mathbb{R})$, we have:

Proposition 1. The map $\varphi = (\varphi_1, \varphi_2, \varphi_3)$: $\varphi(x, y, z, t) = \left(y, z, \operatorname{Arctan} \frac{t}{x}\right)$ is a diffeomorphism in the neighborhood of e = (1, 0, 0, 0) such that $\varphi(e) = 0$ and

$$\{\varphi_1, \varphi_2\} = 0, \quad \{\varphi_2, \varphi_3\} = 2k\varphi_2, \quad \{\varphi_3, \varphi_1\} = -2k\varphi_1$$

So, the Poisson-Lie structure π on $SU(2,\mathbb{R})$ is linear in the new variables

$$u = y; \quad v = z; \quad w = \operatorname{Arctan} \frac{t}{x},$$
 (16)

and will be written

$$\pi(u, v, w) = 2kv \cdot \partial_v \wedge \partial_w - 2ku \cdot \partial_w \wedge \partial_u.$$
⁽¹⁷⁾

The Poisson bracket associated to π reads

$$\{u, v\} = 0, \quad \{v, w\} = 2kv, \quad \{w, u\} = -2ku.$$
 (18)

5. Casimir Functions and Infinitesimal Automorphisms on $SU(2,\mathbb{R})$

Recall that for $f \in C^{\infty}(SU(2,\mathbb{R}))$, $\{f,.\}$ defines a derivation of $C^{\infty}(SU(2,\mathbb{R}))$. Hence there corresponds a vector field χ_f , which we call the Hamiltonian vector field. We denote by \mathcal{H} the Lie algebra of Hamiltonian vector fields.

A Casimir function on $SU(2,\mathbb{R})$ is a function C such that $\{C, f\} = 0$ for all function f. On the other words, C is an element of the center of the Lie algebra $C^{\infty}(SU(2,\mathbb{R}))$. By simple consideration, we know

that for each Casimir function *C* there exists a function ϕ of one variable such that $C(u, v, w) = \phi\left(\frac{u}{v}\right)$.

Each symplectic leaf is the common level manifold of casimir functions. So, these have for equation:

$$\lambda u + \mu v = 0 \quad (\lambda, \mu \in \mathbb{R}; (\lambda, \mu) \neq (0, 0)),$$

and hence are spheres.

By an automorphism of $SU(2,\mathbb{R})$, we mean a smooth vector field ξ on $SU(2,\mathbb{R})$ such that

$$\mathcal{L}_{\varepsilon}\pi = 0, \tag{19}$$

where \mathcal{L}_{ξ} denotes the Lie derivative along ξ .

If we denote by \mathcal{A} the Lie algebra consisting of all infinitesimal automorphism, it is easy to see that \mathcal{H} is an ideal of \mathcal{A} . Let $\xi = f\partial_u + g\partial_v + h\partial_w$ be a vector field of \mathcal{A} . Then three function f, g and h must satisfy:

$$\begin{cases} f = u\partial_u f + v\partial_v f + u\partial_w h; \\ g = u\partial_u g + v\partial_v g + v\partial_w h; \\ v\partial_w f = u\partial_w g. \end{cases}$$
(20)

Now we shall clarify the gap between \mathcal{H} and \mathcal{A} . We consider the vector field

$$\mathcal{U} = \pi_1 [Y, Z] + \pi_2 [Z, X] + \pi_3 [X, Y], \tag{21}$$

where (π_1, π_2, π_3) are the components of the structure π in the basis $(Y \land Z, Z \land X, X \land Y)$ given by (11). In the local coordinates (u, v, w) given by (14), this vector field reads

$$\mathcal{U} = -4kv\partial_{u} + 4ku\partial_{v}.\tag{22}$$

A simple check shows that the components of \mathcal{U} satisfy the relations (20). So, the vector field \mathcal{U} belongs to \mathcal{A} . In other hand, \mathcal{U} is locally Hamiltonian if and only if there exist a smooth function F in a neighborhood of the unity e of the group $SU(2,\mathbb{R})$ such that $\mathcal{U} = \chi_F$, this is translated by the fact that F is a solution of the following system of equations

$$\begin{cases} u\partial_{w} = -v, \\ v\partial_{w} = u \\ u\partial_{u} + v\partial_{v} = 0. \end{cases}$$
(23)

It is easy to see that (23) does not admit solutions. Hence \mathcal{U} does not belong \mathcal{H} . Thus we have proved: **Proposition 2.** The ideal \mathcal{H} is strictly contained in the Lie algebra \mathcal{A} .

In terms of Poisson cohomology [9], recall that the first Poisson cohomology group $H^1_{\pi}(SU(2,\mathbb{R}))$ is the quotient of the Lie algebra \mathcal{A} by its ideal \mathcal{H} . Then, by Proposition 2, we show that the vector field \mathcal{U} defines a non trivial class $[\mathcal{U}] \in H^1_{\pi}(SU(2,\mathbb{R}))$. On the other hand, this result shows that the classical result due to Conn [10] [11] stating that for a Poisson structure formally linearizable around a singular point any local Poisson automorphism is Hamiltonian, and not just in the C^{∞} category.

References

- [1] Drinfeld's, V.G. (1983) Hamiltonian Structures on Lie Groups, Lie Bialgebras and the Geometric Meaning of the Classical Yang-Baxter Equations. *Soviet Mathematics—Doklady*, **27**, 68-71.
- Drinfeld, V.G. (1986) Quantum Groups, Proceedings of the International Congress of Mathematicians, Berkley, 3-11 August 1986, 789-820.
- [3] Lu, J.H. and Weinstein, A. (1990) Poisson-Lie Group, Dressing Transformations and Bruhat Decomposition. *Journal of Differential Geometry*, 31, 301-599.
- Semenove-Tian-Shasky, M.A. (1983) What Is a Classical r-Matrix. Functional Analysis and Its Applications, 17, 259-272. <u>http://dx.doi.org/10.1007/BF01076717</u>
- [5] Chari, V. and Pressley, A. (1994) A Guide to Quantum Groups. Cambridge University Press, Cambridge.
- [6] Belavin, A.A. and Drinfeld, V.G. (1983) Solution of the Classical Yang-Baxter Equation for Simple Lie Algebras. *Functional Analysis and Its Applications*, 16, 159-180. <u>http://dx.doi.org/10.1007/BF01081585</u>
- [7] Chloup-Arnould, V. (1997) Linearization of Some Poisson-Lie Tensor. Journal of Geometry and Physics, 24, 145-195.
- [8] Dufour, J.P. (1990) Linarisation de certaines structures de Poisson. Journal of Differential Geometry, 32, 415-428.
- [9] Vaisman, I. (1990) Remarks on the Lichnerowicz-Poisson Cohomology. Annales de l'Institut Fourier, 40, 951-963. http://dx.doi.org/10.5802/aif.1243
- [10] Conn, J. (1984) Normal Forms for Analytic Poisson Structures. Annals of Mathematics, 119, 576-601. http://dx.doi.org/10.2307/2007086
- [11] Conn, J. (1985) Normal Forms for Smooth Poisson Structures. Annals of Mathematics, 121, 565-593. <u>http://dx.doi.org/10.2307/1971210</u>