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Abstract 
We study the Poisson-Lie structures on the group ( )2,SU  . We calculate all Poisson-Lie struc- 

tures on ( )2,SU   through the correspondence with Lie bialgebra structures on its Lie algebra 

( )2,su  . We show that all these structures are linearizable in the neighborhood of the unity of the 

group ( )2,SU  . Finally, we show that the Lie algebra consisting of all infinitesimal automor- 
phisms is strictly contained in the Lie algebra consisting of Hamiltonian vector fields. 

 
Keywords 
Poisson-Lie Structure, Lie Bialgebra, Hamiltonian, Poisson Automorphism, Linearization 

 
 

1. Introduction 
Let G  be a Lie group. A Poisson-Lie structure on G  is a Poisson structure on G  for which the group mul- 
tiplication is a Poisson map. Then as is usual in [1]-[3], this is equal to giving an antisymmetric contravariant 
2-tensor π  on G  which satisfies Jacobi identity and the relation  

( ) ( ) ( )
* *

, , ,x yxy l y r x x y Gπ π π= + ∀ ∈                            (1) 

where 
*x

l  and 
*yr  respectively denote the left and right translations in G  by x  and y . We note that a 

Poisson-Lie structure π  has rank zero at a neutral element e  of G , i.e., ( ) 0eπ = . 
If we choose local coordinates ( )1 2, , , nx x x  in a neighborhood U  of neutral element e  of G , the Pois- 

son-Lie structure π  reads  
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( ) ( ) , ,ij i jx x x x x Uπ π= ∂ ∧ ∂ ∈∑                             (2) 

where ijπ  are smooth functions vanishing at e  and  

{ }( ) ( ), , ,i j ijx x x x x Uπ= ∈                               (3) 

where { }.,.  is the Poisson bracket associated to π . By this Poisson bracket, ( )C G∞  becomes a Lie algebra. 
Let   be a Lie algebra of G . The derivative of π  at e  defines a skewsymetric co-commutator map 
:δ → ∧    such that: 
1) The map δ  is a 1-cocycle, i.e., 

[ ]( ) ( ) ( ), , , .X YX Y ad Y ad X X Yδ δ δ= − ∀ ∈                        (4) 

2) The dual map * * * *:δ ∧ →    is a Lie bracket on * . 
The map δ  is said a Lie bialgebra structure associated to π . Conversely, if G  is simply connected, any 

Lie bialgebra structure :δ → ∧    on the Lie algebra ( ): Lie G=  can be integrated to define a unique 
Poisson-Lie structure π  on G  such that ed π δ= . 

The bialgebra structure δ  is called a coboundary one when there exists an skewsymmetric element r  of 
∧   (the classical r-matrix) such that  

( ) , .SS ad r Sδ = ∀ ∈                                 (5) 

Both properties 1) and 2) imply that the element r  has to be a constant solution of the modified classical 
Yang-Baxter equation (mCYBE) [4]-[6]:  

[ ], 0, .Sad r r S= ∈                                 (6) 

Therefore, a constant solution of mCYBE r  on a given Lie algebra   provide a coboundary Poisson-Lie 
structure π  on (connected and simply connected) group G  given by  

( )
* *

, ,s ss r r l r s Gπ = − ∀ ∈                               (7) 

where 
*s

l  and 
*s

r  denote respectively the left and right translations in G  by s . 
Finally, recall that for semisimple Lie algebras, all Lie bialgebra structures are coboundaries, and the corres- 

ponding Poisson-Lie structures can be fully solved through the classical r-matrices. 
In this work, We shall treat the case of the Poisson-Lie group ( )2,SU  . We will calculate, firstly, all Pois- 

son-Lie structures through the correspondence with Lie bialgebra; secondly, we will show that these Poisson-Lie 
structures are linearizable in a neighborhood of the unity e  of the group ( )2,SU   and, finally, we shall 
study infinitesimal automorphism of ( )2,SU   with a linear Poisson-Lie structure, and show that the Lie al- 
gebra  , consisting of all infinitesimal automorphisms is strictly contained in the Lie algebra   consisting of 
Hamiltonian vector fields.  

2. The Group ( )2,SU   and Lie Algebra ( )2,su   
The special unitary group ( )2,SU   is defined by  

( )2, : , , 1 .SU
α β

α β αα ββ
β α

   = ∈ + =  −   
   

Let x iyα = +  and z itβ = + . ( )2,SU   can be identified with the unit sphere 3  in 4  with the unity 
( )1,0,0,0e = . 

The Lie algebra ( )2,su   of group ( )2,SU   is defined by  

( ) ( ){ }2 22, : 0 and 0 .tsu S S S Tr S×= ∈ + = = 
 

Let  

1 2 3

0 0 1 0
; ; ,

0 1 0 0
i i

e e e
i i

     
= = =     − −     
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a basis of ( )2,su  . The Lie bracket on ( )2,su   is defined by  

[ ] [ ] [ ]3 1 2 3 2 1 1 2 3, 2 ; , 2 ; , 2 .e e e e e e e e e= = − =  

Through a straightforward computation, the left invariant fields associated to this basis had this local expres- 
sion  

,

,

.

x y z t

x y z t

x y z t

X y x t z

Y z t x y

Z t z y x

= − ∂ + ∂ + ∂ − ∂

= − ∂ − ∂ + ∂ + ∂

= − ∂ + ∂ − ∂ + ∂

 

3. The Lie Bialgebra Structure on ( )2,su   and the Poisson Lie Structure on 
( )2,SU   

3.1. Lie Bialgebra Structures on ( )2,su   
Recall that the Lie algebra ( )2,su   is semisimple. Then, all Lie bialgebra structures on ( )2,su   are co- 
boundaries, there exists an skew symmetric element r of ( ) ( )2, 2,su su∧   such that the cocommutator δ  
is given by  

( ) ( ), 2, .SS ad r S suδ = ∀ ∈   

We stress that the element r  satisfies the classical Yang-Baxter Equation (CYBE) (6). Through a long but 
straightforward computation, we show that these solutions are of the form  

*
1 2 , .r k e e k += ⋅ ∧ ∈                                  (8) 

So any Lie bialgebra structure of ( )2,su   can be written as  

( ) ( ) ( )1 3 1 2 2 3 32 , 2 , 0.e ke e e ke e eδ δ δ= − ∧ = ∧ =                      (9) 

3.2. Poisson-Lie Structures on ( )2,SU   
Since the Lie bialgebra structures δ  on ( )2,su   are coboundaries, the Poisson-Lie structures on ( )2,SU   
corresponding to δ  are given by  

( ) ( ), 2, ,s ss r r l r s SUπ
∗ ∗

= − ∀ ∈   

where r  is the solution of Yang-Baxter equation given by (8) and xr ∗
 and yl ∗

 respectively denote the right 
and left translations in ( )2,SU   by s . Then, using x iyα = + , z itβ = +  and 2 2 2 2 1,x y z t+ + + =  one 
gets  

( ) ( ) ( ) ( )2 2, , , 2 2 2 .x y z t k xz yt Y Z k xy zt Z X k y z X Yπ = − ∧ − + ∧ + + ∧              (10) 

Let  

( ) ( ) ( )2 2
1 2 32 ; 2 ; 2 ,k xz yt k xy zt k y zπ π π= − = − + = +                   (11) 

be the components of π  in the basis ( ), ,Y X Z X X Y∧ ∧ ∧  of the bivector field.  

4. Linearization of Poisson-Lie Structures on ( )2,SU   
By taking back the formula (2), The Taylor series of the functions ijπ  reads  

( ) ( ) ,k k k k
ij ij ijx c x x xπ θ= +                                (12) 

where ( )ijk
ij kc e

x
π∂

=
∂

 are the structure constants of a Lie algebra * , dual of a Lie algebra  , and the k
ijθ  are 

smooth functions vanishing at e . 
The term k k

ijc x  of (12) definines a linear Poisson structure, called the linear part of π . The linearization 
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problem for a structure π  around e  is the following [7] [8]: 
Linearization problem. Are there new coordinates where the functions k

ijθ  vanish identically, so that the 
Poisson structure is linear in these coordinates? 

Let us notice that the Lie bialgebra structure δ  associated to π  defines a linear Poisson-Lie structure on 
the additive group   ( )n

   that can be expressed as follows  

( ) ( )1, , , ,k n
ij k i j na c a a a aδ = ∂ ∧ ∂ = ∈∑                           (13) 

where ( )1, , n∂ ∂  is the canonical basis of n . 
Let us notice that (13) coincides with the linear part of π , so, the linearization problem would be the follow- 

ing: 
There is a local Poisson diffeomorphism : Gϕ →   of a neighborhood in e  of G to a neighborhood of 0 in 

 ? 
If ( )1, , nϕ ϕ  are the components of ϕ , then ϕ  is solution of the system of equations  

{ }, , 1 .k
i j ij kc i j nϕ ϕ ϕ= ≤ < ≤∑                              (14) 

For the Poisson-Lie structure on ( )2,SU   given by (10), the system of equations (14) would be  

{ } { } { }1 2 2 3 2 3 1 1, 0, , 2 , , 2 .k kϕ ϕ ϕ ϕ ϕ ϕ ϕ ϕ= = = −                      (15) 

With the identification of the subgroups of the singular points and the symplectic leaves of ( )2,SU   and 
( )2,su  , we have: 
Proposition 1. The map ( )1 2 3, ,ϕ ϕ ϕ ϕ= : ( ), , , , ,Arctan tx y z t y z

x
ϕ  =  

 
 is a diffeomorphism in the neigh- 

borhood of ( )1,0,0,0e =  such that ( ) 0eϕ =  and  

{ } { } { }1 2 2 3 2 3 1 1, 0, , 2 , , 2 .k kϕ ϕ ϕ ϕ ϕ ϕ ϕ ϕ= = = −  

So, the Poisson-Lie structure π  on ( )2,SU   is linear in the new variables  

; ; Arctan ,tu y v z w
x

= = =                              (16) 

and will be written  

( ), , 2 2 .v w w uu v w kv kuπ = ⋅∂ ∧ ∂ − ⋅∂ ∧ ∂                           (17) 

The Poisson bracket associated to π  reads  

{ } { } { }, 0, , 2 , , 2 .u v v w kv w u ku= = = −                          (18) 

5. Casimir Functions and Infinitesimal Automorphisms on ( )2,SU   
Recall that for ( )( )2,f C SU∞∈  , { },.f  defines a derivation of ( )( )2,C SU∞  . Hence there corresponds a 
vector field fχ , which we call the Hamiltonian vector field. We denote by   the Lie algebra of Hamiltonian 
vector fields. 

A Casimir function on ( )2,SU   is a function C  such that { }, 0C f =  for all function f . On the other 

words, C  is an element of the center of the Lie algebra ( )( )2,C SU∞  . By simple consideration, we know 

that for each Casimir function C  there exists a function φ  of one variable such that ( ), , uC u v w
v

φ  =  
 

. 

Each symplectic leaf is the common level manifold of casimir functions. So, these have for equation:  

( ) ( )( )0 , ; , 0,0 ,u vλ µ λ µ λ µ+ = ∈ ≠  

and hence are spheres. 
By an automorphism of ( )2,SU  , we mean a smooth vector field ξ  on ( )2,SU   such that  

0,ξπ =                                        (19) 

where ξ  denotes the Lie derivative along ξ . 
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If we denote by   the Lie algebra consisting of all infinitesimal automorphism, it is easy to see that   is 
an ideal of  . Let u v wf g hξ = ∂ + ∂ + ∂  be a vector field of  . Then three function ,f g  and h  must sa- 
tisfy:  

;
;

.

u v w

u v w

w w

f u f v f u h
g u g v g v h
v f u g

= ∂ + ∂ + ∂
 = ∂ + ∂ + ∂
 ∂ = ∂

                              (20) 

Now we shall clarify the gap between   and  . 
We consider the vector field  

[ ] [ ] [ ]1 2 3, , , ,Y Z Z X X Yπ π π= + +                           (21) 

where ( )1 2 3, ,π π π  are the components of the structure π  in the basis ( ), ,Y Z Z X X Y∧ ∧ ∧  given by (11). 
In the local coordinates ( ), ,u v w  given by (14), this vector field reads  

4 4 .u vkv ku= − ∂ + ∂                                 (22) 

A simple check shows that the components of   satisfy the relations (20). So, the vector field   belongs 
to  . In other hand,   is locally Hamiltonian if and only if there exist a smooth function F  in a neighbor- 
hood of the unity e  of the group ( )2,SU   such that Fχ= , this is translated by the fact that F  is a so- 
lution of the following system of equations  

,

0.

w

w

u v

u v
v u
u v

∂ = −
 ∂ =
 ∂ + ∂ =

                                  (23) 

It is easy to see that (23) does not admit solutions. Hence   does not belong  . Thus we have proved: 
Proposition 2. The ideal   is strictly contained in the Lie algebra  . 
In terms of Poisson cohomology [9], recall that the first Poisson cohomology group ( )( )1 2,H SUπ   is the 

quotient of the Lie algebra   by its ideal  . Then, by Proposition 2, we show that the vector field   de- 
fines a non trivial class [ ] ( )( )1 2,H SUπ∈  . On the other hand, this result shows that the classical result due 
to Conn [10] [11] stating that for a Poisson structure formally linearizable around a singular point any local 
Poisson automorphism is Hamiltonian, and not just in the C∞  category. 
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