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ABSTRACT 
The paper contains two parts. First, by applying the results about the eigenvalue perturbation bounds for Her-
mitian block tridiagonal matrices in paper [1], we obtain a new efficient method to estimate the perturbation 
bounds for singular values of block tridiagonal matrix. Second, we consider the perturbation bounds for eigen-
values of Hermitian matrix with block tridiagonal structure when its two adjacent blocks are perturbed simul-
taneously. In this case, when the eigenvalues of the perturbed matrix are well-separated from the spectrum of the 
diagonal blocks, our eigenvalues perturbation bounds are very sharp. The numerical examples illustrate the effi-
ciency of our methods. 
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1. Introduction 
There are many known results about eigenvalue perturbation bounds of Hermitian matrices. See example [2-5]. 
Among them, one well-known theory is the following result. 

Theorem 2.1 [2]. Let A  and A E+  be n-by-n Hermitian matrices. Let iλ  and îλ  denote the ith smallest 
eigenvalues of A  and A E+ , respectively. Then for 1,2, ,i n=  , we have 

( ) ( )min max
ˆ ,i i iE Eλ λ λ λ λ+ ≤ ≤ +                            (1.1) 

where all the eigenvalues of A  and A E+  are indexed in ascending order. 
This is the Weyl’s theorem, which is one of the most classic eigenvalue perturbation theories. When the 

perturbation matrix E  is an arbitrary Hermitian matrix, the bounds obtained by Weyl’s theorem can be very 
small. However, for Hermitian matrices with special sparse structures such as block tridiagonal Hermitian 
matrix, the Weyl’s theorem may not be the best choice. For this reason, [1] considered the difference between 
eigenvalues of the block tridiagonal Hermitian matrices A  and sA E+ , where  
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in which , 1,2, , ,j jn n
jA C j n×∈ =   are Hermitian matrices and 1 , 1,2, , 1,j jn n

kB C j n+ ×∈ = −  are arbitrary  
matrices, the perturbation matrices sA∆  and sB∆  have the same order with the matrices sA  and sB , 
respectively. Let iλ  and îλ  denote the ith smallest eigenvalues of matrices A  and sA E+ , respectively. Let  
( )Xλ  denote the set of all the eigenvalues of the Hermitian matrix X . By defining ( )minj i jgap Aλ λ= − , 

and assuming that there exists an integer 0>  such that 1 22 2
, 1,2, ,j j j sgap B B E j s−> + + = +  , the  

paper [1] obtained the shaper eigenvalue perturbation bounds  
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The natural questions are that whether the above results can be used to estimate the perturbation bounds for 
singular values of a block tridiagonal matrix, and how to get the eigenvalues perturbation bounds when two 
adjacent blocks of the matrix A  in the formula (1.2) are perturbed simultaneously. If we apply the results 
above repeatedly, we can obtain a weaker upper bounds. Inspired by these questions, in this paper, we expect to 
obtain the perturbation bounds for singular value of a block tridiagonal matrix. Further, we give a new idea to 
obtain the eigenvalues perturbation bounds by directly using the bounds of eigenvector elements rather than 
applying the results in [1] repeatedly. 

The structure of this paper is organized as follows. In Section 2, we provide preliminaries to outline our basic 
idea of deriving eigenvalue perturbation bounds via bounding eigenvector components [1]. In Section 3, we 
present a new approach to estimate the perturbation bounds for the singular values of the block tridiagonal 
matrix via applying the ideas in paper [1]. In Section 4, we consider the case which the sth block and ( )1 ths +  
block of the matrix A  are perturbed simultaneously and present a new perturbation bound of the i  smallest 
eigenvalue iλ . Further, we discuss the eigenvalue perturbation bounds when the first s  blocks of A  are 
perturbed simultaneously and provide an algorithm to estimate the bounds. In Section 5, we present a numerical 
example to show the efficiency of our approach. 

Notations. Let 
2⋅  denote the matrix spectrum norm. 

2. Preliminaries 
For simplicity, the eigenvalues that we mention in this paper are all simple eigenvalues. We need the following 
conclusion about the partial derivative of simple eigenvalue of A tE+  for further discussion, where [ ]0,1t∈ . 

Lemma 2.1 [1]. Let A  and E  be n-by-n Hermitian matrices. Denote by ( )i tλ  the ith eigenvalue of  
A tE+ , and define the vector-valued function ( )x t  such that ( ) ( ) ( ) ( )iA tE x t t x tλ+ =  where ( )

2
1x t =   

for some [ ]0,1t∈ . If ( )i tλ  is simple, then 

( ) ( ) ( ).Hi t
x t Ex t

t
λ∂

=
∂

                               (2.1) 

Especially, the perturbation matrix E  has the special structure. For example, the perturbation matrix E  has 
the form as the matrix sE  whose block elements are zero except for the sth block. Moreover if ( )x t  has  

small components in the positions corresponding to the nonzero elements of E , then ( )i t
t

λ∂
∂

 is small. Hence  

if we know a bound for the components of ( )x t  that are in the position corresponding to the nonzero elements  
of E , then we can obtain a bound for ( ) ( )ˆ 0 1i i i iλ λ λ λ− = −  via integrating the Equation (2.1) over 0 1t≤ ≤ .  
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Yuji Nakatsukasa [1] has derived the eigenvalues perturbation bounds for the case (1.2) with this idea. In the 
following, we shall describe in detail how this idea can be exploited to derive perturbation bounds of singular 
values for block tridiagonal matrix, and how this idea is expanded to derive eigenvalue perturbation bounds for 
our cases. 

Note that the Lemma 2.1 holds under the condition that ( )i tλ  is a simple eigenvalue of A tE+ . Similarly, 
we also assume that ( )i tλ  is simple for all [ ]0,1t∈ . For multiple eigenvalues, we can discuss this case by 
referring to the method of the paper [1,6,7]. 

3. Singular Value Perturbation Bounds 
In this section, we use the results in paper [1] to study the perturbation bounds of singular values for the block 
tridiagonal matrices. For the sake of convenience, we define the sequence of nonzero singular values of a 
complex p q×  matrix A  by 

( ) ( ) ( )( )1 , , ,rA A Aσ σ σ=   

where ( )Hr rank A A=  and ( ) ( )1 rA Aσ σ≤ ≤
. Similarly, for the perturbation matrix E , we denote the rank 

of A E+  by r . Note that the nonzero eigenvalues of HAA  and HA A  are the same. Generally, the nonzero 
singular values of A  have important applications in many filed, so it's necessary to study singular value 
perturbation bounds. Just as the discussion of the [1,8] we only consider the simple singular values perturbation 
bounds. 

3.1. 2 × 2 Case 
Firstly, for the 2 2×  case, we have the following results concerning the nonzero singular values perturbation 
bounds. 

Theorem 3.1. Let 
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be two complex matrices, 1 20 rσ σ σ< ≤ ≤ ≤  and 1 20 rσ σ σ< ≤ ≤ ≤


  
  be the nonzero singular values of  

2 2A ×  and 2 2 2 2A E× ×+ , respectively. Define { }1 12 2max ,B Cγ = , { }2 32 2
max ,E Eε =  and  

( )2 2min 2i
i A E

γ ετ
σ σ

+
=

− −
. For { }1,2, ,min ,i r r= 


, if 0iτ >  and the ith singular value ( )2i Aσ σ∉ , then 

we have 2
1 22 2 2i i i iE Eσ σ τ ετ− ≤ + + . 
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By Jordan-Wielandt theorem[2-Theorem I.4.2], we know that the eigenvalues of the matrix 4 4A ×
  are iσ± , 

where 1 i m n k≤ ≤ + + +  . The same statement holds for 4 4E ×
 . Permuting the rows and columns of the matrix 

4 4A ×
  appropriately, we can get that the matrix 4 4A ×

  is similar to  
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and the matrix 4 4E ×
  is similar to  
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A
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 
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 is a 2 2×  block Hermitian matrix, so is 4 4Ê × . Note that the 

{ }21 1 12 2 2max ,A B C= , the eigenvalue set of 22A  is ( )2Aσ , and { }21 2 32 221
max ,HE E E= . So it is  

natural that we can apply the result of [1-Theorem 3.2] to get the conclusion.   

3.2. 3 × 3 Case 
Secondly, we study the perturbation bounds for singular values of 3 3×  case. Let  
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be two complex matrices, where ( )1,2,3i im k
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Obviously, both 6 6Â ×  and 6 6Ê ×  are block tridiagonal Hermitian matrices. Applying [1-Theorem 4.2], we 
can get the following theorem. 

Theorem 3.2. Let iσ  and iσ  be the ith smallest nonzero singular values of 3 3A ×  and 3 3 3 3A E× ×+ , respec-  
tively. Define { }2 22 2max ,B Cγ = , { }2 22 2max ,B Cε = ∆ ∆ , { }1 12 2max ,B Cδ =  and  

( )2 2 2mini
i A A

γ ετ
σ σ δ

+
=

− − ∆ −
. For { }1,2, ,min ,i r r= 


, if ( ) ( )1 2i A Aσ σ σ∉ 

, then we have  

2
2 22 22i i i iA Bσ σ τ τ− ≤ ∆ + ∆ .  

3.3. n × n Case 
Further, we gradually consider the general n n×  case and extend above statements to the n n×  block 
tridiagonal matrices. Let  
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where ( )1,2, ,i im k
iA i n×∈ =   and s sm k

sA ×∆ ∈ , 1 20 rσ σ σ< ≤ ≤ ≤  and r~21
~~~<0 σσσ ≤≤≤   be the 

nonzero singular values of n nA ×  and n n n nA E× ×+ , respectively. The following conclusion can be demonstrated. 
Theorem 3.3. Let iσ  and iσ  be the ith smallest nonzero singular values of n nA ×  and n n n nA E× ×+ , res-  

pectively. Define ( )minj i jgap Aσ σ= − , { }2 2
max ,j j jB Cγ =  and { }2 2

max ,j j jB Cε = ∆ ∆ . If there 
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In what follows, we give an example to illustrate the singular values perturbation bounds obtained by our 
results. 

Example 3.1. Consider the 4 4×  matrices A  and E  represented by  
*

1 3

2 3

0 0
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A E

A E
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= =   
   

 

where  
4 2

1 2 3 4 2

6 0 1 0 3 10 2 10
, , .
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A A E
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 × − ×   
= = =     − ×     

 

Obviously, the last two singular values of A  are 3 45, 6σ σ= = . By computing, we can get that the two 
singular values of A E+  are  

3 45.000116663424745 and 6.000000023715121.σ σ= =   

Therefore, we can get  
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3 3 4 40.000116663424745 and 0.000000023715121.σ σ σ σ− = − =               (3.5) 

Through the Theorem 3.1 we know that  

3 3 4 42.535 4 and 2.022 4.e eσ σ σ σ− ≤ − − ≤ −   

By comparing the differences in the equation (3.5) with the bounds obtained by the Theorem 3.1, we can find 
that the singular values perturbation bounds obtained by the Theorem 3.1 are sharp and this estimating method is 
efficient. 

4. Eigenvalue Perturbation Bounds 
On the basis of conclusions of the paper [1], in this section we study eigenvalue perturbation bounds of block 
tridiagonal matrix for the cases where two adjacent blocks of A  are perturbed and the first s  blocks of A  
are perturbed by the perturbation matrix 1, ,sE



. 

4.1. Two Adjacent Blocks of A Being Perturbed 
In this subsection, we discuss eigenvalue perturbation bounds when two adjacent blocks of A  are perturbed. In 
other words, we consider the matrices in the following form  
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         (4.1) 

Similar to discussion of the paper [1], we need the following assumption. 
Assumption 1. There exists an integer 0>  such that ( ) ( )min max,i j j j jA Aλ λ η λ η ∉ − +  , where 

1 , 1 122 2 2 2 2
, 1, , .j j j s s j j jB B E A B B j sη − + −= + + + ∆ + ∆ + ∆ = +   

Roughly, the assumption demands that iλ  is far away from the eigenvalues of 1, , s lA A + , respectively, and 
the norms of , 1s sE +  and 1, , s lB B +  are not too large. 

Now, on the basis of the Assumption 1, we first discuss upper bounds for the eigenvector components of the 
matrix , 1s sA tE ++ . 

Lemma 4.1. Let A  and , 1s sE +  be Hermitian block-tridiagonal matrices in (4.1), iλ  be the ith smallest  
eigenvalue of A . For [ ]0,1t∈ , let ( ) ( ) ( ) ( ), 1s s iA tE x t t x tλ++ = , where ( )

2
1x t =  and  

( ) ( ) ( ) ( )1 2, , ,
HH H H H

nx t x t x t x t =  
 satisfying that ( )jx t  and jA  have the same number of rows. Define 
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and for 3, ,j =   , 

2

, 1 12 2

.s j
j

s j s s s j

B

gap E B
δ

+

+ + + −

=
− −

                           (4.2) 

If iλ  satisfies Assumption 1, then, for all [ ]0,1t∈  we have  
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( ) ( ) ( )1 22 2 2
0 1 2

, and .s j s j s j
j j j

x t x t x tδ δ δ+ +
= = =

≤ ≤ ≤∏ ∏ ∏
  

              (4.3) 

Proof. The first block component of ( ) ( ) ( ) ( ), 1s s iA tE x t t x tλ++ =  is  

( ) ( ) ( ) ( )1 1 1 2 1 .H
iA x t B x t t x tλ+ =  

Since 1 , 1 122 2 2 2 2j j j s s j j jgap B B E A B B− + −> + + + ∆ + ∆ + ∆  for 1, ,j s= +  , by Weyl’s theorem,  

we have ( ) ( )i jt Aλ λ∉ . Therefore, we have  

( ) ( )( ) ( )1
1 1 1 2 .H

ix t t I A B x tλ
−

= −  

Further, by applying the Theorem 2.1[2], we know ( ) , 1 , 12 2
,i i s s i s st E Eλ λ λ+ +
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− ≤
−
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x t x t  by  
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( )

1 2 2
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1,
s s

x t B
x t gap E B+

≤ <
− −

                           (4.4) 

where the right inequality follows from Assumption 1. Continuously, the second block component of  
( ) ( ) ( ) ( ), 1s s iA tE x t t x tλ++ =  is 
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Similarly, by Weyl's theorem, we have ( )( ) 1
2
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i
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t I A
gap E

λ
−

+

− ≤
−

. Combining this inequality with  

(4.4), we can get  

( )
( )

2 22 2

3 2 , 1 1 22 2

1.
s s

x t B
x t gap E B+

≤ <
− −

 

Hence, ( ) ( )2 32 2
x t x t< . 

By the same argument, we can prove ( ) ( ) ( )1 22 2 2sx t x t x t+< < <


  for all [ ]0,1 .t∈  

To consider the sth block component of ( ) ( ) ( ) ( ), 1s s iA tE x t t x tλ++ = , we have  

( ) ( ) ( ) ( ) ( ) ( ) ( )1 1 1 ,H H
s s s s s s s s i sB x t A t A x t B t B x t t x tλ− − ++ + ∆ + + ∆ =  

thus,  

( ) ( )( ) ( ) ( ) ( )( )1
1 1 1 .H H

s i s s s s s s sx t t I A t A B x t B t B x tλ
−

− − += − − ∆ + + ∆  

By using the results of the Assumption 1 and Theorem 2.1[2], we know that ( )i s st I A t Aλ − − ∆  is invertible  

and ( ) 1

2
, 1 22

1
i s s

s s s s

I A t A
gap E A

λ −

+

− − ∆ ≤
− − ∆

. Since ( ) ( )1 2 2s sx t x t− < , we can get  

( )
( ) ( )1 12 22 2

2
, 1 22

.s s s s s
s

s s s s

B x t B t B x t
x t

gap E A
− +

+

+ + ∆
≤

− − ∆
 

Therefore, for all [ ]0,1t∈  we can obtain the following result  
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( )
( )

2 2 2
0

1 , 1 12 22 2

.s s s

s s s s s s

x t B B
x t gap E A B

δ
+ + −

+ ∆
≤ =

− − ∆ −
 

Continuously, considering the s + 1th block of ( ) ( ) ( ) ( ), 1s s iA tE x t t x tλ++ = ,  

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )1 1 1 1 1 2 1 ,H
s s s s s s s s s i sB t B x t A t A x t B t B x t t x tλ+ + + + + + ++ ∆ + + ∆ + + ∆ =  

we have  

( ) ( )( ) ( ) ( ) ( ) ( )( )1
1 1 1 1 1 2 .H

s i s s s s s s s sx t t I A t A B t B x t B t B x tλ
−

+ + + + + += − + ∆ + ∆ + + ∆  

Similarly, by using the results of the Assumption 1 and Theorem 2.1[2], we know that ( ) 1 1i s st I A t Aλ + +− + ∆   

is invertible and ( )( ) 1
1 1

2 1 , 1 1 22

1
i s s

s s s s

t I A t A
gap E A

λ
−

+ +
+ + +

− + ∆ ≤
− − ∆

. Since ( ) ( )12 2s sx t x t+< , for all  

[ ]0,1t∈ , we can get  

( )
( ) ( ) ( ) ( )( )1 1 1 22 2 2 22 2

1 2
1 , 1 1 22

.
s s s s s s

s
s s s s

B B x t B B x t
x t

gap E A
+ + + +

+
+ + +

+ ∆ + + ∆
≤

− − ∆
 

Hence,  

( )
( )

1 1 12 2 2
1

2 1 , 1 1 2 2 22 2

.s s s

s s s s s s s

x t B B
x t gap E A B B

δ+ + +

+ + + +

+ ∆
≤ =

− − ∆ − − ∆
 

Similar to the discussion above, we also have  

( ) ( ) ( ) ( ) ( ) ( )1 1 1 2 2 2 3 2 ,H
s s s s s s s i sB B x t A x t B x t t x tλ+ + + + + + + ++ ∆ + + =  

( ) ( )( ) ( ) ( ) ( )( )1
2 2 1 1 1 2 3 .H

s i s s s s s sx t t I A B B x t B x tλ
−

+ + + + + + += − + ∆ +  

By ( )( ) 1
2

2 2 , 1 2

1
i s

s s s

t I A
gap E

λ
−

+
+ +

− ≤
−

 and ( ) ( )1 22 2s sx t x t+ +< , we have  

( )
( ) ( ) ( )1 1 2 2 32 2 22 2

2 2
2 , 1 2

.s s s s s
s

s s s

B B x t B x t
x t

gap E
+ + + + +

+
+ +

+ ∆ +
≤

−
 

Consequently, for all [ ]0,1t∈ , 

( )
( )

2 22 2
2

3 2 , 1 1 12 22 2

.s s

s s s s s s

x t B
x t gap E B B

δ+ +

+ + + + +

≤ =
− − − ∆

 

Similar to the discussion above, we can prove 
( )
( )

2

1 2

, 1, ,s j
j

s j

x t
j

x t
δ

+

+ +

≤ =   . In addition, ( ) ( )1 2 2
1sx t x t+ + ≤ ≤



. 

Based on the discussion above, we conclude that for all [ ]0,1t∈ ,  

( ) ( ) ( )1 22 2 2
0 1 2

, and .s j s j s j
j j j

x t x t x tδ δ δ+ +
= = =

≤ ≤ ≤∏ ∏ ∏
  

 

The following Theorem 4.1 is aiming to present perturbation bounds for iλ . 
Theorem 4.1. Let iλ  and îλ  be the ith  smallest eigenvalues of matrix A  and , 1s sA E ++ , respectively, 

and iδ  be defined as in (4.2). If iλ  satisfies the Assumption 1, we have  

( )
2 2 2

0 1 1 12 2 2 2
0 1 2

ˆ 2 2 .i i s j s s j s j
j j j

A B A Bλ λ δ δ δ δ δ+ +
= = =

     
− ≤ ∆ + ∆ + ∆ +     

     
∏ ∏ ∏
  

 

Proof. Integrating (2.1) over 0 1t≤ ≤  we get  
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( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

1

, 1
0
1 1

1
0 0

1 1

1 1 1 1 2
0 0

1 1
2

12 22 2 2
0 0

1 1
2

1 1 1 1 22 22 2 2
0 0

ˆ d

d 2 d

d 2 d

d 2 d

d 2 d

H
i i s s

H H
s s s s s s

H H
s s s s s s

s s s s s

s s s s s

x t E x t t

x t A x t t x t B x t t

x t A x t t x t B x t t

A x t t B x t x t t

A x t t B x t x t t

λ λ +

+

+ + + + +

+

+ + + + +

− =

≤ ∆ + ∆

+ ∆ + ∆

≤ ∆ + ∆

+ ∆ + ∆

∫

∫ ∫

∫ ∫

∫ ∫

∫ ∫

 

Together with (4.3), it follows that  

( )

21 1

2 2
0 0 10 0

21 1

1 12 2
1 1 20 0

2 2

0 12 2 2
0 1

1 12
2

ˆ d 2 d

d 2 d

2

2

i i s j s j j
j j j

s j s j j
j j j

s j s s j
j j

s j
j

A t B t

A t B t

A B A

B

λ λ δ δ δ

δ δ δ

δ δ δ

δ δ

= = =

+ +
= = =

+
= =

+
=

    
− ≤ ∆ + ∆    

    

    
+ ∆ + ∆    

    

   
≤ ∆ + ∆ + ∆   

   
 

+ 


∏ ∏ ∏∫ ∫

∏ ∏ ∏∫ ∫

∏ ∏

∏

  

  

 



2

.




 

4.2. The First s Blocks of A Being Perturbed 
In this subsection, we gradually consider the bounds of eigenvalues of the matrix A , whose the first s  blocks 
are perturbed simultaneously. In other words, we consider the perturbation matrix  

1 1

1

1,2, ,

   
  

,  
  0 0
   0

H

H
s s s

s

A B
B

E A B
B

 ∆ ∆
 
∆ 
 = ∆ ∆
 

∆ 
 
 



 





                          (4.5) 

where s  is a positive integer.Let ( ) ( )( ),i t x tλ  denote the ith eigenpair of 1,2, ,sA tE+


 satisfying  

( ) ( ) ( )1,2, ,s iA tE x t x tλ+ =


, and the partition of ( ) ( ) ( ) ( )1 2, , ,
HH H H H

nx t x t x t x t =  
 satisfies that ( )jx t   

and jA  have the same number of rows, where [ ]0,1t∈ . 
If iλ  satisfies the Assumption 1, through the similar discussion as above, we can derive a similar conclusion 

for calculating the eigenvalue perturbation bounds. For simplicity, we don't repeat the proof here. The 
Algorithm 1 below shows the calculation in detail, where 0 0B = , 0nB =  and 0 0B∆ = . 

5. Numerical Example 
In this section, we use the following example to illustrate the validity of our method and to show the advantage 
of the our method over the method proposed in [1]. 

Example 5.1 [1]. Let A E+  be the 1000 1000×  tridiagonal matrix  

 1  1   1  1  
1000  999    2  1

 1  1   1  1  
A E tridiag

⋅ 
 + = ⋅ ⋅ 
 ⋅ 

                  (5.1) 
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Algorithm 1. Eigenvalue perturbation bound algorithm for the first s blocks of A  being perturbed. 

Input: A , 1,2 sA E+


 and s ; 

step 1: Compute the ith  eigenvalues iλ  and îλ  of A  and 1,2 ,sA E+


, respectively; 

 Choose an integer > 0  such that λ  satisfies the Assumption 1; 

step 2: for = 1,2, , ij s l+  do 

 Compute the ( )= minj i jgap Aλ λ− ; 

 
2 2

=j j jB Bµ + ∆ ; 1,2 , 1 12 2 2 2
=j j s j j jgap E B A Bν − −− − − ∆ − ∆



; 

 =j j jδ µ ν ; 

 end for 

step 3: for = 1k  to 1s + −  do 

 = ;k kω δ  

 for =j k  to 1s + −  do 

 1=k k jω ω δ + ; 

 end for 

 end for 

step 4: 2
1 1 1 1 1 2 12

= 2 ; = 0sA Bλ ω ωω ω + +∆ ∆ + ∆


; 

step 5: for = 2,3 ,k s +   do 

 2
1 12

= 2k k k k k k kA Bλ λ ω ω ω− +∆ ∆ + ∆ + ∆ ; 

 end for 

Output: the eigenvalue perturbation bounds kλ∆ ; 

 
where all the elements of E  are zero except for the 900th and 901th off diagonal, which are 1 ( ). ., 900i e s = . 
Note that none of the off-diagonals is negligibly small. We focus on iλ  (the ith smallest eigenvalue of A ) for 

1, ,10i =  , which are smaller than 10. For such iλ  we have 87= , and give bounds for 1, ,10i =   with 
our method. The results are outlined in Table 1.  

Meanwhile, we use the method in the paper [1] to give the perturbation bounds for 1, ,10i =  . The results 
are outlined in Table 2. 

Further, we partition the matrix A E+  as in the (5.1) again so that the block size is one except for the 900th  

block, which is 2-by-2 matrix 
901 1
1 900

 
 
 

. In other words, we set 900

901 0
0 900

A  
=  
 

, ( )900 0 0B = , and set 

900

0 1
1 0

A  
∆ =  

 
, ( )900 0 1B∆ =  (i.e., s = 900). Using the method in the paper [1] we have the following  

perturbation bounds for 1, ,10i =  , which are outlined in Table 3. 
Obviously, comparing the Table 1 with the Table 2, we can see that our method saves CPU times and 

improves the perturbation bounds. In addition, comparing the Table 1 with the Table 3, although our CPU time 
is close to the CPU time in Table 3, we see that the perturbation bounds are also improved . So we can say that 
our method is efficient and improved. 

6. Conclusion 
We have obtained a new efficient method to estimate the perturbation bounds for singular values of block 
tridiagonal matrix. Further, under the bases of the paper [1], we present a new conclusion for estimating the 
perturbation bound when the sth block and ( )1 ths +  block of the matrix A  are perturbed simultaneously and  
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Table 1. The eigenvalue perturbation bounds and CUP times. 

i 1 2 3 4 5 
bound 8.5 292e −  6.8 289e −  1.5 286e −  2.1 284e −  3.3 282e −  

time (s) 160.81 164.94 165.11 168.75 171.84 
i 6 7 8 9 10 

bound 6.7 280e −  1.8 277e −  7.2 275e −  4.5 272e −  5.4 269e −  

time (s) 154.41 158.65 156.44 171.61 161.98 

 
Table 2. The eigenvalue perturbation bounds and CUP times. 

i 1 2 3 4 5 
bound 1.05 290e −  9.7 288e −  2.4 285e −  3.96 283e −  7.2 281e −  

time (s) 330.93 372.81 316.51 383.42 378.66 
i 6 7 8 9 10 

bound 1.7 278e −  5.7 276e −  2.9 273e −  2.6 270e −  5.1 267e −  

time (s) 381.42 374.66 378.98 378.85 381.69 

 
Table 3. The eigenvalue perturbation bounds and CUP times. 

i 1 2 3 4 5 
bound 1.1 289e −  1.1 286e −  3.1 284e −  5.7 282e −  1.2 279e −  

time (s) 157.95 154.78 156.89 156.57 157.30 
i 6 7 8 9 10 

bound 3.2 277e −  1.2 274e −  7.9 272e −  9.3 269e −  2.9 265e −  

time (s) 154.95 154.93 154.02 155.58 157.10 

 
provide an algorithm for the general case when the first s  blocks of A  are perturbed simultaneously. Number 
examples are presented to show the effectiveness of our methods.  
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