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Abstract 
Dzyaloshiniskii-Moriya (DM) interaction in three directions (Dx, Dy and Dz) is used to generate en- 
tangled network from partially entangled states in the presence of the spin-orbit coupling. The ef- 
fect of the spin coupling on the entanglement between any two nodes of the network is investi- 
gated. The entanglement is quantified using Woottores concurrence method. It is shown that the 
entanglement decays as the coupling increases. For larger values of the spin coupling, the entan- 
glement oscillates within finite bounds. For the initially entangled channels, the upper bound does 
not exceed its initial value, whereas the entanglement reaches its maximum value for the channels 
generated via indirect interaction. 
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1. Introduction 
Quantum Information Technology (QIT) promises faster and more secure means of data manipulation by mak- 
ing use of the quantum properties of matter [1]-[5]. The quantum network is a fast growing field in quantum in- 
formation Technology. Specifically, a quantum network consists of quantum nodes connected by quantum 
channels [6]. The quantum nodes generate, process, and store information encoded in the quantum states of a 
physical system [7]. The information is exchanged through quantum channels by way of sending photons from 
one node to the other, or through quantum entanglement shared by the nodes [8]-[10]. The importance of the 
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quantum networks increased in the past few years in regards to the problems in the classical networks like the 
security of the information, privacy and the speed of the transmission of information. Quantum networks have 
been implemented experimentally [11]-[14] and theoretically [15]-[19]. 

The Dzyaloshiniskii-Moriya (DM) interaction is a natural phenomena discovered in 1960 by Moriya Dzya- 
loshinskii-Moriya (DM) as an antisymmetric and anisotropic exchange coupling between two spins) [20] [21]. It 
is found that the DM interaction strengthen the entanglement among particles implies that the DM interaction 
plays an important role in the generation of the quantum entanglement in the field of quantum networks [22]. 
The quantum correlation as a result of the DM interaction between two particles is investigated by many authors 
(see for examples [23]-[25]). The thermal entanglement between two qubits in the Heisenberg XYZ model and 
the effect of the DM interaction and its strength are discussed by Da Chuang and Z. Liang Cao [26]. The effect 
of the intrinsic decoherence in the teleportation of two qubits XYZ model is studied in the presence of DM inte- 
raction [27]. Entanglement sudden death and birth of the qubit-qutrit pair under DM interaction [28] and the ef- 
fect of the spin-orbit interaction in the dynamics of the entanglement in the presence of DM interaction [29]-[31] 
are investigated recently. 

Metwally [15] introduced a theoretical protocol to generate multi-nodes quantum network by using maximum 
entangled states, where the terminals of each disconnected node are connected via DM interaction. Theoretical 
quantum network model with “d” level system is constructed and gives important results in many useful appli- 
cations in quantum network environment [32]. The possibility of generating entangled network by using a class 
of partially entangled network is discussed by Abdel-Aty et al. [16]. Also, as a development of our last quantum 
network we studied the possibility of the generation of quantum network with the DM interaction is switched to 
more than one direction. The quantum teleportation is investigated over this quantum network as well [17]. 
Therefore, we are motivated to investigate the effect of the spin-orbit and the efficiency of the generated entan- 
gled network in the presence of DM interaction. 

In this paper, we introduce the model and its evolution in Section 2. The entanglement between different 
nodes is quantified for different values of the spin-orbits coupling and the DM’s strength is discussed in Section 
3. We then summarize our results and discussion in Section 4. 

2. The Model 
It is assumed that entangled network consists of four nodes is generated by using partial entangled states of 
Werner type [16] [33]. In the suggested quantum network the node “1” and node “2” is initially connected as 
well as node “3” and “4” (solid line). The dash line between the node “2” and node “3” represents the connec- 
tions which generated by the DM (x, y and z) interaction with the effect of the spin orbit coupling Jx, Jy and Jz 
as seen in Figure 1. 
 

 
Figure 1. Our suggested quantum network.     



A.-H. Abdel-Aty et al. 
 

 
3 

Consider a partial entangled state generated by a source of the form 

4
1 1

3 3
w w

ij
F F

Iρ ψ ψ− −− −
= +                                (1) 

where ( )1 01 01
2

ψ − = −  is the singlet Bell state and Fw is the maximum fraction corresponding to the 

Werner-state. 
The initial state of the total system is given by 

( )1234 12 340ρ ρ ρ= ⊗                                     (2) 

The evolution of the initial state (2) is given by, 

( ) ( ) ( ) ( )†
1234 1234 0

M MD Dt t tρ ρ=                               (3) 

where ( )
MD t  is the unitary operator and can be written as 

( ) e DM
M

i t
D t −=                                     (4) 

where 
MD  is the Hamiltonian of the DM (x, y and z) interaction which rules the interactions as you will see in 

Sections (2.1, 2.2 and 2.3). 

2.1. Heisenberg XYZ Model with Dx 
The Hamiltonian describing the evolution of the system for a two-qubit spin-orbit chain with the DM interaction 
is switched on the x-axis can be written as 

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( )( )( )

x

k l k l k l
D x x x y y y z z z

k l lk
x y z z y

J J J

D

σ σ σ σ σ σ

σ σ σ σ

= + +

+ −


                            (5) 

where k, l represent the nodes which are connected together via DM interaction with x-component of strength Dx; 
Jx, Jy and Jz are the x, y and z-component of the real coupling coefficients, respectively, and the ( ) ( )k l

x xσ σ  is the 
Pauli matrices 1 0 0 1xσ = + , ( )1 0 0 1y iσ = +  and 0 0 1 1 .zσ = +  In our case k and l re- 
present the second and third qubit, respectively. 

The final density operator of the network is given by 

( ) ( ) ( ) ( )†
1234 1234 0

x xD Dt t tρ ρ=                                (6) 

where 
( ) e Dx

x

i t
D t −=                                     (7) 

is the unitary operator which can be written explicitly in the basis 00,01,10,11  as 

( )

, , , ,

, , , ,23

, , , ,

, , , ,

x

ee ee ee eg ee ge ee gg

eg ee eg eg eg ge eg gg
D

ge ee ge eg ge ge ge gg

gg ee gg eg gg ge gg gg

u u u u
u u u u

t
u u u u
u u u u

 
 
 =  
  
 

                            (8) 

where 

( ) ( )( ) ( ) ( ) ( ) ( ) ( )( ) ( ) ( )2 2
, sin cos sin sin sin cos cos cos sin ( ) ,ge eg z z x x y x y x x yu i J t J t D t J t J t J t J t D t J J t = + − + − +   

( ) ( )( ) ( ) ( ) ( ) ( ) ( )( ) ( ) ( )( )2 2
, sin cos cos sin sin cos cos sin sin ,ge ge z z x x y x y x x yu i J t J t D t J t J t J t J t D t J J t = + − + − +   

( ) ( ) ( )( ) ( ) ( )( ) ( ) ( )( ),
1sin sin cos sin cos sin cos ,

2ge gg x x x y y z zu D t i J t J t i J t J t i J t J t−
= + + +  
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( ) ( ) ( )( ) ( ) ( )( ) ( ) ( )( ),
1sin sin cos sin cos sin cos ,

2gg ge x x x y y z zu D t i J t J t i J t J t i J t J t−
= + − −  

( ) ( )( ) ( ) ( ) ( ) ( ) ( )( ) ( ) ( )( )2 2
, sin cos sin sin sin cos cos cos sin ,gg ee z z x x y x y x x yu i J t J t D t J t J t J t J t D t J J t = − + + − −   

( ) ( )( ) ( ) ( ) ( ) ( ) ( )( )
( ) ( )( )

2
,

2

sin cos cos sin sin cos cos

sin sin ,

gg gg z z x x y x y

x x y

u i J t J t D t J t J t J t J t

i D t J J t

= − + +
− − 

 

And the rest of the components , ,ge ee ge ggu u= − , , , , ,gg eg gg ge ee eg ee geu u u u= − = = − , , ,ge ge eg egu u= , , ,ge eg eg geu u= , 
, ,gg ee ee ggu u=  and , ,ee ee gg ggu u= . Using Equations (6) and (8), one obtains the final entangled network between 

four nodes. Since that we are interested to quantify the degree of entanglement between different nodes, one can 
obtain the required density operator between each pair of nodes by tracing out the other two. For example, the 
density operator between the first and the second node is given by ( ) ( ){ }12 34 1234t tr tρ ρ=  and so forth. 

2.2. Heisenberg XYZ Model with Dy 
Similarly, the Hamiltonian describing the evolution of the system when the interaction is switched to the 
y-direction can be written as. 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )( )y

k l k l k l k l k l
D x x x y y y z z z y z x x zJ J J Dσ σ σ σ σ σ σ σ σ σ= + + + −                  (9) 

In this case, the unitary operator is given by 

( ) e Dy
y

i t
D t

−
=


                                     (10) 

In matrix form, the unitary operator Equation (10) can be written as a matrix Equation (8) and the elements of 
the matrix are: 

( ) ( )( ) ( ) ( ) ( ) ( ) ( )( )
( ) ( )( )

2
,

2

sin cos sin sin sin cos cos

cos sin ,

ge eg z z y x y x y

y x y

u i J t J t D t J t J t J t J t

i D t J J t

= + − +
− + 

 

( ) ( )( ) ( ) ( ) ( ) ( ) ( )( )
( ) ( )( )

2
,

2

sin cos cos sin sin cos cos

sin sin ,

ge ge z z y x y x y

y x y

u i J t J t D t J t J t J t J t

i D t J J t

= + − +
− + 

 

( ) ( ) ( )( ) ( ) ( )( ) ( ) ( )( ), sin 2 sin cos sin cos sin cos ,
2ge gg y x x y y z z
iu D t i J t J t i J t J t i J t J t−

= + + +  

( ) ( ) ( )( ) ( ) ( )( ) ( ) ( )( ), sin 2 sin cos sin cos sin cos ,
2gg ge y x x y y z z
iu D t i J t J t i J t J t i J t J t−

= − + −  

( ) ( )( ) ( ) ( ) ( ) ( ) ( )( )
( ) ( )( )

2
,

2

sin cos sin sin sin cos cos

cos sin ,

gg ee z z y x y x y

x x y

u i J t J t D t J t J t J t J t

i D t J J t

= − + − +
− − 

 

( ) ( )( ) ( ) ( ) ( ) ( ) ( )( )
( ) ( )( )

2
,

2

sin cos cos sin sin cos cos

sin sin ,

gg gg z z y x y x y

y x y

u i J t J t D t J t J t J t J t

i D t J J t

= − + +
+ − 

 

And the rest of the components , , , ,eege ee ge gg eg gg egu u u u= = = , , , , ,gg ge gg eg ee eg ee geu u u u= − = = − , 
, ,ge ge eg egu u= , , ,ge eg eg geu u= , , ,gg ee ee ggu u=  and , ,ee ee gg ggu u= . 

2.3. Heisenberg XYZ Model with Dz 
Similarly, the Hamiltonian describing the evolution of the system when the interaction is switched to the 
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z-direction can be written as. 
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )( )z

k l k l k l k l k l
D x x x y y y z z z z x y y xJ J J Dσ σ σ σ σ σ σ σ σ σ= + + + −                  (11) 

In this case, the unitary operator is given by 

( ) e Dz
z

i t
D t −=                                      (12) 

Is the unitary operator which used to connect between particle “2” and “3” when the interaction is switched 
on y-axis and defined by 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )( ) ( )

2 3 2 3 2 323

2 3 2 3 2 32 2 2

cos sin cos sin cos sin

cos cos sin sin 2
2

zD x x x x y y y y z z z z

z z z z z x y y x z

t J t i J t J t i J t J t i J t

iD t D t i D t D t

σ σ σ σ σ σ

σ σ σ σ σ σ

     = − × − × −     
 × + − −  


  (13) 

In matrix form, the unitary operator Equation (13) can be written as in Figure 8. 
Where the elements of the matrix are: 

( ) ( )( ) ( ) ( ) ( ) ( ) ( )( )
( ) ( )( )

, sin cos cos 2 sin sin cos cos

sin 2 sin ,

eg eg z z z x y x y

z x y

u i J t J t D t J t J t J t J t

i D t J J t

= + − +
− + 

 

( ) ( )( ) ( ) ( ) ( ) ( ) ( )( )
( ) ( )( )

, sin cos sin 2 sin sin cos cos

cos 2 sin ,

eg ge z z z x y x y

z x y

u i J t J t D t J t J t J t J t

i D t J J t

= + − − +
− + 

 

( ) ( )( ) ( ) ( ) ( ) ( ) ( )( )
( ) ( )( )

, sin cos sin 2 sin sin cos cos

cos 2 sin ,

ge eg z z z x y x y

z x y

u i J t J t D t J t J t J t J t

i D t J J t

= + − +
− + 

 

( ) ( )( ) ( ) ( ) ( ) ( ) ( )( )
( ) ( )( )

, sin cos cos 2 sin sin cos cos

sin 2 sin

ge ge z z z x y x y

z x y

u i J t J t D t J t J t J t J t

i D t J J t

= + − +
+ + 

 

( )( ) ( ) ( )( ), sin sin cos ,gg ee x y z zu i J J t i J t J t= − −  

( ) ( )( ) ( ) ( ) ( ) ( )( ), sin cos sin sin cos cos ,gg gg z z x y x yu i J t J t J t J t J t J t = − + +   

And the rest of the components , ,gg gg ee eeu u= , , ,gg ee ee ggu u=  and  
, , , , , , , , 0gg ge gg eg ge gg eg gg ge ee eg ee ee ge ee egu u u u u u u u= = = = = = = =  

3. Results and Discussion 
In this section, we quantify the entanglement between each pair of nodes. Practically, we consider the channels 

( )ij tρ , where ij = 12, 13 and 14. For this purpose, we use Wootters’s concurrence as a measure for the entan- 
glement [34] which is defined by 

{ }1 2 3 4max ,0λ λ λ λ= − − −                                (14) 

where kλ  (k = 1, 2, 3, 4) is the eigen values of the matrix ( ) ( )( ) ( ) ( )( )* .i l i j
ij y y ij y yρ σ σ ρ σ σ⊗ ⊗  

The entanglement behavior (concurrence) of the entangled state between nodes “1” and “2”, 12ρ , is de- 
scribed in Figure 2 for different coupling values Ji (i= x, y, z), and the strength of DM is assumed to be fixed, Dx 

= 0.2. Figure 2(a) depicted the evolution of the concurrence C in the presence of zero coupling or one and only 
one non-zero coupling. In this case, the hamiltonian will be convert to ( ) ( ) ( ) ( )( )x

k l k l
D x y z z yD σ σ σ σ= − . It is clear 

that for Jx=Jy=Jz, the concurrence decays gradually to its minimum bound (C = 0.4) and then increased to max- 
imum bound without exceeding the initial bounds. This shows that the decay is coming from the interaction be-  
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(a) 

 
(b) 

 
(c) 

Figure 2. The entanglement, C12, between node “1” and node 
“2” (a) the solid red line for Jx = Jy =Jz = 0 without the effect of 
spin), the black dotted line for (Jx = 0.5 and Jy = Jz = 0,) green 
line for (Jy = 0.5 and Jx = Jz = 0), blue dashed line for ( Jx = Jy 
=0 and Jz = 0.5) and Dx = 0.2. (b) Similar to (a) but the solid red 
line for (Jx = Jy = 0.5 and Jz = 0), black dotted for (Jx = Jy = 0.5 
and Jz = 0), green line for (Jx = 0 and Jy = Jz = 0.5), blue dashed 
for (Jx = Jy = Jz = 0.5) and Dx = 0.2. (c) The red line represents 
the entanglement for (Jx = Jy = Jz = 0.1), green dashed for (Jx = 
Jy = Jz = 0.3) and the blue dashed line for (Jx = Jy = Jz = 0.5) and 
Dx = 0.2.                                              
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tween the second and third node, and consequently some correlations are lost. However, the upper and lower 
bounds will depend on the non-zero coupling when it is switched on. This behavior shows that the minimum 
bound of C for Jx ≠ 0 is always larger than that depicted for Jy ≠ 0 or Jz ≠ 0. On the other hand, the concurrence 
vanishes completely for Jy ≠ 0 or Jz ≠ 0, i.e., C = 0 as the scaled time increased without exceeding the initial up- 
per limit [13] [14]. In Figure 2(c), we investigate the behavior of the concurrence for Jx = Jy = Jz ≠ 0. It can be 
seen that when the coupling parameters are small, Jx = Jy = Jz = 0.1, the concurrence C decays gradually and va- 
nishes when { }7,8t∈ . For larger values of Ji (i = x, y, z), the concurrence decays comparably faster. 

Figure 2(b) describes the behavior of the concurrence for the entangled state 12ρ , where two non-zero 
couplings are considered. The general behavior is similar to the one that is depicted in Figure 2(a), but the 
number of oscillation increased within the bounds. If we compare the solid curves in the Figures 2(a) and (b), 
we see that the presence of the coupling causes the concurrence to decay quicker. 

Figure 3 describes the behavior of the concurrence for the entangled state which is generated between nodes 
“1” and “3” via indirect interaction. Figure 3(a) describes the behavior of C for non-zero coupling where the 
same values of the coupling and DM’s strength as considered in Figure 2 are being used. Since the two nodes 
are initially disentangled, the concurrence C = 0 at t = 0. As soon as the interaction is switched on and the en- 
tangled state is generated between the first and the third node, the concurrence increased towards the upper 
bound (C = 0.4). As t continues to elapse, the concurrence decays and vanishes completely. This behavior is re- 
peated periodically. 

The dynamics of concurrence, C, for the channel 13ρ , when two non-zero couplings are considered is de- 
picted in Figure 3(b). The values of Ji, where i = x, y, z are the same as in Figure 2(b). This figure shows that 
the concurrence oscillates between bounded limits. The phenomena of the sudden-death and sudden-birth ap- 
peared in the entanglement are shown clearly. 

Figure 3(c) describes the behavior of C for the state 13ρ  when Jx = Jy = Jz ≠ 0 have the same values as in 
Figure 2(c). It is clear that the general behavior is similar to that as depicted in Figure 3(b), but the number of 
oscillation increased as the value of the coupling increased. We note that the upper bound is slightly larger when 
Ji is large. 

We investigate the behavior of the entanglement for state 14ρ  generated via indirect interaction, is shown in 
Figures 4(a)-(c). It is clear that the behavior of C is similar to that displayed for 13ρ . However, the upper bound 
for the state 14ρ  is much larger and reaches maximum value at C = 1. The number of oscillation of the concur- 
rence increased as the spin-orbit coupling increased. 

On the other hand, the oscillation increased if all the couplings have non-zero values. 
The dynamics of the entanglement in the quantum network when the interaction is switched on y-direction is 

shown in Figures 5-7. Figure 5 represents the entanglement over channel “12” with different values of the 
spin-orbit coupling. The parameters used in Figure 5(a) are identical to the one used in Figure 2(a) but the in- 
teraction is switched on y-axis with fixed Dy = 0.2. It is shown that when Jx = Jy = Jz = 0, the Hamiltonian 
represents the normal case without the effect of spin-orbit coupling has the form ( ) ( ) ( ) ( )( )y

k l k l
D y z x x zD σ σ σ σ= −  

is represented by the solid red line [16]. The black dotted line illustrates the effect of the spin-orbit at Jx = 0.5 
and Jy = Jz = 0. It is shown that the concurrence started from the maximum value at C = 0.62 and the entangle- 
ment decreased quickly as time goes on. The effect of spin-orbit Jz = 0.5 is shown by the dotted blue line which 
is similar to the black dotted line. The green dashed line represents the effect of Jy = 0.5 and Jx = Jz = 0. The en- 
tanglement shows similar behavior to the case when spin-orbit effect is ignored but a slight different to the am- 
plitude of the entanglement. 

Figure 5(b) shows the effect of the spin-orbit interaction in two different directions. In this figure, the curves 
is initially started from its maximum and then the entanglement decreased to zero at t = 1. Then, the entangle- 
ment is increased again and reaches C = 0.4 at t = 2.5. One observes that the entanglement is influenced by the 
spin-orbit and the number of oscillations is increased. 

The effect of Jx, Jy and Jz in the dynamics of the entanglement over channel “12” is depicted in Figure 5(c). 
This figure shows that the dynamics of the entanglement can be influenced by the values of the total spin-orbit 
interaction where the oscillation is increased by increasing the value of the spin-orbit. Here the solid red line 
represents the dynamics of the entanglement for Jx = Jy = Jz = 0.1, the dashed green line is produced by Jx = Jy = 
Jz = 0.3 and the dotted blue line is produced by Jx = Jy = Jz = 0.5. 

The dynamics of the entanglement on channel “13” with the effect of the spin-orbit interaction when DM in- 
teraction is switched on the y-axis. Figure 6(a) is similar to Figure 3(a) without the effect of the spin-orbit inte-  
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(a) 

 
(b) 

 
(c) 

Figure 3. The dynamics of the entanglement, C13, between node 
“1” and node “3”. Figures (a), (b) and (c) have the same feature 
with Figure 2 but reside in channel “13”.                      

 
raction. It is clear that there is no entanglement at the initial stage during the interaction period. The entangle- 
ment appeared at t = 2.5 and reaches its maximum at t = 3.75 and then vanishes after t = 5. It remains zero there 
until t = 10 and the same behavior is repeated periodically. The effect of x-spin-orbit is depicted by the dotted 
black line which has the same effect as the z-spin-orbit interaction to which the generation of the entanglement 
started at t = 1, and the generation of entanglement without spin-orbit is started at t = 2.5. The maximum value 
of the entanglement is 0.4 at t = 3. It decreased to zero at t = 6 and increased again after t = 8 up to maximum at t = 12. 
The effect of the y-spin orbit interaction is represented by the dashed green line. 
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(a) 

 
(b) 

 
(c) 

Figure 4. The dynamics of the entanglement, C14, between 
node “1” and node “4”. Figures (a), (b) and (c) have the same 
feature with Figure 2 but reside in channel “14”.             

 
Figure 6(b) is similar to Figure 5(b) for the channel “13”. This figure shows that the effects of Jx = Jy = 0.5 

(solid red line) and of Jy = Jz = 0.5 (dashed green line) are same where the entanglement increased from zero af- 
ter t = 1 and reaches 0.2 at t = 1.5. It then decays exponentially. The effects of the Jy = Jz = 0.5 (dotted black line) 
and of the Jx = Jy = Jy = 0.5 (dashed blue line) are similar where the entanglement started to generate at t = 0.5 
and increased to maximum at t = 2. It then decreased to zero at t = 6. One observes that the shape of the entan- 
glement becomes different due to different values of the spin-orbit interaction. Figure 6(c) shows the effect the 
total spin in the dynamics of entanglement on channel 13. 
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(a) 

 
(b) 

 
(c) 

Figure 5. The dynamics of the entanglement, C12, between 
node “1” and node “2”. (a), (b) and (c) are the same with Fig- 
ure 2 but the interaction switched on y-axis Dy = 0.2.          

 
This figure shows the new feature is observed as the spin-orbit and the number of oscillations increased. 
Figures 7(a)-(c) show the entanglement dynamics between node “1” and node “4”. In Figure 7(a), we see 

that the spin-orbit interaction contributes to the x- and z-direction where the maximum value without the effect 
of the spin interaction is 4 × 1016 (solid red line), and with effect of the x- and z-spin-orbit the entanglement 
reaches a maximum of 1 at t = 3. 

The dotted green line shows no effect on the spin-orbit interaction in y-axis. Figure 7(b) is same as in Figure 
6(b) but resides in channel “14” where the entanglement is not influenced by the spin-orbit in y-direction as one 
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(a) 

 
(b) 

 
(c) 

Figure 6. The dynamics of the entanglement, C13, between 
node “1” and node “3”. (a), (b) and (c) are the same with Fig- 
ure 3 but the interaction switched on y-axis Dy = 0.2.          

 
can see in the red and dashed green lines for Jx = Jy = 0.5 and Jy = Jz = 0.5, respectively. The dotted black line 
and dotted blue line are the combination of the spin-orbit interaction in x- and z-direction which leads to the in- 
creasing in the entanglement oscillations. The effect of the spin-orbit affects the entanglement dynamics on 
channel “14” (see Figure 7(c)) where increasing the spin-orbit value leads to the number of oscillations in- 
creased. 

The effect of the spin-orbit interaction on the dynamics of the entanglement for the channel “12”, “13” and 
“14” with DM interaction is switched on the z-axis is depicted in Figures 8-10. Figure 8(a) shows the effect  
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(a) 

 
(b) 

 
(c) 

Figure 7. The dynamics of the entanglement, C14, between node “1” and 
node “4”. (a), (b) and (c) are the same feature with Figure 4 but the inte- 
raction switched on y-axis Dy = 0.2.                                 
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(a) 

 
(b) 

 
(c) 

Figure 8. The dynamics of the entanglement, C12, between node “1” and 
node “2”. (a), (b) and (c) are the same feature with Figure 2 but the interac- 
tion switched on z-axis Dz = 0.2.                                    
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(a) 

 
(b) 

 
(c) 

Figure 9. The dynamics of the entanglement, C13, between node “1” and 
node “3”. (a), (b) and (c) are the same with Figure 3 but the interaction 
switched on z-axis Dz = 0.2.                                        
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(a) 

 
(b) 

 
(c) 

Figure 10. The dynamics of the entanglement, C14, between node “1” 
and node “4”. (a), (b) and (c) are the same feature with Figure 4 but 
the interaction switched on y-axis Dz = 0.2.                       

 
of the spin-orbit interaction in one directional Jx, Jy and Jz. By comparison between Figure 8(a) and Figure 2(a), 
we find that the differences appeared on the effect of Jx in Figures 2-4 and Jz in Figures 8-10. 
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4. Conclusions 
We discussed the effect of the spin-orbit (Heisenberg XYZ model) coupling to the entanglement between dif- 
ferent nodes in the quantum network. It is shown that the entanglement decays for nonzero coupling. The phe- 
nomena of the entanglement sudden-death and sudden-birth appeared for larger coupling values. It shows that 
the coupling constant of the entangled channel initially has no effect on the upper bound of the entanglement. 
However, the lower bound of the entanglement does not vanish for non-zero couplings. The number of oscilla- 
tions is increased as the coupling is increased. For entangled channels which are generated either via direct or 
indirect interactions, the concurrence and the number of oscillations are increased as the coupling is increased. 

Finally, it is shown that the generated entangled channel between any two nodes via indirect interaction has a 
large degree of entanglement and the upper bound exceeds the initial entangled state. Therefore, one may gene- 
rate maximum entangled state from the less entangled state by controlling the spin-orbit coupling. This means 
that terminals of the generated entangled network can be used to perform quantum information task with high 
efficiency. 
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