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ABSTRACT 
The success of any Intrusion Detection System (IDS) is a complicated problem due to its nonlinearity and the 
quantitative or qualitative network traffic data stream with many features. To get rid of this problem, several 
types of intrusion detection methods have been proposed and shown different levels of accuracy. This is why the 
choice of the effective and robust method for IDS is very important topic in information security. In this work, 
we have built two models for the classification purpose. One is based on Support Vector Machines (SVM) and 
the other is Random Forests (RF). Experimental results show that either classifier is effective. SVM is slightly 
more accurate, but more expensive in terms of time. RF produces similar accuracy in a much faster manner if 
given modeling parameters. These classifiers can contribute to an IDS system as one source of analysis and in-
crease its accuracy. In this paper, KDD’99 Dataset is used to find out which one is the best intrusion detector for 
this dataset. Statistical analysis on KDD’99 dataset found important issues which highly affect the performance 
of evaluated systems and results in a very poor evaluation of anomaly detection approaches. The most important 
deficiency in the KDD’99 dataset is the huge number of redundant records. To solve these issues, we have devel-
oped a new dataset, KDD99Train+ and KDD99Test+, which does not include any redundant records in the train 
set as well as in the test set, so the classifiers will not be biased towards more frequent records. The numbers of 
records in the train and test sets are now reasonable, which make it affordable to run the experiments on the 
complete set without the need to randomly select a small portion. The findings of this paper will be very useful to 
use SVM and RF in a more meaningful way in order to maximize the performance rate and minimize the false 
negative rate. 
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1. Introduction 
Along with the benefits, the Internet also created nume- 
rous ways to compromise the stability and security of the 
systems connecting to it. Although static defense mecha- 
nisms such as firewalls and software updates can provide 
a reasonable level of security, more dynamic mechanisms 
such as intrusion detection systems (IDSs) should also be 
utilized [1]. Intrusion detection is the process of moni- 
toring events occurring in a computer system or network 
and analyzing them for signs of intrusions. IDSs are 

simply classified as host-based or network-based. The 
former operates on information collected from an indi-
vidual computer system and the latter collects raw net-
work packets and analyzes for signs of intrusions. There 
are two different detection techniques employed in IDS 
to search for attack patterns: Misuse and Anomaly. Mis-
use detection systems find known attack signatures in the 
monitored resources. Anomaly detection systems find 
attacks by detecting changes in the pattern of utilization 
or behavior of the system [2]. 
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As network attacks have increased in number and se- 
verity over the past few years, Intrusion Detection Sys-
tems (IDSs) have become a necessary addition to the se- 
curity infrastructure of most organizations [3]. Deploying 
highly effective IDS systems is extremely challenging 
and has emerged as a significant field of research, becau- 
se it is not theoretically possible to set up a system with 
no vulnerabilities [4]. Several machine learning (ML) al- 
gorithms, for instance Neural Network [5], Genetic Algo- 
rithm [6], Fuzzy Logic [4,7-9], clustering algorithm [10] 
and more have been extensively employed to detect in- 
trusion activities from large quantity of complex and dy- 
namic datasets. 

In recent time, SVM and RF have been extensively 
applied to providing potential solutions for the IDS prob- 
lem. This paper is focused on the analysis of the per-
formance of two commonly used data mining techniques: 
SVMs [11] and Random Forests (RF) [12]. KDD’99 
dataset has been used to train and test the model. The 
effectiveness and the efficiency of classification model-
ing are then empirically analyzed. 

The remainder of the paper is organized as follows. 
Section 2 provides the description of the KDD’99 dataset. 
We outline mathematical overview of SVM and RF in 
Section 3. Experimental setup is presented in Section 4 
and Preprocessing, Evaluation Metrics and SVM model 
selection are drawn in Sections 5, 6 and 7 respectively. 
Finally, Section 8 reports the experimental result follow- 
ed by conclusion in Section 9. 

2. KDDCUP’99 Dataset 
Under the sponsorship of Defense Advanced Research 
Projects Agency (DARPA) and Air Force Research Labo- 
ratory (AFRL), MIT Lincoln Laboratory has collected 
and distributed the datasets for the evaluation of resear- 

ches in computer network intrusion detection systems 
[13]. The KDD’99 dataset is a subset of the DARPA 
benchmark dataset prepared by Sal Stofo and Wenke Lee 
[14]. The KDD dataset was acquired from raw tcpdump 
data for a length of nine weeks. It is made up of a large 
number of network traffic activities that include both 
normal and malicious connections. A connection in the 
KDD’99 dataset is represented by 41 features, each of 
which is in one of the continuous, discrete and symbolic 
form, with significantly varying ranges. The KDD’99 data- 
set includes three independent sets: “whole KDD”, “10% 
KDD”, and “corrected KDD”. Most of researchers have 
used the “10% KDD” and the “corrected KDD” as train- 
ing and testing set, respectively [15]. The training set 
contains a total of 22 training attack types. The “cor- 
rected KDD” testing set includes an additional 17 types 
of attacks and excludes 2 types (spy, warezclient) of at- 
tacks from training set, therefore, there are 37 attack 
types those are included in the testing set, as shown in- 
Tables 1 and 2. The simulated attacks fall in one of the 
four categories [1,15]: 1) Denial of Service Attack (DoS); 
2) User to Root Attack (U2R); 3) Remote to Local At- 
tack (R2L); 4) Probing Attack. 

Inherent Problems of the KDD’99 and Our  
Proposed Solution 
Statistical analysis on KDD’99 dataset found important 
issues which highly affects the performance of evaluated 
systems and results in a very poor evaluation of anomaly 
detection approaches [16]. The most important defici- 
ency in the KDD dataset is the huge number of redun- 
dant records. Analyzing KDD train and test sets, Mohbod 
Tavallaeefound that about 78% and 75% of the records 
are duplicated in the train and test set, respectively [17]. 
This large amount of redundant records in the train set  

 
Table 1. Attacks in KDD’99 Training dataset. 

Classification of Attacks Attack Name 

Probing Port-sweep, IP-sweep, Nmap, Satan 

DoS Neptune, Smurf, Pod, Teardrop, Land, Back 

U2R Buffer-overflow, Load-module, Perl, Rootkit 

R2L Guess-password, Ftp-write, Imap, Phf, Multihop, spy, warezclient, Warezmaster 

 
Table 2. Attacks in KDD’99 Testing dataset. 

Classification of Attacks Attack Name 

Probing Port-Sweep, Ip-Sweep, Nmap, Satan, Saint, Mscan 

DoS Neptune, Smurf, Pod, Teardrop, Land, Back, Apache2, Udpstorm, Processtable, Mail-Bomb 

U2R Buffer-Overflow, Load-Module, Perl, Rootkit, Xterm, Ps, Sqlattack. 

R2L Guess-Password, Ftp-Write, Imap, Phf, Multihop, Warezmaster, Snmpgetattack, Named, Xlock, Xsnoop, Send-Mail, 
Http-Tunnel, Worm, Snmp-Guess. 
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will cause learning algorithms to be biased towards the 
more frequent records, and thus prevent it from learning 
unfrequent records which are usually more harmful to 
networks such as U2R attacks. The existence of these 
repeated records in the test set, on the other hand, will 
cause the evaluation results to be biased by the methods 
which have better detection rates on the frequent records. 

To solve these issues, we have derived a new dataset 
by eliminating redundant record from KDD’99 train and 
test dataset (10% KDD and corrected KDD), so the clas-
sifiers will not be biased towards more frequent records. 
This derived dataset consists of KDD99Train+ and 
KDD99Test+ dataset for training and testing purposes, 
respectively. The numbers of records in the train and test 
sets are now reasonable, which makes it affordable to run 
the experiments on the complete set without the need to 
randomly select a small portion. 

3. Classification 
Consider the problem of separating the set of training 
vectors belong to two separate classes,  
( ) ( ) ( )1 1 2 2, , , , , ,n nx y x y x y  where p

ix R∈  and  
{ }1, 1iy ∈ − +  is the corresponding class label, 1 ≤ i ≤ n. 

The main task is to find a classifier with a decision func-
tion f(x, θ) such that y = f(x, θ), where y is the class label 
for x, θ is a vector of unknown parameters in the func-
tion. 

3.1. SVM Classification 
The theory of SVM is from statistics and the basic prin-
ciple of SVM is finding the optimal linear hyperplanein 
the feature space that maximally separates the two target 
classes [17,18]. Geometrically, the SVM modeling algo-
rithm finds an optimal hyperplane with the maximal 
margin to separate two classes, which requires to solve 
the following constraint problem can be defined as fol-
lows 

2
,

1minimize
2w b w  

Subject to: 

( )T 1, 1,2,3, ,i iy w x b i n+ ≥ =   

To allow errors, the optimization problem now be- 
comes: 

2
,

1

1min
2

n

w b i
i

w C ξ
=

+ ∑  

Subject to: 

( )T 1 1,2,3, , ,i i iy w x b i nξ+ ≥ − =   

0, 1,2,3, ,i i nξ ≥ =   

Using the method of Lagrange multipliers, we can ob- 

tain the dual formulation which is expressed in terms of 
variables 𝛼𝛼𝑖𝑖  [17,18]: 

T

1 1 1

1maximize
2

n n

i i j i j

n

i j
i i j

y y x xα α α α
= = =

− ∑∑ ∑  

Subject to: 1 1 0, 0n
i i ii y Cα α

=
= = < <∑  

for all 1,2,3, ,i n=   

Finally, the linear classifier based on a linear discri- 
minant function takes the following form 

( ) T
n

i i
i

f x x x bα= +∑  

In many applications a non-linear classifier provides 
better accuracy. The naive way of making a non-linear 
classifier out of a linear classifier is to map our data from 
the input space X to a feature space F using a non-linear 
function : X F∅ → . In the space F, the optimization 
takes the following form using kernel function [19]: 

( )
1 1 1

1maximize ,
2

n n n

i i j i j i j
i i j

y y k x xα α α α
= = =

−∑ ∑∑  

Subject to: 1 0n
i ii yα

=
=∑ , 0 i Cα< <  

for all 1,2,3, ,i n=   

Finally, in terms of the kernel function the discrimi-
nant function takes the following form: 

( ) ( ),
n

i i
i

f x k x x bα= +∑  

In this work, Gaussian kernel has been used to build 
SVM classifier. 

Gaussian kernel: 

( )
2

, exp
2

i j
i j

x x
K x x

σ

 − = −
 
 

, σ  is the width of the  

function. 
A kernel function and its parameter have to be chosen 

to build a SVM classifier [20]. Training an SVM finds 
the large margin hyperplane, i.e. sets the parameters iα . 
The SVM has another set of parameters called hyper- 
parameters: The soft margin constant, C, and any pa- 
rameters the kernel function may depend on (width of a 
Gaussian kernel) [21]. 

SVMs are formulated for two class problems. But be-
cause SVMs employ direct decision functions, an exten-
sion to multiclass problems is not straightforward [22]. 
There are several types of SVMs that handle multiclass 
problems. We have used here only One-vs-All multiclass 
SVMs for our research work. 

3.2. Random Forest 
The random forests [12] is an ensemble of unpruned  
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classification or regression trees. Random forest gener- 
ates many classification trees. Each tree is constructed by 
a different bootstrap sample from the original data using 
a tree classification algorithm. After the forest is formed, 
a new object that needs to be classified is put down each 
of the tree in the forest for classification. Each tree gives 
a vote that indicates the tree’s decision about the class of 
the object. The forest chooses the class with the most 
votes for the object. 

The random forests algorithm (for both classification 
and regression) is as follows [23-25]: 

1) From the Training of n samples draw ntree bootstrap 
samples. 

2) For each of the bootstrap samples, grow classifi- 
cation or regression tree with the following modification: 
at each node, rather than choosing the best split among 
all predictors, randomly sample mtry of the predictors and 
choose the best split from among those variables. The 
tree is grown to the maximum size and not pruned back. 
Bagging can be thought of as the special case of random 
forests obtained when mtry = p, the number of predictors. 

3) Predict new data by aggregating the predictions of 
the ntree trees (i.e., majority votes for classification, aver-
age for regression). 

There are two ways to evaluate the error rate. One is to 
split the dataset into training part and test part. We can 
employ the training part to build the forest, and then use 
the test part to calculate the error rate. Another way is to 
use the Out of Bag (OOB) error estimate. Because rand- 
om forests algorithm calculates the OOB error during the 
training phase, we do not need to split the training data. 
In our work, we have used both ways to evaluate the er- 
ror rate. 

There are three tuning parameters of Random Forest: 
number of trees (ntree), number of descriptors randomly 
sampled as candidates for splitting at each node (mtry) 
and minimum node size [24]. When the forest is growing, 
randomfeatures are selected at random out of the all fea-
tures in the training data. The number of features em- 
ployed in splitting each node for each tree is the primary 
tuning parameter (mtry). To improve the performance of 
random forests, this parameter should be optimized. The 
number of trees (ntree) should only be chosen to be suffi- 
ciently large so that the OOB error has stabilized. In 
many cases, 500 trees are sufficient (more are needed if 
descriptor importance or molecular proximity is desired). 
There is no penalty for having “too many” trees, other 
than waste in computational resources, in contrast to 
other algorithms which require a stopping rule. Another 
parameter, minimum node size, determines the minimum 
size of nodes below which no split will be attempted. 
This parameter has some effect on the size of the trees 
grown. In Random Forest, for classification, the default 
is 1, ensuring that trees are grown to their maximum size 

and for regression, the default is 5 [24]. 

4. Dataset and Experimental Setup 
Investigating the existing papers on the anomaly detec- 
tion which have used the KDD dataset, we found that a 
subset of KDD’99 dataset has been used for training and 
testing instead of using the whole KDD’99 dataset [16, 
26-28]. Existing papers on the anomaly detection mainly 
used two common approaches to apply KDD’99 [26]. In 
the first, KDD’99 training portion is employed for sam- 
pling both the train and test sets. However, in the second 
approach, the training samples are randomly collected 
from the KDD’99 train set, while the samples for testing 
are arbitrarily selected from the KDD’99 test set. The 
basic characteristics of the original KDD’99 and our du- 
plicate less (KDD99Train+ and KDD99Test+)intrusion 
detection datasets in terms of number of samples is given 
in Table 3. Although the distribution of the number of 
samples of attack is different on different research papers, 
we have used the Tables 1 and 2 to find out the distribu- 
tion of attack [1,3,15]. In our experiment, whole train 
(KDD99Train+) dataset has been used to train our classi- 
fier and the test (KDD99Test+) set has been used to test 
the classifier. All experiments were performed using In- 
tel core i5 2.27 GHz processor with 4GB RAM, running 
Windows 7. 

To select the best model in model selection phase, we 
have drawn 10% samples from the training set 
(KDDTrain+) to tune the parameters of all kernel and 
another 10% samples from the training set (KDDTrain+) 
to validate those parameters, as shown in Table 3. 

5. Pre-Processing 
SVM classification system is not able to process  
KDD99Train+ and KDD99Test+ dataset in its current 
format. SVM requires that each data instance is represented 
as a vector of real numbers. Hence preprocessing was re- 
quired before SVM classification system could be built. 
Preprocessing contains the following processes: The fea- 
tures in columns 2, 3, and 4 in the KDD’99 dataset are 
the protocol type, the service type, and the flag, respec-
tively. The value of the protocol type may be tcp, udp, or 
icmp; the service type could be one of the 66 different 
network services such as http and smtp; and the flag has 
11 possible values such as SF or S2. Hence, the catego- 
rical features in the KDD dataset must be converted into 
a numeric representation. This is done by the usual bina- 
ry encoding—each categorical variable having possible 
m values is replaced with m − 1 dummy variables. Here a 
dummy variable have value one for a specific category 
and having zero for all category. After converting cate-
gory to numeric, we got 115 variables for each samples 
of the dataset. Some researchers used only integer code  
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Table 3. Number of samples of each attack in dataset. 

Dataset Normal DoS Probing R2L U2R Total 

WholeKDD (Original KDD) 972,780 3,883,370 41,102 1126 52 4,898,430 

10% KDD (Original KDD) 97,278 391,458 4107 1126 52 494,021 

KDD corrected(Original KDD) 60,593 229,853 4166 16,347 70 311,029 

KDD99Train+ 87,832 54,572 2130 999 52 145,585 

KDD99Test+ 47,913 23,568 2678 3058 70 77,287 

TrainSet (For Model Selection) 8784 5458 213 100 6 14,561 

ValidationSet (For Model Selection) 8784 5458 213 100 6 14,561 

 
to convert category features to numeric representation in- 
stead of using dummy variables which is not statistically 
meaningful way for this type of conversion [15,16]. The 
final step of pre-processing is scaling the training data, 
i.e. normalizing all features so that they have zero mean 
and a standard deviation of 1. This avoids numerical in- 
stabilities during the SVM calculation. We then used the 
same scaling of the training data on the test set. Attack 
names were mapped to one of the five classes namely 
Normal, DoS (Denial of Service), U2R (User-to-Root: 
unauthorized access to root privileges), R2L (Remote- 
to-Local: unauthorized access to local from a remote ma- 
chine), and Probe (Probing: information gathering at-
tacks). 

6. Evaluation Metrics 
Apart from accuracy, developer of classification algo- 
rithms will also be concerned with the performance of 
their system as evaluated by False Negative Rate, False 
Positive Rate, Precision, Recall, etc. In our system, we 
have considered both the precision and false negative 
rate. To consider both the precision and false negative 
rate is very important in IDS as the normal data usually 
significantly outnumbers the intrusion data in practice. 
To only measure the precision of a system is misleading 
in such a situation [29]. The classifier should produce 
lower false negative rate because an intrusion action has 
occurred but the system considers it as a non-intrusive 
behavior is very cost effective. 

7. Model Selection of SVM and RF 
In order to generate highly performing classifiers capable 
of dealing with real data an efficient model selection is 
required. In this section, we present the experiments 
conducted to find efficient model both for SVM and RF. 

7.1. SVM Model Selection 
In our experiment, Grid-search technique has been used 
to find the best model for SVM with different kernel. 
This method selects the best solution by evaluating sev-

eral combinations of possible values. In our experiment, 
Sequential Minimization Optimization with the following 
options in Matlab, shown in Table 4, has been used. We 
have considered the range of the parameter in the grid 
search which converged within the maximum iteration 
using the TrainSet (For Model Selection) and Valida-
tionSet (For Model selection) shown in Table 3. 

For radial basis kernel, to find the parameter value C 
(penalty term for soft margin) and sigma (σ), we have 
considered the value from 2−8 to 26 for C and from 2−8 to 
26 for sigma as our searching space. The resulting search 
space for Radial Basis Kernel is shown in Figure 1. We 
took parameter value C = 32 and sigma = 16 for giving 
us 99.01% accuracy in the validation set to train the 
whole train data (KDD99Train+) and test the test data 
(KDD99Test+). 

7.2. Parameter Tuning of Random Forest 
To improve the detection rate, we optimize the number 
of the random features (mtry). We build the forest with 
different mtry (5, 6,7, 10, 15, 20, 25, 30, 35, and 38) over 
the trainset (TrainSet), then plot the OOBerrorrate and 
the time to build the pattern corresponding to different 
mtry. As Figure 2 shows, the OOB error rate reaches the 
minimum when mtry is 7. Besides, increasing mtry in- 
creases the time to build the Random Forest. Thus, we 
choose 7 as the optimal value, which reaches the mini- 
mum of the OOB error rate and costs the least time 
among these values. 

There are two other parameters in Random Forest: 
number of trees and minimum node size. In order to find 
the value for the number of trees (ntree), we have used-
TrainSet for training and ValidationSet for testing and 
compared the OOB error rate with the independent test 
set (ValidationSet) error rate, for Random Forest as the 
number of trees increases; see Figure 3. The plot shows 
that the OOB error rate tracks the test set error rate fairly 
closely, once there are a sufficient number of trees 
(around 100). Figure 3 also shows an interesting phe-
nomenon which is characteristic of Random Forest: the 
test and OOB error rates do not increase after the training  
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Table 4. Sequential Minimization Optimization Options. 

Option Value 

MaxIter 1,000,000 

KernelCacheLimit 10,000 

 

 
Figure 1. Tuning radial basis kernel. 

 

 
Figure 2. OOB error rates and required time to train the 
random forest as the number of mtry increases. 

 
error reaches zero; instead they converge to their “asymp-
totic” values, which is close to their minimum. In this 
work, we have used ntree = 100. 

To determine the minimum node size, we have used 
TrainSet for training and compared the OOB error rate 
with varying the number of node size using ntree = 100 
and mtry = 7, as shown in Figure 4. The plot shows that 
default value 1 (one) for classification gives the lowest 
OOB error rate. 

8. Obtained Result 
The final training/test phase is concerned with the de-
velopment and evaluation on a test set of the final SVM  

 
Figure 3. Comparison of training, out-of-bag, and inde-
pendent test set error rates for random forest as the num-
ber of trees increases. 

 

 
Figure 4. OOB error rates of random forest as the number 
of minimum node size increases. 

 
or RF model created based on the optimal hyper-para- 
meters set found so far in the model selection phase [17]. 
After finding the parameter, we have built the model 
using the whole train dataset (KDD99Train+) for each of 
the classifier (SVM and RF) and finally we have tested 
the model using the test dataset (KDD99Test+). The 
training and testing results are given in Table 5 accord-
ing to the classification accuracy. From the results it is 
observed that the test accuracy for SVM is better than RF 
classifier. 

For the test case, the confusion matrix for each of the 
classifier is given in Tables 6 and 7 respectively. Going 
into more detail of the confusion matrix, it can be seen 
that RF performs better on probing attack detection and 
SVM performs well on Dos, R2L, and U2R detection. 
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Table 5. Training and testing accuracy. 

Classifier Training Accuracy Testing Accuracy Train Time (min) 

SVM 99.79 92.99 44.14 

RF 100 91.41 10.62 

 
Table 6. Confusion matrix for random forest. 

Prediction 

Actual 

 Dos Normal Probing R2L U2R % 

Dos 21,795 55 185 0 0 98.91 

Normal 1609 46,585 231 2649 67 91.09 

Probing 164 1272 2262 405 1 55.12 

R2L 0 1 0 4 1 66.67 

U2R 0 0 0 0 1 100 

% 92.48 97.22 84.47 0.13 1.43  

 
Table 7. Confusion matrix for radial basis kernel. 

Prediction 

Actual 

 Dos Normal Probing R2L U2R % 

Dos 22,663 187 643 18 18 96.32 

Normal 824 46,984 473 2224 23 92.99 

Probing 68 672 1536 131 0 63.81 

R2L 13 60 22 680 19 85.64 

U2R 0 10 4 5 10 34.48 

% 96.16 98.06 57.36 22.24 14.29  

 
Table 8. False negative rate (FNR) for each of the attack 
types. 

Classifier Dos Probing R2L U2R Average FNR 

SVM 3.50 17.66 72.73 32.86 31.69 

RF 6.83 8.63 86.63 95.71 49.45 

 
Table 9. Precision for each of the attack types. 

Classifier Dos Probing R2L U2R Average Precision 

SVM 0.96 0.64 0.86 0.34 0.70 

RF 0.99 0.55 0.67 1 0.80 

 
We also considered the false negative rate and preci-

sion for each of classifier and as shown in Tables 8 and 9 
respectively. The RF gives high precision and on the 
other hand SVM gives lower false negative rate. 

9. Conclusion 
In this research work, we developed two models for in-
trusion detection system using Support Vector Machine  

and Random Forest. The performances of these two ap-
proaches have been observed on the basis of their accu-
racy, false negative rate and precision. The results indi-
cate that the ability of the SVM classification produces 
more accurate results than Random Forest and RF takes 
less time to train the classifier than SVM. Research in 
intrusion detection using SVM and RF approach is still 
an ongoing area due to their good performance. The 
findings of this paper will be very useful for future re-
search and to use SVM and RF in a  more meaningful 
way in order to maximize the performance rate and mini- 
mize the false negative rate. 
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