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Abstract 

In this contribution we discuss the stability of thin, axi-symmetric, shallow bimetallic shells in a non-homo- 
geneous temperature field. The presented model with a mathematical description of the geometry of the sys-
tem, displacements, stresses and thermoelastic deformations on the shell, is based on the theory of the third 
order, which takes into account not only the equilibrium of forces on a deformed body but also the non-linear 
terms of the strain tensor. The equations are based on the large displacements theory. As an example, we pre- 
sent the results for a bimetallic shell of parabolic shape, which has a temperature point load at the apex. We 
translated the boundary-value problem with the shooting method into saving the initial-value problem. We 
calculate the snap-through of the system numerically by the Runge-Kutta fourth order method. 
 
Keywords: Bimetallic Shell, Non-Homogenous Temperature Field, Snap-Through of the System,  

Large Displacement Theory 

1. Introduction  
 
A bimetallic shell is a heat sensitive construction element 
that changes its geometry under temperature load. The 
Austrian manufacturer of bimetallic shells, Elektronik 
Werkstatte from Vienna offers on the market some dif-
ferrent types of thin shallow axi-symmetric bimetallic 
shells, Figure 1. In practice, rotational axi-symmetric bi- 
metallic shells of spherical shape are the most common.  

At the initial stage, such a shell responds to a tempera- 
ture load T by changing the flexion curvature 1 ,R while 
at a given temperature Tp it passes from a stable equilib-
rium position into a labile one, due to which the shell 
snaps-through into a new stable equilibrium position. 
This phenomenon is known in literature under the term 
‘snap-through of the system’. The temperature Tp at 
which the shell snaps-through into a new equilibrium po- 
sition depends on the material and geometric properties 
of the shell, and the method of temperature loading. 
Shells in a homogenous temperature field are the most 
studied [1-10]. With this supposition, at any given mo-
ment, each part of the shell has the same temperature 
 , , , constantT x y z t  , making the heat flow in the shell 

equal to zero: 

   , , ,
, , , 0

Q x y z t
P x y z t

t


 


       (1) 

However, the homogeneous temperature field can only 
be presumed when the thin shell is heated very slowly 
and equally across its surface. In the case of fast and spa-
tially varying temperature changes, a mathematical model 
that can acceptably explain the mechanical and stability 
characteristics of the temperature loaded shell can no 
longer be created with this supposition. Hence, in this 
contribution we will discuss a thin, axi-symmetric, shal-
low bimetallic shell, which has a constant temperature 
load 0T  at the apex. This type of temperature load that 
adheres to the apex of the shell can be caused by contact 
 

 

Figure 1. Some of the different types of bimetallic shells. 
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between the heated part of the device and the shell acting 
as a heat switch. Because of the thinness of the shell, we 
will assume that the temperature T across the shell cross- 
section r is constant at the time t: 

0
T

r





               (2) 

In addition, we will ignore the heat flow P  between 
the shell and its surroundings. We will therefore consider 
that the shell is perfectly insulated, due to which the heat 
flow will only be present in the shell, running from the 
apex to the edge for as long as there is a temperature dif- 
ference in parts of the shell. 
 
2. Geometry of the Shell and Kinematic 

Equations 
 
Figure 2 shows the rotational curvature  y y x  for 
the delineated middle surface of the thin-walled axi-sym- 
metric shallow shell in the initial undeformed state. The 
shell deforms because of the effects of the temperature 
load. The point P on the undeformed shell displaces into 
the point P on the deformed shell. Since the shell is of 
an axi-symmetric shape and under a temperature load at 
the apex, the displacement of the point P into the point 
P is determined with the displacement vector p


, which 

in this case we write with the vector u


 in the tangential 
direction and vector w


in the normal direction on the 

rotational curvature, Figure 2: 

         , , , , ,t np x t u x t w x t u x t e w x t e   
       (3) 

In the Equation (3), the unit vectors in the tangential 
and normal directions on the rotational curvature  y x  
are marked with te


 and ne


, Figure 2. The rotational 

curve of the deformed shell is determined by the function 
 y x . The position of point P on the deformed shell is 

determined with the coordinates  ,x y , Figure 2: 

   

2 2

sin cos

1
  

1 1

x x w u

y
x w u

y y

   


  

  

       (4) 

   

2 2

cos sin

1
  

1 1

y y w u

y
y w u

y y

   


  

  

      (5) 

The discussed bimetallic shell is shallow, so the deri- 
vative of the rotational curvature with respect to the vari- 
able x is small: 

  2tan 1 1 tan sin
dy x

y y
dx

           (6) 

Strains occurring in the shell due to external loads must 
not exceed the material elastic limit, therefore, in the for- 
mation of a mathematical model we are allowed to intro-
duce the supposition that all strains in the shell are, by ab- 
solute value, much smaller than the number one [4]: 

1ij                 (7) 

If we consider that the rotations of the shell elements 
are moderate up to approximately 20 degrees [11]: 

   ,
arctan arctan 20

180

dy x y x t

dx x

 
  

 
    (8) 

We can under the suppositions (6), (7), and (8) simplify 
the Equations (4) and (5), that determine the coordinates 
 ,x y  of point 1P  on the deformed shell: 

x x                   (9) 
y y w                (10) 

With the known equation from differential geometry 
we also write the length tds  of the elementary part of 
the undeformed shell on the rotational curvature: 

21 'tds dx y dx             (11) 

The length tds  of the elementary part of the shell we 
write with the displacements  ,u x t  and  ,w x t  [12, 
13], Figure 3: 

 2 2
tds dx du wd dw         (12) 

The strain of the shell element in the tangential direc-
tion is:

 

Figure 2. Displacements on an axi-symmetric shell due to the temperature load at the apex of the shell. 
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Figure 3. Deriving the equation for the strain tε  in the tan-

gential direction. 
 

 2 2

t t
t

t

dx du wd dw dxds ds

ds dx




   
    (13) 

After we develop the Equation (13) into Taylor series 
and ignore the small nonlinear terms, the equation is: 

       

 

2

2

, ,1
,

2

1
  

2

t

u x t d x w x t
w x t

x dx x

u w y w




  
    

  

    

   (14) 

Since we are discussing a thin double-layered shell, the 
displacement field is selected to satisfy the Kirchhoff hy- 
pothesis [11]: 

1) Strait lines perpendicular to the shell’s middle surface 
before deformation, remain straight after deformation; 

2) The transverse normals do not experience elongation; 
3) The transverse normals rotate, so that they remain 

perpendicular to the shell’s middle surface after defor-
mation.  

From Figure 4 it is clear that the displacement u is 
dependent on the local coordinate r, which is measured 
from the middle surface of the bimetallic shell in the di- 
rection of the unit vector ne


: 

u u r w                  (15) 

The strain r
t  outside the middle surface of the shal-

low thin-walled bimetallic shell will thus, according to 
Equation (14), be: 

   21

2
r
t tu r w w y w r w            (16) 

We determine the strain in the binormal direction on 
the rotational curvature  y x  with Figure 5. 

w

u

'u r w-

middle surface 

middle surface 

w

r

r

 

 δ

 

( )y x

( )y x

δ

 
Figure 4. Displacement u at the distance r from the middle 
surface of the bimetallic shell. 
 

 

Figure 5. Deriving the equation for the strain bε  in the bi- 

normal direction. 
 

      

 

, ,

b b
b

b

ds ds dz dz

ds dz

x u x t w x t x d x d

x d

u w y

x



  


 
 

  





   (17) 

Outside the middle surface, at a distance r in the direc-
tion of the unit vector ne


, this strain, after we consider 

the Equation (15) for the displacement u, Figure 4, will 
be: 

 r
b b

u r w w y w
r

x r y x
 

   
  


     (18) 

3. Equilibrium Equations 

Figure 6 shows the cross-section of the elementary part 
of the deformed shell. 

Due to the temperature load, internal forces and mo- 
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ments occur in the shell. In the cross-section that is or-
thogonal with respect to the rotational curve  ,y x t , the 
normal tdN


 and shear ndT


 forces and the bending-

moment tdM


 act, while the normal force bdN


 and the 
bending moment bdM


 act in the lateral side of the shell 

element: 

/2

/2

r
t t tdN dr dz n dz








  ,         (19) 

/2

/2

 r
b t bdN dr dx n dx








            (20) 

/2

/2

r
n t ndT dr dz t dz








              (21) 

/2

/2

r
t t tdM r dr dz m dz








            (22) 

/2

/2

 r
b b bdM r dr dx m dx








          (23) 

Where ,t bn n  and nt are forces per unit of length, while 

tm  and bm  are moments per unit of length in the case 
of thin-walled shallow shells. Stresses in the shell are 
denoted by ,r

t  r
b  and .r

t  The relation between 
stresses and strains is determined by Hooke’s law [12]: 

     2
1 ,

1
r r r
t b t

E
r T x t     


     

   (24) 

dxx

tdM-


2
t tdM d M+
 

*bdM


bdM


2
t tdN d N+
 

ndT-


2
n ndT d T+
 

tdN-


2
t tdM d M+
 

tdM-


  

dy

dx

O

bdN


'y

' 'y dy+

x

2
t tdN d N+
 

tdN-


*bdN


*

*

b b

b b

dN dN

dM dM

=

=

bdN


( )dz x ( )dz x dx+

dβ/2

dβ/2

 

Figure 6. Forces and moments per unit of length acting in 
the element of a deformed shell. 

     2
1 ,

1
r r r
b t b

E
r T x t     


     

   (25) 

In the equations for stresses (24) and (25), function 
 ,T x t  denotes the temperature relative to the so-called 

reference temperature rT  where the stress state throu- 
ghout the undeformed shell equals to zero: 

     , , , 0r z r
t r b r t rT x T x T x     . 

Therefore, the temperature  ,T x t  in Hooke's law 
equations is the difference between the actual tempera-
ture aT  and the reference temperature rT  at which the 
shell is without stresses: 

 , a rT x t T T                (26) 

With this, the given integrals (19), (20), (21), (22) and 
(23) are: 

   ,t t bn A PT x t              (27) 

   ,b b tn A PT x t              (28) 

 ,t

w
m B w QT x t

x


    
 

        (29) 

 ,t

w
m B w QT x t

x


    
 

        (30) 

where A , B , P  and Q  are constants: 

 

     
 

3

2

2
2 1

1 2

2
 

12 1

,  
2 1 8

,  B
1

1

E
A

E
P

E

E
Q




   




 


 







  
 

  (31) 

  Now we can write the equation for the equilibrium of 
forces acting in the shell element in the tangential direc-
tion at point P , Figure 6: 

   0t t t n b

dz
dN d dN dN dT dy dN

x
       (32) 

and similarly in the normal direction, Figure 6: 

   0n n n t

dz
dT d dT dT dN dy dN y

x       (33) 

Due to the axi-symmetric stress and strains state the 
equilibrium equation in the binormal direction is identi-
cally equal to zero. Let us also write the equation for the 
equilibrium of moments around the point P , Figure 6: 

   0.t t t b n

dz
dM d dM dM dM dT dx

x
       (34) 

Let us consider that the differentials of unit forces and 
moments are: 

 
2

t t t

d z
d dN dn dz n

x
  , 
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 
2

n n n

d z
d dT dt dz t

x
  , 

 
2

t t t

d z
d dM dm dz m

x
   

and the equilibrium Equations (32), (33) and (34) after 
arranging: 

  0t b nn x n t x y                (35) 

  0n b tt x n y n x y      ,         (36) 

  0t b nm x m t x    .            (37) 

The shear force per unit of length nt  can be expressed 

from equilibrium equations. For this purpose we multiply 
the Equation (35) with y  and add the Equation (36): 

    0t t n nn x y n x y t x t x y y        . 
We can ignore the last term in the equation above as 

according to the supposition (6): 

 21
1

2
y y y     . 

With this, after arranging we obtain: 

   n tt x n x y    
and after integrating: 

n tt n y                  (38) 

We replace the shear force tn in the equilibrium Equa-
tions (35) and (36) with the Equation (38), and the other 
forces and moments nt, nb, mt, and mb with the Equations 
(27)-(30). We replace the first and second derivative of 
the rotational curvature y  with the first and second 

derivatives of the Equation (10): 

y y w

y y w

   
   

              (39) 

With this, the equilibrium Equations (35) and (36) pass 
into the final form: 

         
2

1
2

w
u w y x u w y x w y xu w y x y 

 
                


 




             (40) 

   2

2

w
B w x B w w y PT x A u w y x u w y B x w 

                        
        

         (41) 

 
The differential Equations (40) and (41) for determin-

ing the displacements  ,u x t  and  ,w x t  should be 
supplemented with the equations for boundary conditions. 
If the bimetallic shell is to serve as a thermal switch shut- 
ting down a device when it overheats, then it is necessary 
to assure that the shell can extend unrestrictedly in a ho- 
rizontal direction [4,7]. So, in continuation, we will dis-
cuss a simply supported shell. At the boundary of the 
simply supported shell, the forces and moments per unit 
of length are equal to zero: 

        0t t t tn a n a m a m a          (42) 

We use Equations (27) and (29): 

   21
0

2
x a

u w y
PT A u w w y

x





 
        

 
(43) 

0
x a

B w
QT B w

x






              (44) 

The displacement w  at the apex of the shell is equal 
to zero in the chosen coordinate system: 

 0, 0w t                   (45) 

Furthermore the reader should note that the system of 
Equations (40), (41), (43) and (44) have a symmetry. If 
the displacement vector   t np x u e we 

  
 is the solu-

tion to this system, then the solution is also: 

 , t np x t u e we   
  

           (46) 

due to which, it is sufficient that we solve the system of 
equations only for the positive x  values in the interval 

 0 x a  . For the negative x , the displacement vector 

u


 is defined by the Equation (46). The boundary condi-
tions for the displacement vector u


 also follow from 

Equation (46): 

     0, 0,   0, 0,  0, 0u t w t w t         (47) 

The remaining conditions at the edges of the shell at 

1x a  are defined with the unit forces and moments in 
the equations for boundary conditions (43) and (44). 

Therefore, the boundary-value problem for the snap- 
through of the system of a shallow axi-symmetric bime- 
tallic shell is composed of the equilibrium Equations (40), 
(41), and the boundary conditions (43) and (44) at the 
point x a , and the boundary conditions (47) at the 
point 0x  : 
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         
2

1
2

w
u w y x u w y x w y xu w y x y 

 
                 


 



 

   2

2

w
B w x B w w y PT x A u w y x u w y B x w 

                        
        

 

   21

2
x a

u w y
PT A u w w y

x





 
      

 
 

     0 0 0 0
x a

B w
QT B w u w w

x





       
 

                (48) 

 
We will calculate the temperature  ,T x t  of the shell 

in the boundary-value problem (BVP) (48) with the heat 
equation. Since the discussed shell is thin, we assume 
that the temperature T  after the shell cross-section r  
at the time t  is constant (2). In addition, if we ignore 
the heat flow P  between the shell and its surroundings, 
we can write the net change of heat for the shell element 
in Figure 7:  

2
dQ T

d x dx c
dt t

   



           (49) 

and the difference in heat flows on both edges of the 
shell:  

  
2

2
     2 2

xx dx

T T
dP S k S k

x x

T T T
dx x dx x k

x xx
  



      

    
         

 (50) 

where c ,   and k  are material characteristic of the 
shell: 

c : thermal capacity; 
 : density; 
k : thermal conductivity;  
S : a cross-section of the of the shell element. 
Since the net change of heat in the shell element is 

equal to the difference in the heat flow, then: 

dQ
d dP

dt
                 (51) 

or after inserting the Equations (49) and (50), and arran- 
ging: 

2

2

T T c T

x k tx

  
 
 

            (52) 

We supplement the partial differential equation of the 
second order (52) with two boundary and one initial con-
dition, so that the initial-boundary-value problem (IBVP) 
for determining the temperature state in the shell is: 

2

2

T T c T

x k tx

  
 
 

 

  00, ,T t T
 ,

0,
T a t

t





 ,0 0T x       (53) 

4. Numerical Solution 
 
We first translated the BVP (48) for the shell loaded at 
the apex with the temperature 0T  into the system of five 
differential equations of the first order, in which the cur-
rent shell temperature  ,T x t  is determined by solution 
of the IBVP (53). 

We solved this system of equations by first translating, 
with the non-linear shooting method, the solving of the 
boundary value problem into the solving of the initial 
value problem, which we then solved with the classic 
one-step Runge-Kutta 4th order method [14,15]. The pa-
rameter  , represents the relation between the height of 
the deformed shell and the height of the undeformed 
shell: 

 
 

 
 0

1
y a w ah

h y a y a
               (54) 

Therefore let us observe the stability conditions during 
the temperature loading of shells that have the following 
material and geometric characteristics: 

1 2
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(55) 
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Figure 7. Heat flow in part of the shell cross-section with 
the mass dm 2π x dx δ ρ .  

 
Figure 8 shows the process of heating the bimetallic 

shell with an initial height in the undeformed state 

0 0.7h mm . At the time 0t s  we start to heat the 
shell at the apex with the constant temperature 

0 200T C  , Figure 8(a). Because of the temperature 
exerted at the apex of the shell, the temperature of the 
nei- ghbouring points starts to rise while at the same time 
the shell deforms. Here, we observed that, at the start, the 
shell height h increases somewhat, and after a given time, 
0,42 s  in an actual example, the shell height starts to 
decrease. The relation of heights  p t  at which the 
shell becomes unstable is denoted by a black dot in Fig-
ure 9. At that moment the shell snaps-through into a new 
stable equilibrium position. The shape of the deformed 
shell and the temperature profile at the moment of the 
shell snap-through are shown in Figures 8(b) and 8(c). 
Figures 10-12, show these characteristics for shells with 
the initial height of 0 0.8h mm , 0 0.9h mm  and 

0 1 h mm . 
We also estimated the error e of the described nume- 

rical procedure. For this purpose we calculated the shell 
heating time t when the current height h again becomes 
equal to the initial shell height 0h . The results at differ-
ent step size /h a m  are written in Table 1. The dif-
ference between two successive results decreases each 
time for approximately one half. Thus, we can estimate 
the error e  of the numerical procedure with the equa-
tion: 

   2e t m t m                (56) 

Therefore, the obtained results for the time t are cor- 
rect to one decimal place even at a relatively large step 
size at 200.m   For estimating the error e, it is enough 
if we reduce the step h  by half and calculate a new, 
more accurate value. The difference with the previous 
result by the Equation (56) does approximately estimate 
the error e during calculation. 

In Table 2, the reader can look for the maximal ratio 

max  between the height h of the deformed, and the ini-
tial height 0h  of the undeformed shell, and the shell 
heating time t necessary for this deformation. The maxi-
mal height h at which a shell can deform is also evident 
in Figure 9 as the extreme of function  t . 

Table 1. Numerical results for the shell heating time t  
when ratio of heights   becomes  10ξ = h h  with dif-

ferent step size h = a m . Temperature 0T  at apex is 

200  °
0T = C . 

m  0 1.0h mm 0 0.9h mm  0 0.8h mm  0 0.7h mm

200  2.657t s 2.456t s  2.244t s  2.026t s
400  2.632t s 2.434t s  2.228t s  2.013t s
800  2.619t s 2.423t s  2.219t s  2.007t s
1600  2.613t s 2.418t s  2.215t s  2.004t s
3200  2.610t s 2.415t s  2.213t s  2.002t s

Estimated 

value 
2.607t s 2.412t s  2.212t s  2.000t s

 
Table 2. The maximal ratio of heights max max 0ξ = h h  and 
the necessary heating time t  for shell of different initial 
heights at temperature load 200  °

0T = C  with = 3200m . 

 0 1.0h mm 0 0.9h mm  0 0.7h mm  0 0.8h mm

 t s 0.422 0.417 0.403 0.410 

 max 1.096 1.112 1.158 1.132 

 
The moment, at which the shell snaps-through into a 

new stable equilibrium position, is dependent on the ma- 
terial and geometric characteristics of the shell, as well 
as temperature load 0T  at the apex of the shell. The va- 
lues for time pt  when the shell snaps-through into a 
new equilibrium position are written in Table 3. With 
the increase in the temperature load 0T , the time pt  
needed for snap-through to occur is decreased. With the 
interpolation of results in Table 3 we approximately 
calculated the values for the snap-through time pt  for 
the intermediate values of temperature loads. These re-
sults are graphically presented in Figure 13. 
 
5. Conclusions 

Simply supported thin-walled, shallow, bimetallic shells 
are distinguished by the property that at a given tempera- 
ture they become unstable, the result of which is the 
snap-through of the shell from a convex into a concave 
shape, or vice versa, and the establishment once more of 
a stable equilibrium state. Due to this property, such 
shells are used for safeguarding various devices and ma-
chines from excessive temperature loads. With a suitable 
technical implementation, these shells can be connected 
to electrical contacts so that they cut-out at the moment 
when given parts of the safeguarded device overheat. 
Since the shell snap-through is a reliable, repeatable, and 
dynamic occurrence lasting around 310 ,t s thin-walled, 
shallow, bimetallic shells are very suitable for the ther-
mal protection of devices, as apart from reliability, at 
snap-through they also prevent undesired and harmful 
sparking of electric contacts in the thermal switch. If the  
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Figure 8. Shell shape with initial height = 0.7 0h mm  in a) an undeformed state, at b) the moment of snap-through, and c) 

the shell temperature at snap-through. 
 

 
 

Figure 9. Ratio of heights   relative to heating time, at temperature load 200  °
0T = C . 

 

 

Figure 10. Shell shape with initial height = 0.8 0h mm  in a) an undeformed state, at b) the moment of snap-through, and c) 

the shell temperature at snap-through. 



M. JAKOMIN 
 

Copyright © 2011 SciRes.                                                                                ENG 

127

 

Figure 11. Shell shape with initial height = 0.9 0h mm  in a) an undeformed state, at b) the moment of snap-through, and c) 

the shell temperature at snap-through. 
 

 

Figure 12. Shell shape with initial height = 1.0 0h mm  in a) an undeformed state, at b) the moment of snap-through, and c) 

the shell temperature at snap-through. 

 

Figure 13. Heating time  pt s  for snap-through relative to temperature load 0T  and initial shell height 0h  with the in-

terpolation of numeric results in Table 3.  
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Table 3. Heating time  pt s  for snap-through relative to 

temperature load 0T  and initial shell height 0h . 

°T C    0 0.7h mm  0 0.8h mm  0 0.9h mm  0 1 h mm

70 35.16    

75 23.27    

80 17.29    

85 15.26    

90 13.29 33.14   

95 12.23 23.90   

100 11.37 20.07   

105 10.12 16.78   

110 9.29 14.78   

115 8.99 13.88 30.02  

120 8.07 12.16 22.54  

125 7.85 11.62 19.89  

130 7.36 10.72 17.40  

135 7.08 10.17 15.90  

140 6.74 9.56 14.53 31.36 

145 6.28 8.81 13.06 24.05 

150 6.13 8.53 12.42 21.05 

155 6.04 8.34 11.97 19.24 

160 5.87 8.06 11.41 17.65 

170 5.35 7.25 10.02 14.67 

180 5.09 6.83 9.27 13.11 

200 4.78 6.31 8.37 11.31 

225 4.23 5.47 7.07 9.21 

250 3.77 4.79 6.07 7.70 

300 3.38 4.20 5.18 6.37 

 
the safeguarded device, and with it the shell as a protec-
tive element, is heated slowly, we can legitimately as-
sume that the shell is located in a homogenous tempera-
ture field. Therefore, such a temperature load case can be 
legitimately assumed only when the thin-walled shell is 
heated very slowly and equally across its surface. If the 
temperature changes are fast and irregular, we cannot 
presuppose a homogenous temperaure field. In this con-
tribution, we discussed the problem of heating a thin- 
walled, shallow bimetallic shell at its apex. The conse-
quence of the current temperature load at the apex of the 
shell is the increase in height h  in the initial stage. 
Only after a given time, does this height start to decrease. 
The cause of this occurrence, not observed in shells in a 
homogenous temperature field, is that the area around the 
apex of the shell heats up very quickly with the tempera-
ture load, while the area at the edge of the shell remains 
cold. Due to this, the shell somewhat ‘swells up’ at the 
start, all the more the greater the temperature load 0T  at 
the apex of the shell. Within this lies the reason that the 
shell temperature at snap-through is at each point greater 
than the snap-through temperature pT  of a shell with 

the same material and geometric characteristics in a ho-
mogenous temperature field.  

When using these shells in practice, it is necessary to 
determine how the heating time pt  (enough for the 
shells to become unstable and snap-through) is relative to 
the material and geometric characteristics of the shell 
and the temperature load 0T  at its apex. The larger the 
temperature load 0T is, the quicker does the shell snap- 
through occur, and the  lower is the initial height 0h  of 
the shell. Yet it is important to note, that very shallow 
bimetallic shells with a low initial height 0h  do not 
even have a snap-through. [9]. In the case of the shell 
with the characteristics (55), the critical value of the ini-
tial height 0h , is 0 0,58h mm when the snap-through 
of the shell is not possible anymore due to temperature 
loading. If the temperature load 0T  is equal to the snap- 
through temperature pT  of a shell located in homoge-
nous temperature field, then theoretically, such a shell 
should be heated infinitely pt  . On the other hand, 
the high temperature has as a result, a short time for the 
shell to snap-through. Apart from the temperature load 

0T , and the appropriate initial height 0h , it is also nec-
essary to ensure that the edge of the shell can expand 
unrestrictedly in a horizontal direction for the snap- 
through of the shell to occur. Otherwise the shell cannot 
serve the function of a thermal switch. 
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