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ABSTRACT 
High-dimensional longitudinal data arise frequently in biomedical and genomic research. It is important to select 
relevant covariates when the dimension of the parameters diverges as the sample size increases. We consider the 
problem of variable selection in high-dimensional linear models with longitudinal data. A new variable selection 
procedure is proposed using the smooth-threshold generalized estimating equation and quadratic inference 
functions (SGEE-QIF) to incorporate correlation information. The proposed procedure automatically eliminates 
inactive predictors by setting the corresponding parameters to be zero, and simultaneously estimates the nonzero 
regression coefficients by solving the SGEE-QIF. The proposed procedure avoids the convex optimization prob- 
lem and is flexible and easy to implement. We establish the asymptotic properties in a high-dimensional frame- 
work where the number of covariates np  increases as the number of cluster n  increases. Extensive Monte 
Carlo simulation studies are conducted to examine the finite sample performance of the proposed variable selec- 
tion procedure. 
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1. Introduction 
Longitudinal data arise frequently in biomedical and health studies in which repeated measurements form the 
same subject are correlated. A major aspect of longitudinal data is the within subject correlation among the re- 
peated measurements. Ignoring this within subject correlation causes a loss of efficiency in general problems. 
One of the commonly used regression methods for analyzing longitudinal data is generalized estimating equa-
tions (Liang and Zeger, [1]). Generalized estimating equations (GEE) using a working correlation matrix with 
nuisance parameters estimate regression parameters consistently even when the correlation structure is misspe-
cified. However, under such misspecification, the estimator can be inefficient. For this reason, Qu et al. [2] pro-
posed a method of quadratic inference functions (QIF). It avoids estimating the nuisance correlation structure 
parameters by assuming that the inverse of working correlation matrix can be approximated by a linear combi-
nation of several known basis matrices. The QIF can efficiently take the within subject correlation into account 
and is more efficient than the GEE approach when the working correlation is misspecified. The QIF estimator is 
also more robust against contamination when there are outlying observations (Qu and Song, [3]).  

High-dimensional longitudinal data, which consist of repeated measurements on a large number of covariates, 
arise frequently from health and medical studies. Thus, it is important for statisticians to develop a new statistic- 
al methodology and theory of variable selection and estimation for high-dimensional longitudinal data, which 
can reduce the modeling bias. Generally speaking, most of the variable selection procedures are based on pena- 
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lized estimation using penalty functions. Such as, qL  penalty (Frank and Friedman, [4]), LASSO penalty 
(Tibshirani, [5]), SCAD penalty (Fan and Li, [6]), and so on. In the longitudinal data framework, Pan [7] pro- 
posed an extension of the Akaike information criterion (Akaike, [8]) by applying the quasi-likelihood to the 
GEE, assuming independent working correlation. Wang and Qu [9] developed a Bayesian information type of 
criterion (Schwarz, [10]) based on the quadratic inference functions. Fu [11] applied the bridge penalty model to 
the GEE and Xu et al. [12] introduced the adaptive lasso for the GEE setting, and references therein. These me- 
thods are able to perform variable selection and parameter estimation simultaneously. However, most of the 
theory and implementation is restricted to a fixed dimension of parameters. 

Despite the importance of variable selection in high-dimensional settings (Fan and Li, [13]; Fan and Lv, [14]), 
variable selection for longitudinal data that take into consideration the correlation information is not well studied 
when the dimension of parameters diverges. In this paper we use the smooth-threshold generalized estimating 
equation based on quadratic inference functions (SGEE-QIF) to the high-dimensional longitudinal data. The 
proposed procedure automatically eliminates the irrelevant parameters by setting them as zero, and simulta- 
neously estimates the nonzero regression coefficients by solving the SGEE-QIF. Compared to the shrinkage 
methods and the existing research findings reviewed above, our method offers the following improvements: 1) 
the proposed procedure avoids the convex optimization problem; 2) the proposed SGEE-QIF approach is flexi- 
ble and easy to implement; 3) the proposed method is easy to deal with the longitudinal correlation structure and 
extend the estimating equations approach to high-dimensional longitudinal data. 

The rest of this paper is organized as follows. In Section 2 we first propose variable selection procedures for 
high-dimensional linear models with longitudinal data, and asymptotic properties of the resulting estimators. In 
Section 3 we give the computation of the estimators as well as the choice of the tuning parameters. In Section 4 
we carry out simulation studies to assess the finite sample performance of the method. Some assumptions and 
the technical proofs of all asymptotic results are provided in the Appendix. 

2. Automatic Variable Selection Procedure 
2.1. Model and Notation 

We consider a longitudinal study with n  subjects and im  observations over time for the i th subject  

( )1, ,i n=   for a total of 
1

n

i
i

N m
=

= ∑  observation. Each observation consists of a response variable ijY  and a  

covariate vector np
ijX R∈  taken from the i th subject at time ijt . We assume that the full data set  

( ){ }, , 1, , , 1, ,ij ij iX Y i n j m= =   is observed and can be modelled as 

T , 1, , , 1, , ,ij ij ij iY X i n j mβ ε= + = =                             (2.1) 

where β  is a 1np ×  vector of unknown regression coefficients, and np  diverging as the sample size in-  
creases. ijε  is random error with ( ) 0ij ijE Xε = . In addition, we give assumptions on the first two moments of 

the observations { }ijY , that is, ( ) T
ij ijE Y X β=  and ( ) ( )TVar ij ijY v X β= , where ( )v ⋅  is a known variance  

function. 

2.2. Quadratic Inference Functions 
Denote ( )T

1, , ,
ii i imY Y Y=  and write iX  in a similar fashion. Following Liang and Zeger [1], a GEE can be 

used to estimate the regression parameters, β , 

( )T 1

1
0,

n

i i i i
i

X V Y X β−

=

− =∑                               (2.2) 

where iV  is the covariance matrix of iY . The matrix iV  is often modelled as ( )1 2 1 2
i iA R Aα , where iA  is a  

diagonal matrix representing the variance of ijY , that is, ( ) ( )( )1diag Var , ,Var
ii i imA Y Y=  , ( )R α  is a com-  

mon working correlation depending on a set of unknown nuisance parameters α . Based on the estimation 
theory associated with the working correlation structure, the GEE estimator of the regression coefficient pro- 
posed by Liang and Zeger [1] is consistent if consistent estimators of the nuisance parameters α  can be ob- 
tained. For suggested methods for estimating α , see Liang and Zeger [1]. However, even in some simple cases, 
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consistent estimators of α  do not always exist (Crowder [15]). To avoid this drawback, Qu et al. [2] suggested 
that the inverse of the working correlation matrix, ( )1R α−  is approximated by a linear combination of basis 
matrices, , 1, ,iM i s=  , such as 

( )1

1
,

s

k k
k

R a Mα−

=

≈ ∑                                 (2.3) 

where 1, , sM M  are known matrices, and 1, , sa a  are unknown constants. This is a sufficiently rich class 
that accommodates, or at least approximates, the correlation structures most commonly used. Details of utilizing a 
linear combination of some basic matrices to model the inverse of working correlation can be found in Qu et al. [2]. 

Substituting (2.3) to (2.2), we get the following class of estimating functions: 

( ) ( )T 1 2 1 2
1 1

1
0.

n

i i s s i i i
i

X A a M a M A Y X β− −

=

+ + − =∑                        (2.4) 

Instead of estimating parameters ( )T
1, , sa a a=   directly, they recognized that a GEE (2.4) is equivalent to 

solving the linear combination of a vector of estimating equations: 

( ) ( )
1

1 n

n i
i

g g
n

β β
=

= ∑ ,                                  (2.5) 

where 

( )
( )

( )

T 1 2 1 2
1

T 1 2 1 2

i i i i i

i

i i s i i i

X A M A Y X
g

X A M A Y X

β
β

β

− −

− −

 −
 

=  
 − 

  

However, (2.5) does not work because the dimension of ( )ng β  is obviously greater than the number of un- 
known parameters. Using the idea of generalized method of moments (Hansen, [16]), Qu et al. [2] defined the 
quadratic inference functions (QIF), 

( ) ( ) ( ) ( )T 1
n n n nQ g gβ β β β−= Ω                             (2.6) 

where 

( ) ( ) ( )T
2

1

1 n

n i i
i

g g
n

β β β
=

Ω = ∑  

Note that nΩ  depends on β . The QIF estimate ˆ
nβ  is then given by 

( )ˆ arg minn nQ
β

β β= . 

Then, based on (2.6), according to Qu et al. [2], the corresponding estimating equation for β  is 

( ) T 1
n n n nU ng gβ −= Ω ,                                (2.7) 

where ng  is the n nsp p×  matrix { }T
ng β∂ ∂ . 

2.3. Smooth-Threshold Generalized Estimating Equations Based on QIF 

Variable selection is an important topic in high dimensional regression analysis and most of the variable selec- 
tion procedures are based on penalized estimation using penalty functions. Because of these variable selection 
procedures using penalty function have a singularity at zero. So, these procedure require convex optimization, 
which incurs a computational burden. To overcome this problem, Ueki [17] developed a automatic variable se- 
lection procedure that can automatically eliminate irrelevant parameters by setting them as zero. The method is 
easily implemented without solving any convex optimization problems. Motivated by this idea we propose the 
following smooth-threshold generalized estimating equations based on quadratic inference functions (SGEE- 
QIF) 

( ) ( ) 0
np nI U β β− ∆ + ∆ = ,                            (2.8) 
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where ∆  is the diagonal matrix whose diagonal elements are ( ) 1, , n
j j p

δ δ
=

=


, and 
npI  is the np  dimen-  

sional identity matrix. Note that the j th SGEE-QIF with 1jδ =  reduces to 0jβ = . Therefore, SGEE-QIF 
(2.8) can yield a sparse solution. Unfortunately, we cannot directly obtain the estimator of β  by solving (2.8). 
This is because the SGEE-QIF involves jδ , which need to be chosen using some data-driven criteria. For the  
choice of ( ) 1, , n

j j p
δ δ

=
=



, Ueki [17] suggested that jδ  may be determined by the data, and can be chosen by 

( ) 10ˆ ˆmin 1,j j

γ
δ λ β

+ =  
 

 with an initial estimator ( )0ˆ
jβ . The initial estimator ( )0ˆ

jβ  can be obtained by solving  

the QIF (2.6) for the full model. Note that this choice involves two tuning parameters ( ),λ γ . In Section 4, fol- 
lowing the idea of Ueki [17], we use the BIC-type criterion to select the tuning parameters.  

Replacing ∆  in (2.8) by ∆̂  with diagonal elements ( )
1, ,

ˆ ˆ
n

j j p
δ δ

=
=



. The SGEE-QIF becomes 

( ) ( )ˆ ˆ 0
np nI U β β− ∆ + ∆ = .                              (2.9) 

The solution of (2.9) denoted by ,
ˆ
λ γβ  is called the SGEE-QIF estimator. 

2.4. Asymptotic Properties 
We next study the asymptotic properties of the smooth-threshold estimator. Let 0β  be the fixed true value of  
β . Denote { }0 0: 0jj βΑ = ≠  and { }0 0: 0c

jj βΑ = = . Denote by 0s = Α  the number of true nonzero para-  

meters. s  may be fixed or grow with n . We assume, under the regularity conditions, the initial QIF estimator 

0β̂  obtained by solving the QIF (2.6) satisfies 0 0
ˆ n

p
p

O
n

β β
 

− =   
 

when np →∞  and ( )2 1 1np n o− = ,  

where 0β  is the true value of β . Following Fan and Peng [18] and Wang [19], it is possible to prove the  
oracle properties for the SGEE-QIF estimators, including nn p  consistency, variable selection consistency  
and asymptotic normality. 

To obtain the asymptotic properties in the paper, we require the following regularity conditions: 
(C1). The parameter space S  is compact, and 0β  is an interior point of S . 
(C2). 4

iEε < ∞ , ( )ij rEX < ∞ , 1, ,i n=  , 1, , ij m=  , 1, , nr p=  , where ( )ij rEX  is the r th component 

of ijX . 

(C3). 
0 0

0 0

T 1 2 1 2
, 1 ,

0
1 T 1 2 1 2

, ,

1lim
i i i i

n

n i
i i s i i

X A M A X

E J
n

X A M A X

− −
Α Α

→∞ = − −
Α Α

 
 

≡ 
  
 

∑  . 

(C4). The weighting matrix ( )n βΩ  converges almost surely to a constant matrix 0Ω , where 0Ω  is in- 
vertible. Furthermore, the first and second partial derivatives of nΩ  in β  are all ( )1pO . 

(C5). ( )nQ β  is a twice differentiable function of β . Furthermore the third derivatives of ( )nQ β  are 
( )pO n . 

(C6). All the variance matrixes 0iA ≥ , and supi iA < ∞ . 
(C7). ( ),supi j ij nX O p= . 

(C8). ( ) ( ) ( ) ( )0 0 0

2T 1 2
0 .n A n A p nE M g O pβ β β−

ΑΩ =  

We define the active set { }ˆ: 1jj δΑ = ≠  which is the set of indices of nonzero parameters, where  

( ) 10ˆ ˆmin 1, , 1, , .j j nj p
γ

δ λ β
+ = = 

 
  The following theorem gives the consistency of the SGEE-QIF estimators. 

Theorem 1. Under conditions C1-C8, for any positive λ  and γ , such that ( )2 1 1np n o− = , 1 2 0n λ →  and 

( )( )1 2
nn p γ λ+ → ∞ , as n →∞ . There exists a sequence β̂  of the solutions of (2.9) such that  
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0
ˆ n

p
p

O
n

β β
 

− =   
 

. 

Furthermore, we show that such consistent estimators must possess the sparsity property and the estimators 
for nonzero coefficients have the same asymptotic distribution as that based on the correct submodel. 

Theorem 2. Suppose that the conditions of Theorem 1 hold, if ( )1 3 1nn p o− = , as n →∞ , we have 
1) Variable selection consistency, i.e. 

( )0 1P A A= →  

2) Asymptotic normality, i.e. 

( ) ( ) ( )
0 0 0

1 2
0

ˆ 0,
L

n n A A AnA M J N Gβ β β− − →  

where nA  is a q s×  matrix such that T
n nA A G→ , G is a q q×  non-negative symmetric matrix, 

( ) ( )0 0

T 1
0 0 0n AM J Jβ β−

Α= Ω , and “
L
→ ” represents the convergence in distribution. 

Remark: Theorems 1 and 2 imply that the proposed SGEE-QIF procedure is consistent in variable selection, it 
can identify the zero coefficients with probability tending to 1. By choosing appropriate tuning parameters, the 
SGEE-QIF estimators have the oracle property; that is, the asymptotic variances for the SGEE-QIF estimators 
are the same as what we would have if we knew in advance the correct submodel. 

3. Computation 
3.1. Algorithm 

Next, we propose the iterative algorithm to implement the procedures as follows: 
Step 1, Calculate the initial estimates ( )0β̂  of β  by solving the initial QIF (2.5) estimator. Let 0k = . 
Step 2, By using the current estimate ( )ˆ kβ , we choose the tuning parameters ( ),λ γ  by the BIC criterion. 
Step 3, Update the estimator of β  as follows: 

( ) ( ) ( )( ) ( )( ) ( )( ){ } ( )( ) ( )( ) ( )( ) ( ){ }1
1 T 1 T 1

, , , ,
ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ,k k k k k k k k k

A A n A A n A n A A A n A A n A n A A A Ang g G g g Gβ β β β β β β β β
−

+ − −= − Ω + × Ω +    

ˆ,
ˆ 0cA
β

∆
=  

where ( )
( )

( )

T 1 2 1 2
, 1 ,

,
1 T 1 2 1 2

, ,

1
i A i i i i A A

n

n A A
i

i A i s i i i A A

X A M A Y X

g
n

X A M A Y X

β

β
β

− −

= − −

 −
 

=  
  − 
 

∑   

and ( ) 1ˆ ˆ ˆ
A A AAG I

−
= − ∆ ∆ . 

Step 4, Iterate Steps 2-3 until convergence, and denote the final estimators of β  as the SGEE-QIF estimator. 

3.2. Choosing the Tuning Parameters 
To implement the procedures described above, we need to choose the tuning parameters ( ),λ γ . Following Ueki 
[17], we use BIC-type criterion to choose these two parameters. That is, we choose ( ),λ γ  as the minimizer of 

( ) ( ), , ,
ˆ log ,nBIC Q df nλ γ λ γ λ γβ= +  

where ,
ˆ
λ γβ  is the SGEE-QIF estimator for given ( ),λ γ , ,dfλ γ  is simply the number of nonzero coefficient 

β̂ . The selected ( ),λ γ  minimizes the ,BICλ γ . 

3.3. Choosing the Basis Matrices 
The choice of basis matrices kM  in (2.2) is not difficult, especially for those special correlation structures 
which are frequently used. If we assume ( )R α  is the first-order autoregressive correlation matrix. The exact 
inversion ( )1R α−  can be written as a linear combination of three basis matrices, they are 1M , 2M  and 3M , 
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where 1M  is the identity matrix, 2M  has 1 on two main off-diagonals and 0 elsewhere, and 3M  has 1 on the 
corners (1, 1) and (m, m), and 0 elsewhere. Suppose ( )R α  is an exchangeable working correlation matrix, it 
has 1 on the diagonal, and α  everywhere off the diagonal. Then ( )1R α−  can be written as a linear combina- 
tion of two basis matrices, 1M  is the identity matrix and 2M  is a matrix with 0 on the diagonal and 1 off the 
diagonal. More details about choosing the basis matrices can be seen in Zhou and Qu [20]. 

4. Simulation Studies 
In this section we conduct a simulation study to assess the finite sample performance of the proposed procedures. 
In the simulation study, the performance of estimator β̂  will be assessed by using the average the mean square  

error (AMSE), defined as 
2

0β̂ β−  averaged over 500  times simulated data sets. 

We simulate data from the model (1.1), where ( )T

0 1, ,
npβ β β=   with 1 2.8β = , 2 1.8β = −  and 3 3.8β = .  

While the remaining coefficients, corresponding to the irrelevant variables, are given by zeros. In addition, let 
1 34np n =   , where u    denotes the largest integer not greater than u . To perform this simulation, we take 

the covariates ( )1, ,5ijX j =   from a multivariate normal distribution with mean zero, marginal variance 1  
and correlation 0.5. The response variable ijY  is generated according to the model. And error vector  

( ) ( )( )T 2
1 5, , ~ 0, Corr ,i i i iNε ε ε σ ε α=  , where 2 1σ =  and ( )Corr ,iε α  is a known correlation matrix with  

parameter α  used to determine the strength of with-subject dependence. Here we consider ijε  has the first- 
order autoregressive (AR-1) or compound symmetry (CS) correlation (i.e. exchangeable correlation) structure 
with 0.7α = . In the following simulations, we make 500 simulation runs and take 60n =  and 120 . 

In the simulation study, for each simulated data set, we compare the estimation accuracy and model selection 
properties of the SGEE-QIF method, the SCAD-penalized QIF and the Lasso-penalized QIF for two different 
working correlations. For each of these methods, the average of zero coefficients over the 500 simulated data 
sets is reported in Tables 1 and 2. Note that “Correct” in tables means the average number of zero regression  
 

Table 1. Variable selections for the parametric components under different methods when the 
correlation structure is correctly specified. 

n  np  Method 
CS AR(1) 

AMSE Correct Incorrect AMSE Correct Incorrect 

60 15 SGEE-QIF 0.0062 12.0000 0 0.0066 12.0000 0 

  SCAD 0.0064 11.9020 0 0.0070 11.9280 0 

  Lasso 0.0067 11.8520 0 0.0074 11.9080 0 

120 19 SGEE-QIF 0.0028 16.0000 0 0.0029 16.0000 0 

  SCAD 0.0028 16.0000 0 0.0030 16.0000 0 

  Lasso 0.0031 16.0000 0 0.0033 15.9980 0 

 
Table 2. Variable selections for the parametric components under different methods when the 
correlation structure is incorrectly specified. The term “CS.AR(1)” means estimation with the 
fitted misspecified AR(1) correlation structure, while “AR(1).CS” means estimation with the 
fitted misspecified CS correlation structure. 

n  np  Method 
CS.AR(1) AR(1).CS 

AMSE Correct Incorrect AMSE Correct Incorrect 

60 15 SGEE-QIF 0.0083 12.0000 0 0.0094 12.0000 0 

  SCAD 0.0087 11.8040 0 0.0094 11.9180 0 

  Lasso 0.0092 11.7140 0 0.0099 11.8560 0 

120 19 SGEE-QIF 0.0035 16.0000 0 0.0043 16.0000 0 

  SCAD 0.0035 15.9960 0 0.0043 15.9980 0 

  Lasso 0.0038 15.9880 0 0.0046 15.9960 0 
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coefficients that are correctly estimated as zero, and “Incorrect” depicts the average number of non-zero regres- 
sion coefficients that are erroneously set to zero. At the same time, we also examine the effect of using a miss- 
pecified correlation structure in the model, which are also reported in Tables 1 and 2. From Tables 1 and 2, we 
can make the following observations. 

1) For the parametric component, the performances of variable selection procedures become better and better 
as n  increases. For example, the values in the column labeled “Correct” become more and more closer to the 
true number of zero regression coefficients in the models. 

2) Compared with the penalized QIF based on Lasso and SCAD, SGEE-QIF performs satisfactory in terms of 
variable selection. 

3) It is not surprised that the performances of variable selection procedures based on the correct correlation 
structure work better than based on the incorrect correlation structure. However, we also note that the perfor- 
mance does not significantly depend on working covariance structure. 

5. Discussion 
In this paper, we have proposed the smooth-threshold generalized estimating equation based on quadratic infe- 
rence function (SGEE-QIF) to the high-dimensional longitudinal data. Our method incorporates the within sub- 
ject correlation structure of the longitudinal to automatically eliminate the irrelevant parameters by setting them 
as zero, and simultaneously estimates the nonzero regression coefficients. As a future research topic, it is inter-
esting to consider the variable selection for the high/ultra-high dimension varying coefficient models with lon-
gitudinal data. 
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Appendix. Proof of Theorems 
Proof of Theorem 1 

Let ( ) ( ) ( )ˆ ˆ
nn p nS I Uβ β β= − ∆ + ∆ . It suffices to prove for any 0ε > , there is a constant 0c > , such that 

( )T
0sup 0 1n n n

u c
P p nu S p nuβ ε

=

 
+ > ≥ − 

 
                       (A.1) 

for n  enough. This will imply that there exists a local solution to the equation ( ) 0nS β = . Such that 

( )0
ˆ

p nO p nβ β− =  with probability at least 1 ε− . The proof follows that of Theorem 3.6 in Wang [19], 

we will evaluate the sign of ( )T
0n n np nu S p nuβ +  in the ball of { }0 :np nu u cβ + = . Note that 

( ) ( ) ( )T T
0 0 1 2 ,T

n n n n n n n n np nu S p nu p nu S p nu S u I Iβ β β
β
∂

+ = + ≡ +
∂

           (A.2) 

where β  lies between 0β  and 0 .np nuβ +  Next we will consider 1nI  and 2nI  respectively. For 1nI , 
by Cauchy-Schwarz inequality, we can derive that 

( ) ( ) ( )( ) ( )T
1 0 0

ˆˆ min .
nn n p n n j nj A

I p n u I U p n u Uβ δ λ γ β
∈

≤ − ∆ ≤ −1 ,  

According to condition (C7), consider the k th ( )1, ,k m=   block of ( )ng β , 

( )T 1 2 1 2

1

1 n

k i i k i i i
i

B X A M A Y X
n

β− −

=

= −∑ , let ,k sB  denote the s th components kB , by some elementary calcu- 

lation, we obtain 

( ) ( )
,

2
2 2

,2
1 1 1 1 1

1 ,
i i i

k s

m m mn n
jv

ij s i ij n
i j i j v

E B X E O p n
n

σ ε
= = = = =

 
= = 

 
∑∑ ∑∑∑  

where jv
iσ  is the ( ),j v th element of 1 2 1 2

i k iA M A− − , hence, we have ( ) ( )n p ng O p nβ = . By C3 and C4, 
we obtain, 

( ) ( ) ( ) ( ) ( )1
0 .n n n n p nU g g O p nβ β β β−= Ω =                     (A.3) 

Since ( ) ( )
0

ˆ ˆmin min
j A

j jj A
δ λ γ δ λ γ

∈ ∈
≤, , , we only need to obtain the convergence rate of ( )

0

ˆmin
j A

jδ λ γ
∈

, . Assume 

that 0β̂  is the initial estimator, and is nn p -consistent. By using the condition 1 2 0n λ →  for any 0ε >  
and 0j A∈ , we have 

( )( ) ( ) ( ) ( ) ( )( )
( ) ( ) ( )( )

0

1 1 10 01 2 1 2 1 2

1 11 2
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j j j
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P n O p n

γ γ
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δ λ γ ε λ β ε λ ε β

λ ε β

+ +− −

+

∈

 > = > = > 
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≤ > − →

,
 

which implies that ( ) ( )1 2ˆ
j po nδ λ γ −=,  for each 0j A∈ . Therefore, we have that ( ) ( )1 2ˆmin

j A
j po nδ λ γ

∈

−=, . 
Hence, by (A.3), we obtain that 

( ) ( )3 2
1n p n p nI O p n u o p n u−= − .                         (A.4) 

Now, we consider 2nI , we can derive that 

( ) ( )T T 1 T
2 21 22

ˆ ˆ .
n

n n n
n n p n n n n n

p p p
I u S u u I g g u u u I I

n n n
β

β
−∂

= = − ∆ Ω + ∆ = +
∂



   

By above result, we get ( ) 2
22n p nI O p n u= . Thus, it is easy to show that for sufficiently large n , 

( )T
0n n np nu S p nuβ +  on the ball of { }0 :np nu u cβ + =  is asymptotically dominated in probability 
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by 21nI , which is positive for the sufficiently large c . The proof of Theorem 1 is completed. 

Proof of Theorem 2 

According to Dziak [21], it is known that the initial estimator ( )0β̂  obtained by solving the QIF is nn p - 

consistent. For any given 0
cj A∈ , by ( )( )1 2

nn p γ λ+ → ∞ , then, 

( ) ( ) ( ) ( ) ( ) ( ) ( )
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which implies that 

( )0
ˆ 1  for all  1c

jP j Aδ = ∈ →                               (A.6) 

On the other hand, by the condition 1 2 0n λ → , for any 0ε > , and 0j A∈ , we have 

( ) ( ) ( ) ( ) ( )( )
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which implies that ( )1 2ˆ
j po nδ −=  for each 0j A∈ . Therefore, we prove that ( )0

ˆ 1  for all  1jP j Aδ < ∈ → . 
Thus, we complete the proof of 1). 
Next, we will prove 2). As shown in 1), ˆ 0jβ =  for 0j A∈  with probability tending to 1. At the same time, 

with probability tending to 1, 
0

ˆ
Aβ  satisfies the smooth threshold generalized estimating equations based on 

quadratic inference functions (SGEE-QIF) 

( ) ( )0 0 0 00
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Applying a Taylor expansion to (A.7) at 
0Aβ , it easy to show that 
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n n A n An A M U N Gβ β− − →  holds, by the Slutsky theorem, we can 

prove Theorem 2 (2). We write ( ) ( )0 0
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where 
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Since ( ) ( ) ( ) ( )( )0 0 0 0

T 1
0Covn A n A A n AM g gβ β β β−= Ω , we have  
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To establish the asymptotic normality, it suffices to check the Lindeberg condition, i.e., for any ε , 
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Using the Cauchy-Schwarz inequality, we have 

{ } { } { } ( ){ }
1 2 1 22 2 4

1
.

n

ni ni ni ni ni ni
i

E Z I Z nE Z I Z n E Z P Zε ε ε
=

> = > ≤ >∑  

By Bhebyshev’s inequality, 
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Thus, we have 

{ } ( )
2

2
2

1
1 .

n
n n

ni ni
i

p p
E Z I Z O n o

nn
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Therefore, niZ  satisfies the conditions of the Lindeberg-Feller central limit theorem. Hence, the proof of 
Theorem 2 is completed. 
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