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ABSTRACT 
To quantitatively assess the landslide hazard in Khelvachauri, Georgia, the statistic method of hazard index was 
applied. A spatial database was constructed in Geographic Information System (GIS) including topographic data, 
geologic maps, land-use, and active landslide events (extracted from the landslide inventory). After that, causal 
factors of landslides (such as slope, aspect, lithology, geomorphology, land-use and soil depth) were produced to 
calculate the corresponding weights, and thereby we defined a relevant set of spatial criteria for the latter 
landslide hazard assessment. On top of that, susceptibility assessment was performed in order to classify the area 
to low, moderate and high susceptible regions. Results showed that NW aspect, mountain geomorphology, pri-
vate land-use, laterite loam and clay, slope between 19 to 24 degrees, and soil depth between 10 - 20 cm were 
found to have the largest contribution to high landslide susceptibility. The high success rate (72.35%) was ob-
tained using area under the curve from the landslide susceptibility map. Meanwhile, effect analysis was carried 
out to assess the accuracy of the landslide susceptibility, indicating that the factor of slope played the most im-
portant role in determining the occurring probability of landslide although it did not deviate as much as other 
factors. Finally, the vulnerability analyses were carried out by means of the Spatial Multi-Criteria Estimation 
model, which in turn, led to the risk assessment. It turned out that not so much of the number of buildings (~ 
34.13%) was associated with high-risk zone and that governmental and private land-use almost accounted for 
the same risk (39.9% and 40.9%, respectively). 
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1. Introduction 
Nowadays, quantitative landslide assessment is still in-
adequate due to too limited resources available for re-
search, such as historic records of landslides and detailed 
socio-economic elements at risk. In particular, there are 
no enough data available in order to construct a proba-

bilistic model of landslides at different magnitudes that 
leads to a quantitative risk assessment. Most convention-
al landslide studies are descriptive and qualitative; there-
fore, it is imperative for data-driven assessment in com-
bination with in-depth knowledge of all the causal factors 
for landslide. The quantitative approach applied in this 
study, is of great importance for the benefit of the gov-
ernment decision-makers, the urban planners and ulti-*Corresponding author. 
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mately the local communities. 
The landslides frequently cause huge social and eco-

nomical disasters, posing threat to life and livelihood all 
over the world. Many environmental factors related to 
fields of geology, geomorphology, topography, and land- 
use have the potential to induce landslides [1]. Tools for 
handling and analyzing spatial data (i.e., GIS) facilitate 
the application of quantitative techniques in landslide 
hazard assessment and mapping. In terms of methods in 
evaluating a landslide hazard, they can be categorized 
into: geological, geotechnical, hydrological, geophysical 
modeling, and statistical approach.  

The work of Lee and Jones [2] suggests that landslide 
risk assessment methods should be classified as qualita-
tive, semi-quantitative and quantitative. The recent trend 
towards the development of warning systems and land 
utilization regulations aimed at minimizing the loss of 
lives and damages to properties without investing in 
long-term and costly projects of slope stabilization [3,4]. 
As a result, nowadays landslide hazard assessment, in-
cluding susceptibility and vulnerability mapping, increa-
singly becomes vital. 

Recently, various studies have been carried out on 
quantitative landslide susceptibility assessment along 
with deterministic statistics [5-7] and even artificial in-
telligence [8-13]. Unfortunately, the above-mentioned 
risk assessment methods are case-specific and require 
many types of data on landslide occurrence and impact, 
most of which, however, are not yet available in Georgia, 
our study area of this paper.  

To identify areas that are susceptible to future 
landslides, it is very important to accurately detect past 
landslides and to quantitatively formulate the relation 
between the landslide occurrence and spatial occurrence 
of environmental data. Therefore, this paper will present 
a statistical method called “hazard index” to tackle the 
issues of landslide susceptibility and risk analysis in 
Khelvachauri, Georgia. This method is mainly based on 
the landslides inventory map, generated by visual inter-
pretation of aerial photos, satellite images, and field sur-
veys. Six indicator maps contributing to the occurrence 
of landslides will be combined as well. Susceptibility 
assessment in this area was also carried out, and assessed 
using the effect assessment. Finally, we constructed a 
vulnerability map by comparing the produced landslide 
susceptibility map with available data of elements at risk. 

2. Study Area 
The study area (Figure 1) is located in Khelvachauri, one 
of the five municipalities in Adjara, an autonomous re-
public in the southwest Georgia, 8 km southeast from 
one of the major cities of Georgia - Batumi. Also, it cov-
ers an area of about 97.5 km2 with a population of ap-
proximate 38,000, including the city of Khelvachauri and  

 
Figure 1. The study area of Khelvachauri, Georgia shown 
within the red boundary (Source: Google Earth). 
 
Makhinjauri, as well as 30 villages. This area is bounded 
by the Black Sea to the west and by Turkey to the south. 
Within the study area, the most important and longest 
river is Chorokhi River, which flows 26 km along the 
region. Most of its parts pass through mountainous re-
gion, which is practically inaccessible for field explora-
tion. Agriculture dominates in the regional economy al-
though industry has been also developed. There are three 
tea factories, stagnant materials plant and constructing 
blocks workshop. However, agriculture (especially in tea 
and citrus production) as well as husbandry takes a lead-
ing part. 

Landslides occur almost in all landscape - geomor-
phologic zones, which makes that there is a wide diffe-
rentiation in the failure types and mechanisms and in the 
size-frequency distribution. Negative impact of lands- 
lides are in the form of destruction of buildings, agricul-
tural lands, roads and other infrastructure and also to 
considerable effect on population in the form of loss of 
human life and a significant number of eco-migrants. 

The relief, geology, geomorphology of the territory of 
Khelvachauri creates favorable conditions for the devel-
opment of active geological processes, such as landslides, 
mudflows/debrisflows and rockfalls. Landslide processes 
affecting the social and economic development of the 
country are widespread in this region.  

3. Data Description 
In order to assess the landslide hazard triggered by rain-
fall in Khelvachauri, Georgia, we first have to obtain the 
landslide inventory map, which was limited to the period 
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of 2000 to 2006, with the original landslide data from 
Ministry of Environmental Protection and Natural Re-
sources of Georgia. The inventory recorded 45 landslides, 
almost belonging to the active states. Typically, land- 
slides were visually interpreted by comparing ortho-rec- 
tified aerial photographs taken before and after the oc-
curring of landslides, in conjunction with high-resolution 
Google-Earth images and intensive fieldwork (Figure 2). 
Finally we derived the landslide inventory map, includ-
ing all types of landslides and their corresponding infor-
mation, eg. occurring time and the degree of damage. 

The causal factors and elements at risk are prerequi-
sites for the latter risk and vulnerability assessment, 
which is described in detail in the following sections. 

3.1. Causal Factors 
The causes of landslides have been classified into rainfall, 
earthquakes, erosion weathering, groundwater level, and 
human activities [14]. Even though there are always 
more than one single cause for the occurrence of 
landslides, according to the records of Ministry of Envi-
ronment and Natural Resources Protection of Georgia, 
the active landslides in this study area, nevertheless, are 
mainly induced by the rainfall. 

In theory, the more possible causal factors considered, 
the more accurate landslide susceptibility and risk as-
sessment. To this end, we tried our best to collect such 
data as topography, geotechnical and general soil mea-
surements, lithology, geomorphology, and satellite im-
ages. Nonetheless, the factor of rainfall, commonly 
thought as a main triggering factor of landslide, was ex-
cluded primarily due to unavailability of enough weather 
stations. The above-mentioned factors used here were 
digitized based on the historical geological maps at the 
scale of 1:10,000. Factors derived from topography, such 
as slope gradient and slope aspect, were calculated from 
the topographic data, generally considered as the most 
influential factors. Furthermore, geomorphologic data 
 

 
Figure 2. Landslide in Ortabatumi (Khelvachauri Munici-
pality). 

were collected from historical map and the land-use data 
were derived from parcel data of the cadastral database. 
Soil depth data were measured via field survey investiga-
tion prior to landslide occurring. 

3.2. Elements at Risk 

Identifying the elements at risk of landslide and vulnera-
bility assessment need the exact spatial distribution of 
buildings in the study area, as well as the socio-economic 
information like the number of stories, possession of 
properties, economic values etc. All of the data consi-
dered as elements at risk were basically extracted from 
cadastral data and participatory GIS procedures. 

4. Methodology 
4.1. Workflow 
As shown in Figure 3, the workflow for the assessment 
of landslide can be roughly described as follows:  

The primary input data were lithology, geomorphology, 
land use, soil depth and topographic data. Other informa-
tion (secondary data) was derived from the different in-
put data (e.g., slope and aspect from topographic). The 
collectively called causal factors (primary and secondary 
data) were used as inputs into the statistic model. This 
was separately calculated to give the respective weight 
and was finally analyzed for the susceptibility assessment. 
Finally, the physical vulnerability was assessed by the 
Spatial Multi-Criteria Estimation (SMCE) method [15] 
and was computed through crossing the number of 
building and land use information. It should be noted that 
results from the SMCE did facilitate the determination of 
physical vulnerability in this study area.  
 

 
Figure 3. Flowchart of susceptibility mapping and vulnera-
bility assessment of landslide. 
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4.2. Hazard Index Method 
Due to the lack of enough landslide history and geotech-
nical data, the quantitative, deterministic or probabilistic 
models were excluded from the study. As an alternative, 
bivariate statistical vulnerability assessment of landslide 
(a semi-quantitative approach) was applied here, just 
based on the active landslide events. The method expli-
citly considered a number of factors influencing the sta-
bility of slope [16], including the following 6 parameters: 
lithology, geomorphology, landuse, soil depth, slope and 
aspect. 

In order to assess the vulnerability of landslide hazard, 
landslide susceptibility map was generated using a basic 
statistical method, called hazard index, which was for-
mulated as: 

( )
( )

( )
( )

Area Si Area SiDensclasln ln
Area Ni Area NiDensmapiW
  

= =   
   

∑
∑

(1) 

where Wi represented weight, and subscript i indicated 
one of the 6 parameters: slope, aspect, lithology, geo-
morphology, land use and soil depth. Densclas was the 
landslide density belonging to the corresponding para-
meter class. Densmap represented the landslide density 
within the entire map. “Area (Si) “indicated area, which 
contained landslides, for a given parameter class. Area 
(Ni) referred to the total area for a given parameter class. 
Noted that all the processes were performed in Integrated 
Land and Water Information System (ILWIS), which is a 
GIS and remote sensing software developed by The Fa-
culty of Geo-Information Science and Earth Observation 
of Twente University, Netherlands.  

As illustrated in Figure 4, the slope was first derived 
from Digital Elevation Model (DEM), and then was 
weighted according to Equation (1). The other five causal 
factor parameters can be assigned the corresponding 
weight in that vein. Specifically, the method was based 
on map by crossing landslide map at the active state with 
one of the 6-parameter maps. The map crossing results 
were shown in a cross table, which was utilized to calcu-
late the density of landslides for a given parameter class. 
A standardization of these density values was obtained 
by relating them to the overall landslide density in the 
entire area. Here, the landslide density in the entire map 
divided the landslide density per class. The natural loga-
rithm was taken, so it follows that when the landslide 
density was lower than normal, you will get negative 
weights, and positive when it was higher than normal.  

By mathematically adding up the weights of the 6 fac-
tor maps, a susceptibility map can be created. After that, 
the values were classified into three classes: low, mod-
erate and high susceptibilities. A cross validation tech-
nique called “success rate” was performed to evaluate the 
performance of the model. The pixels of the sum of the 6 

factor maps were arranged from high to low values based 
on the frequency information of the histogram and were 
categorized into 100 classes. Subsequently, a joint fre-
quency was calculated with the overlaid active landslide 
map and summed 6 factor maps and was presented as a 
cumulative percentage of landslides and the percentage 
of map’s area. The area under the curve was calculated as 
well to assess the accuracy of the map.  

Effect analysis can further show how success rate 
changes when the input factors are changed and quanti-
fies the uncertainty of each factor [17]. Effect analysis 
was done by excluding a single factor from the summa-
tion of the other factors in such a way that for example 
the aspect was excluded and the weights of geomorphol-
ogy, lithology, land-use, slope, and soil depth were 
summed up. This was repeatedly done for all the causal 
factors. 

5. Results 
5.1. Causal Factors Mapping 
Terrain parameters, i.e. slope and aspect were always 
being thought as good indicators of the spatial criteria 
required in SMCE-based landslide susceptibility assess-
ment. They were primarily derived from DEM data. 
From the very beginning, we tried to derive terrain pa-
rameters from two different DEM source, i.e. ASTER 
and topographic map. By comparing the contour line 
from ASTER DEM and that of the 1:50,000 topographic 
map, large errors were found (maximum 30 meters shift, 
not graphically shown here) between them. As a result, 
we selected DEM from topographic map as the data 
source for the aspect and slope factors, and cautions 
should be taken in the potential applications of ASTER 
DEM in the assessment of landslides hazard. On top of 
slope and aspect maps, other factors such as lithology, 
geomorphology, soil depth and land use were shown in 
Figure 5. 

5.2. Active Landslide Extraction 
Thirty-eight active landslides were extracted and taken as 
the dependent variable in the model thus the susceptibil-
ity assessment was performed based exactly on this type. 
Also, as indicated in Figure 6, the active landslides 
spread sporadically everywhere in the study area, which 
suggested that the situation in this area is very severe. 
Given the multi-land use types and topographic factors in 
this area, the assessments of landslide were getting more 
complicated. 

5.3. Weight Assignment 
To identify the most influential causal parameters on 
active landslides in the study area and quantify their cor-   
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Figure 4. The detailed methodology employed in landslide assessment. 
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Figure 5. Causal factor maps for slope (a), soil depth (b), aspect(c), land use (d), lithology (e), and geomorphology (f), respec-
tively. 
 

 
Figure 6. Active landslide events extracted from the land- slide inventory over the study area.  
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responding contributions, we calculated the weight of the 
six parameters described in Section of Methodology us-
ing Equation (1). Various causal parameters had quite 
different influences on the landslide occurrence, either 
favorable or unfavorable [18]. The weight results for the 
six causal parameters were not shown here. By adding up 
the weight of causal factors such as slope, soil depth, 
geomorphology, aspect, land use and lithology, we got 
the overall weight map, as shown in Figure 7. 

From the calculated weights in Table 1, the most im-
portant influential subtypes of causal factors related with 
landslide were recognized. As for the aspect factor, NW 
had the most important relation with landslides. The 
mountain class of geomorphology was more prone to 
landslide. Similarly, private land use and laterite loam 
and clay represented the highest susceptibility for 
landslide. The slope between 19 - 24 degrees and soil 
depth between 10 - 20 cm were most associated with 
landslide. 

5.4. Susceptibility Assessment 
Based on the weights assignment, we carried out the 
susceptibility assessment. The final weights of the re-
sulting map ranged from −18.9 to 2.2. Although the 
weight map (Figure 7) showed good indication of the 
quantitative landslide hazard in the study area, too wide 
range might make it difficult to utilize by decision mak-

ers for development planning. Therefore, the hazard map 
was grouped into three simplified categories based on the 
histogram of the final weight map (Figure 7): high, 
moderate and low (Figure 8). Low hazard corresponded 
to the range of (−18.9, −4), the moderate to (−4, 1.1) and 
the high one to (1.1, 2.2).  

The landslide susceptibility map gave the spatial dis-
tribution of the relative susceptibility values for the 
whole area. Figure 8 indicated that the moderate and 
high susceptible zones had a more disperse pattern, 
compared with the low susceptibility zone. Based on the 
susceptibility in Figure 8, we got the statistics of area or 
percentage of Landslide Susceptibility Classes, which 
was given in Table 2. Results showed that the area of 
27.7 km2 (28.4%) located in the high hazard zone, a more 
considerable area (53.2% of the total area) was assigned 
to moderate landslide susceptibility zone.  

5.5. Assessment and Effect Analysis of Model 
The success rate curve [19] is of importance to the veri-
fication of susceptibility map of landslides, which was 
performed by comparing the known landslide location 
with the landslide susceptibility map. As such, the suc-
cess rate had been applied in many previous studies 
[20,21] to assess landslide prediction model perfor-
mance. 

In this paper, by assuming that the landslides were  
 

 
Figure 7. The overall weight produced by averaging out the weights of six causal factors. 
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Figure 8. The susceptibility map in our study area, which was calculated from the hazard index method applied in this study. 
 

Table 1. Most influential type or value range versus each causal factor. 

Causal factor  Aspect Geomorphology Land-use Lithology Slope (degree) Soil depth (cm) 

Most influential subtypes NW mountain private use laterite loam and clay 19 - 24 10 - 20 

 
Table 2. Area and percentage of landslide susceptibility 
classes. 

Classification Area (km2) % 

low hazard 18.0 18.4 

moderate hazard 51.8 53.2 

high hazard 27.7 28.4 

Total area 97.5 100 

 
linked to the causal factors (geomorphology, slope, as-
pect, soil depth, land-use, and lithology) and that the ex-
cessive rainfall serves as the trigger of the event, success 
rate allowed an estimate of a good fit of the model 
through statistical computations. As shown in Figure 9(a), 
the obtained success rate curve was very steep in the 
former part, indicative of great predictive capability. Par-
ticularly, roughly 82% of the pixels predicted a 100% 
landslide (indicated by red B in Figure 9(a)), whereas 
more or less 50% of the pixels with the highest weight 
value in the map showed 80% landslides (indicated by 
blue A in Figure 9(a)).  

Also, the area under the curve (AUC) was calculated 
to quantify the validity of the model [22,23]. Total area 

approaching 100 percent signifies perfect prediction 
while an area under 50 percent represented an invalid 
prediction. In this case, the area under the curve of the 
overall success rate curve was 72.35%, which implied 
that the model was valid. 

In this study, the effect analyses were conducted by 
exclusion of each factor in turn from the summation of 
the weight factors. Related success rates were drawn and 
the effect of each factor was evaluated using area under 
the curve calculation, which was given in Figure 9(b). 
Furthermore, there were no significant deviations of 
success rate curves by excluding any causal factor from 
the overall curve. Meanwhile, it can also be deduced 
from Figure 9(b) that the most important factor on 
landslide analysis, was the slope with AUC = 70.22%, 
then the important factor is followed by soil depth (AUC 
= 71.35%), lithology (AUC = 71.61%), land-use 
(71.99%), geomorphology (AUC = 72.73%), and the 
aspect (AUC = 72.80%). 

5.6. Vulnerability Assessment 
Vulnerability should be considered in the physical, social, 
environmental dimensions. However, due to the limited  
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Figure 9. Calculated overall success rate based on six causal 
factors (a), superimposed by the effect analysis results (b), 
which was performed by exclusion of each factor every 
time. 
 
availability of data related to population and social prop-
erties, the physical vulnerability assessment has only 
been performed. The physical vulnerability was assessed 
based on elements at risk of building and land-use. 

The assessment results were given in Table 3. Within 
this study area, a total number of 9909 buildings were 
included. Amongst them, 3382 buildings (34.13%) 
represented high susceptibility class, followed by 4584 
buildings as moderate susceptible.  

According to Table 4, within in study area, main land 
use types were categorized as either private or public 
owned by government. As for low susceptibility class 
with an area of 17.9 km2, the governmental land use ac-
counts for about 26% and private about 23.3%. In mod-
erate susceptibility class, with an area of 51.9 km2, the 
governmental land use accounts for about 26.6%, and 
private about 25.6%. For the high susceptibility class 
with an area of 27.6 km2, the governmental and private  

Table 3. Physical vulnerability results (number of build-
ings). 

Susceptibility classifications Number of buildings Percentage 

High susceptibility 3382 34.13 

Moderate susceptibility 4584 46.26 

Low susceptibility 1943 19.61 

Total 9909 100 

 
Table 4. Physical vulnerability results (land use). 

Hazard * Landuse Area (km2) % 

Low hazard * government 4.7 26.0 

Low hazard * private 4.2 23.3 

Total Low susceptibility class area 17.9  

Moderate hazard * government 13.9 26.6 

Moderate hazard * private 13.3 25.6 

Total Moderate susceptibility class area 51.9  

High hazard * government 11.0 39.9 

High hazard * private 11.3 40.9 

Total High susceptibility class area 27.7  

Total area of Khelvachauri 97.5  

 
land use accounts for 39.9% and 40.9%, respectively. 

6. Discussion and Conclusions 
The results showed that despite the operational and con-
ceptual limitations, landslide hazard assessment should 
be a suitable, cost-effective aid to land-use planning and 
hazard reduction.  

By calculating the respective weight for six different 
causal factors, it was recognized the area with NW aspect, 
mountain geomorphology, private land-use, laterite loam 
and clay, 19 - 24 degree for slope and soil depth between 
10 and 20 cm were among the most susceptible areas for 
landslide occurrence. Primarily due to the lack of reliable 
and high-resolution rainfall fields, few statistical models 
have included rainfall variables as explanatory variables. 
This was also the reason that this research did not take 
into account the rainfall as an approach for the landslide 
hazard and risk assessment. Moreover, the analysis was 
done in terms of physical vulnerability (by overlaying the 
number of buildings, including land-use data, in the dif-
ferent hazardous areas). 

Landslide susceptibility maps are of great importance 
to planners and engineers for choosing suitable locations 
to implement eco-social developments. In this study, we 
found that about 28.4% of the area was prone to high 
landslide risk. 

The final landslide susceptibility map, with the com-
bination of all the weights, yielded a satisfactory predic-
tion of the landslide with a success rate of 82%. The role 
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of geomorphology, soil depth, lithology, and slope served 
as very important factors for the landslide processes. The 
models were proven valid through the calculation of the 
area under the curve, i.e., all success rate curves occupy 
more than 72.35% of the total area. Effect analysis 
showed that slope played the most important role in the 
landslide analysis since slope bore the greatest weight. 
Therefore when all factor weights were added except for 
the weight of the slope, the resultant weight greatly di-
minished which in turn reduced the percentages of 
landslide.  

Due to the lack of social, economic, environmental 
and physical vulnerability data, only building and land 
use vulnerability assessments were carried out using 
SMCE model in our study. We found that 34.13% of the 
numbers of buildings were represented as high suscepti-
bility class. We estimated as well that in high susceptibil-
ity class there was 39.9% from the governmental land 
use and 40.9% from the private. 

The method presented here has a series of drawbacks, 
which should be taken into account. For instance, the 
landslide hazard map was only calculated from the oc-
currence of active landslides. Other landslide activities 
should also be included for future research. However, the 
use of landslide hazard index statistics in Khelvachauri is 
useful for ranking them in order of importance for 
landslide risk reduction measures. The method allows 
evaluating which causal factor is responsible for high 
susceptible and vulnerable of landslides. It should also be 
noted that the resulting landslide susceptibility value and 
the vulnerability were not static [15]. The landslide sus-
ceptibility map and vulnerability value should therefore 
be updated regularly since these indicators had temporal 
variability. For further study to improve the vulnerability 
assessment results, it is highly recommended that other 
factors such as river distance, number of population per 
household, climate data, history of landslide event, once 
become available, should be taken into account. This 
would make landslide data more reliable. This would 
make local (provincial and municipal) authorities accor-
dingly produce logical landslide mitigation program. 
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