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ABSTRACT 

In the present communication, we have obtained the optimum probability distribution with which the messages 
should be delivered so that the average redundancy of the source is minimized. Here, we have taken the case of 
various generalized mean codeword lengths. Moreover, the upper bound to these codeword lengths has been 
found for the case of Huffman encoding. 
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1. Introduction 

Any message that brings a specification in a problem which involves a certain degree of uncertainty is called 
information and it was Shannon [1] who named this measure of information as entropy. In coding theory, the 
operational role of entropy comes from the source coding theorem which states that if H  is the entropy of the 
source letters for a discrete memoryless source, then the sequence of source outputs cannot be represented by a 
binary sequence using fewer than H  binary digits per source digit on the average, but it can be represented by 
a binary sequence using as close to H  binary digits per source digit on the average as desired. To be clearer, 
let us consider the discrete source S  that emits symbols 1 2, , , nx x x  with probability distribution  

 1 2, , , np p p p   where 
1

1
n

i
i

p


 . The aim of source coding is to encode the source using an alphabet of  

size D , that is, to map each symbol ix  to a codeword ic  of length il  expressed using the D  letters of the 
alphabet. It is known that if the set of lengths il  satisfies Kraft’s [2] inequality 

1

1i
n

l

i

D



                                          (1.1) 

then there exists a uniquely decodable code with these lengths, which means that any sequence 1 2i i inc c c  can 
be decoded unambiguously into a sequence of symbols 1 2i i inx x x . In this respect, Shannon [1] proved the first 
noiseless coding theorem for the uniquely decipherable code in the form of following inequality 

    1H p L H p                                   (1.2) 

where  
1

log
n

i D i
i

H p p p


   is a Shannon’s entropy and 
1

n

i i
i

L p l


   is the mean codeword length. 

Later, Campbell [3] and Kapur [4] proved the source coding theorems for their own exponentiated mean co- 
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deword length in the form of following inequalities 

    1R p L R p                                    (1.3) 

and 

    1R p L R p
                                    (1.4) 

respectively, where 
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is Campbell’s [3] mean codeword length, 
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is Kapur’s [4] mean codeword length and  
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is Renyi’s [5] measure of entropy. 
Recently, Parkash and Kakkar [6] introduced two mean codeword lengths given by 
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and 
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                                 (1.6) 

Further, the authors provided two source coding theorems which show that for all uniquely decipherable 
codes, the mean codeword lengths  ,L    and  L   satisfy the relation: 

     , 1E p L E p 
                                   (1.7) 

and 

      1K p L K p                                    (1.8) 

respectively where 
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is a Kapur’s [4] two parameter additive measure of entropy and 
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is measure of entropy developed by Parkash and Kakkar [6]. 
This is to emphasize that in the entire literature of source coding theorems, one can observe that the mean co- 

deword length is lower bounded by the entropy of the source and it can never be less than the entropy of the 
source but can be made closer to it. This phenomenon provides the idea of absolute redundancy which is the 
number of bits used to transmit a message minus the number of bits of actual information in the message, that is, 
the mean codeword length minus the entropy of the source. The objective of the present communication is to 
minimize this redundancy in order to increase the efficiency of the source encoding. For this purpose we have 
made use of the concept of escort distribution as follows: 

If  1 2, , , np p p p   is the original distribution, then its escort distribution is given by  1 2, , , nP P P P   

where 

1

i
i n

i
i

p
P

p










for some parameter 0  . Many researchers including Harte [7], Bercher [8,9], Beck and  

Schloegl [10] etc. used this distribution in their respective findings. 
The aim of the present paper is to obtain the optimum probability distribution with which the source should 

deliver messages in order to minimize the absolute redundancy. To obtain our goal, we have taken into consid- 
eration the above mentioned generalized mean codeword lengths. Moreover, the upper bound to these codeword 
lengths has been found for Huffman [4] encoding. 

2. Optimum Probability Distribution to Minimize Absolute Redundancy 

Let us assume that for discrete source S  that emits symbols 1 2, , , nx x x  with probability distribu-
tion  1 2, , , np p p p  , the codewords ic  having lengths , 1, 2, ,il i n  , have been obtained using some en-
coding procedure on noiseless channel. Further, we assume that entropy of the source is  E p

  and average 
codeword length is  ,L   . Since from (1.7), we have    ,E p L

   , therefore, the average redundancy 
of the source code is given by 
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where 
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 and  
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  . 

In order to minimize the average redundancy, we resort to the following theorem: 
Theorem 1: The optimum probability distribution that minimizes the absolute redundancy  1 2, , , nf p p p  

of the source with entropy  E p
  and the mean codeword length  ,L    is the escort distribution, given 

by 

1

, 1, 2, ,
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l

i n
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                                  (2.2) 

Proof: To minimize the redundancy, we need to minimize 
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   1 2 1 1 2, , , log , , ,
1n D nf p p p f P P P






                         (2.3) 

subject to the constraint 

1

1
n

i
i

P


                                        (2.4) 

To prove this, we first of all, find the extremum of  1 1 2log , , ,D nf P P P  which is equivalent to extremiz-
ing  1 1 2, , , nf P P P  and then use the fact that  1 2, , , nf p p p  is minimum or maximum will depend upon 
the value of parameter  . 

So, in order to extremize  1 1 2, , , nf P P P , we consider the Lagrangian given by 

 11
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1
iln n

i i
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P D P


  


 

    
 

   

where 0   is Lagrange’s multiplier. 
Now 
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                              (2.5) 

Letting 0, 1, 2, ,
i

i n
P


 


 , we get 
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                                       (2.6) 

Substituting (2.6) in (2.4), we get 
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                                    (2.7) 

Substituting (2.7) in (2.6), we get the result (2.2). 
Now,  
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                      (2.8) 

We see that 
2

2
0

iP





 for 0 1   and 

2

2
0

iP





 for 1  . 

Also, 
2

0,
i j

i j
P P


 

 
 

So,  1 1 2, , , nf P P P  has minimum value for 0 1   and maximum for 1  . 
Thus,  1 1 2log , , ,D nf P P P  has minimum value for 0 1   and maximum for 1   and consequently, 

observing the function  1 2, , , nf p p p , we see that it has minimum value for 0 1  , 1  . 
Thus, the minimum value is given by 

 1 2 min
1

, , , log i
n

l
n D

i

f p p p D



   .                          (2.9) 
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Again, the necessary condition for the construction of uniquely decipherable codes is given by 

1

1i
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l

i

D



                                      (2.10) 

Therefore, from (2.9), we have  1 2 min
, , , 0nf p p p  . 

NOTE: It is to be noted that  1 2 min
, , , 0nf p p p   if the source is Huffman [11] encoded since for the 

Huffman encoding, we have 

1
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 .                                      (2.11) 

Therefore, for this case, (2.2) becomes 

, 1, 2, , .il
iP D i n                                 (2.12) 

Similarly, if we consider the codeword length  L   which satisfies the relation    L K p  , then the 
absolute redundancy of the source code in this case is given by 
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   . 

Theorem 2. The optimum probability distribution that minimizes the absolute redundancy  1 2, , , ng p p p  
of the source with entropy  K p  and mean codeword length  L   is the escort distribution, given by 
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                             (2.13) 

Proof: We will find the extremum of  1 2, , , ng p p p which is equivalent to extremizing  1 1 2, , , ng P P P  
subject to constraint 
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                                    (2.14) 

Let us consider the Lagrangian given by 

 1 1 2
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                       (2.15) 

where 0   is a Lagrange’s multiplier. 

For an extremum, let 0, 1, 2, ,
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 , that is, 
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                     (2.16) 

Using (2.14), we get 
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Substituting (2.17) in (2.16), we get (2.13). 
Also, 
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So,  1 1 2, , , ng P P P  reaches its minimum value when 
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that is, 
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Note: Again in this case also, if the source is Huffman [11] encoded, then the probabilities are given by 
, 1, 2, , .il

iP D i n    
Next, we will find the upper bound on the codeword lengths  ,L    and  L  when the source is Huff- 

man encoded. 
Theorem 3. The exponentiated codeword length  ,L    satisfies the following inequality 

 , logDL n                                   (2.18) 

if the source is encoded using Huffman procedure. 
Proof: The exponentiated codeword length  ,L    can be written in the following form 
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where 
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Considering (2.12), (2.19) becomes 
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   . 

We need to find the extremum of  ,L    subject to constraint 
1

1i
n

l

i

D



  (as the source is encoded using  

Huffman Procedure). 
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For this purpose, we first of all, find the extremum of  1 2log , , ,D nh l l l  which is equivalent to extremizing 
 1 2, , , nh l l l  and then use the fact that  ,L    is minimum or maximum depending upon the value of pa- 

rameter  . 
So, we consider the Lagrangian given by 

 1 2
1

, , , 1 i
n

l
n

i

A h l l l D 



    
 

                           (2.21) 

where 0   is a Lagrange’s multiplier 
Put , 1, 2, ,il

ix D i n   , (2.21) becomes 
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Letting 0, 1, 2, ,
i

A
i n

x


 


 , we get 

 1 , 1, 2, ,ix i n

                                  (2.22) 

Now, 
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                                    (2.23) 

Using (2.23) in (2.22), we get 

1
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that is, log , 1,2, ,i Dl n i n    
Now, 
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We see that 
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 for 0 1   and 
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 for 1  . 

Also, 
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A
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So,  1 2, , , nh l l l  has minimum value for 0 1   and maximum for 1  . 
Therefore,  1 2log , , ,D nh l l l  has minimum value for 0 1   and maximum for 1   and conse- 

quently, observing the exponentiated mean codeword length  ,L   , we see that it has maximum value for 
0 1  , 1  . 

Thus, the maximum value is given by 

 max
, logDL n   . 

Theorem 4. The mean codeword length  L   is upper bounded by logD n  , that is, 

  logDL n                                       (2.24) 

if the source is encoded using Huffman procedure. 
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Proof: The exponentiated codeword length  L   can be written in the following form 

   
1 1

as .i i
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                         (2.25) 

We need to find the extremum of  L   subject to constraint 
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  (as the source is encoded using 

Huffman Procedure). 
So, we consider the Lagrangian given by 
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where 0   is a Lagrange’s multiplier . 
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Substitute (2.28) in (2.27), we get 
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So, the mean codeword length  L   has maximum value when log , 1, 2, ,i Dl n i n    , and is given by 

 max
logDL n  . 

Note-I: For the case of Campbell’s codeword length L , we have from (1.3),  L R p  . So, the average 
redundancy of the source code in this case is given by 
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The absolute redundancy in the case of Campbell’s [3] mean codeword length is the same as in case of expo- 
nentiated mean codeword length  ,L    developed by Parkash and Kakkar [6] as given in (2.1). Thus, we 
see that similar results as proved in theorem (2.1) and theorem (2.3) hold for Campbell’s case also. 

Note-II: Absolute redundancy when we use Kapur’s[4] mean codeword length is given by 

     1 2 1 1 2

1
, , , log , , ,

1n D nJ p p p L R p J p p p
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Theorem 5: The optimum probability distribution that minimizes the absolute redundancy of the source with 
entropy  R p  and mean codeword length L  is given by 
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 .                            (2.29) 

Proof: To minimize the redundancy, we need to minimize 
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                       (2.30) 

subject to the constraint 
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To prove this, we first of all find the extremum of  1 1 2log , , ,D nJ p p p  which is equivalent to extremizing 
 1 1 2, , , nJ p p p  and then using the fact that  1 2, , , nJ p p p  is minimum or maximum depending upon the 

value of parameter  . 
So, in order to extremize  1 1 2, , , nJ p p p , we consider the Lagrangian given by 
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where 0   is Lagrange’s multiplier. 
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Substituting (2.33) in (2.31), we get 
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Substituting (2.34) in (2.33), we get the result (2.29). 
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We see that 
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So,  1 1 2, , , nJ p p p  has maximum value for 0 1   and minimum value for 1  . 
Therefore,  1 1 2log , , ,D nJ p p p  has maximum value for 0 1   and minimum value for 1   and 

consequently observing the function  1 2, , , nJ p p p , we see that it has minimum value for 0 1  , 1  . 
The minimum value is given by 

 1 2 min
1

, , , log i
n

l
n D

i

J p p p D



   . 

Theorem 6. The Kapur’s [8] mean codeword length L satisfies the following inequality 

logDL n                                         (2.35) 

if the source is encoded using Huffman procedure. 
Proof: Proceeding as in Theorem 2.3, we can prove the Theorem 6. 
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