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ABSTRACT 

The present article studies the stability conditions of central control artificial equilibrium generalized restricted problem 
of three bodies. It is generalized in the sense that here we have taken the larger primary body to be in shape of an oblate 
spheroid. The equilibrium points are sought by the application of the propellant for which it would just balance the 
gravitational forces. The launching flight of such a satellite is seen to be applicable for having arbitrary space stations 
for these different missions. Specialty of the result of the investigation lies in the fact that an arbitrary space station can 
be formed to attain any specified mission. 
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1. Introduction 

An important recent publication on total sailing is a book 
by Mclnnes [1] which provides a large number of refer-
ences on the topic. Although solar sailing has been con-
sidered as a practical means of space craft propulsion 
only relatively recently, but the fundamental ideas are by 
no means new. In 1920s the Soviet father of astronautics 
Konstantin Tsioslkovsky and his coworker Tsander wrote 
of using tremendous mirror of very thin sheets [2,3] and 
using the pressure of sun light to attain cosmic velocities. 
The concept of solar sailing was reinvented much later 
by Richard Darwin at the IBM Watson laboratory in New 
Jersey and he published the first paper on solar sail in 
journal “Jet Propulsion” in 1958 [4], and he was the first 
man to coin the word solar sailing. In the early 1970s at 
the Battelle Laboratories in Ohio [5] discovered a trajec-
tory that could allow a solar sail to comet Hally. 

At the initial stage an extremely large (800 m × 800 m) 
three axis stabilized square solar sail with four deploy-
able booms was considered but was dropped in 1977 due 
to the perceived risks associated with boom. Nowadays a 
square solar sail configuration is seen as optimum for 
these smaller solar sails. 

The mission using solar-electric propulsion was ini-
tially strongly supported but later on due to escalating 
cost the propulsion was dropped [6]. The Russian com-

pany NPO Energia deployed a spinning 20 m reflector in 
February 1993 and further refinement of the reflector 
mission continued. Recently European space agency 
(ESA) and German aerospace agency (DLR) cofounded 
the fabrication of a 20 m × 20 m solar sail which was 
successfully ground tested in December 1999 [7]. After 
the ground test the agency funded a series of mission 
studies and later it is being funded in USA and other 
centers of cosmic research. Looking to future it is being 
planned to set up a mission to study the various inner and 
outer planets by means of establishing artificial stations 
in their neighborhoods. 

Solar sail is a proposed form of spacecraft propulsion 
that takes advantage of the radiation pressure to propel a 
spacecraft by means of a large membrane mirror. The 
impact of the photons emitted by the sun on the surface 
of the sail and its further reflection accelerates the space-
craft. Although this acceleration produced by the solar 
radiation pressure is smaller than the one achieved by the 
traditional propulsion systems, this one is continuous and 
unlimited. This makes long-time missions more accessi-
ble [1]. It also opens a wide range of possible mission 
applications that cannot be achieved by a traditional space- 
craft [8]. 

Sun-sail and other hybrid sails have been recently pro- 
posed to explore various cosmic research programmes. 
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An electric sail was proposed to be designed which could 
be capable of guarantying the fulfillment of trajectories 
that would be otherwise unfeasible through conventional 
system. In particular, the proposal [9] was to analyze the 
electric sail capabilities of generating a class of displaced 
non Keplerian orbits, useful for the observation of Polar 
Regions. Secondly earth-escape strategies happen to be 
an important problem. With growing interest in solar 
sailing comes the requirement to provide a basis for fu-
ture detailed planetary escape mission [10] analysis by 
drawing together the prior work, clarifying and explain-
ing previously anomalies. 

The Lagrangian points of the circular restricted prob-
lem of three bodies (CR3BP) are known to be the five 
positions in an orbital system rotating with the two mas-
sive bodies where a small object (e.g. a spacecraft) af-
fected by their gravity and centripetal forces can be sta-
tionary relative to the two larger bodies. Now if some 
propellant forces such as solar sail or electrodynamics or 
magnetic are introduced, then we have some other or 
more equilibrium points [11] which are artificial equilib-
rium points or Lagrangian points [AEPS]. The problem 
of describing the location of AEPS and of investigating 
their stability property has been studied by several au-
thors. In this connection, the works [12,13] may be spe-
cially mentioned, which investigated the effects of the 
thrust due to the radiation pressure and showed that there 
are seven equilibrium points and also linear stability was 
studied. Some scholars [14] by introducing a propellant 
force acting radially have also shown the existence of 
seven and more equilibrium points and have examined 
the stability numerically. Really different studies regard-
ing the effect of the solar sail and the corresponding ex-
istence of equilibrium points have been made and in this 
connection the mention may be made [1,8,10]. The low 
thrust systems were studied by some scholars [15]. These 
studies have shown the existence of infinite equilibrium 
points depending on the magnitude of the propulsive 
acceleration. However only a subset of the potentially 
achievable AEPS turns out to be stable and could be used 
by a spacecraft without the use of a suitable control sys-
tem. The first proposed the use of a stationary satellite 
hovering above the earth poles with solar radiation pres-
sure balancing gravitational forces [16]. In 1994 only 
continuous surfaces of unstable AEPS were derived [10], 
when low thrust control acceleration was added. It was 
proved only in 2007 that [15] a marginal stability can be 
found in a region of space far enough from the second 
primary. Really the topology of such a subset of stable 
AEPS is strictly dependant on the propulsion system em-
ployed by the spacecraft. It has recently been pointed [17] 
that for a low propulsive acceleration, the stable AEPS 
are confined to a very restricted region around the clas-
sical Lagrangian points. These artificially generated 

equilibrium points offer the possibility of considering 
very interesting mission applications. For example we 
may take Geostorm warning mission and the Polar ob-
server mission [8]. The Geostorm is a mission concept 
where a modest sail is placed sunwards of the classical 
Earth-Sun 1  point. Then with a magnetometer we can 
detect the solar wind polarity and give enhanced warning 
of the geomagnetic storms, doubling the time of alert of 
conventional 1  Halo orbiter such as SOHO. The aim 
of the polar observer mission is to provide constant 
viewing of the polar region and could be useful to image 
the Polar Regions or carry out studies on the climate 
evolution in the Arctic or Antarctic zone. The present 
paper presents a generalization of the work [17] in the 
sense that the formers have taken the shape of the earth 
to be of a sphere, whereas different from them, we have 
taken the shape of the earth to be an oblate spheroid. We 
have followed the same process as in the referred work 
[17]. Our process differs from that of [17-22] only hav-
ing mathematical expressions and in our final results. 
Our work consists of five sections. It starts with a general 
introduction giving a background of the problem and 
some progress that have come to our notice and also 
some applications. The second deals with differential 
equations of motion and the propellant forces leading to 
the equilibrium positions, i.e. AEPS. The third section 
deals with the linearization of the equation of motion in 
Hamiltonian form. In the fourth section we find out the 
stability conditions restricting to linear stability alone. In 
the fifth section we find out minimum controlled artifi-
cial equilibrium points and we finally draw our conclu-
sion of the investigation. 

L

L

The paper has been concluded with the appendices 
giving the calculations of the various terms occurring in 
the paper and in the last section a final conclusion of our 
studies has been given. 

2. Equations of Motion 

Using dimensionless variables and a system  2 ; ,M x y  
the equations of motion referred to the solution [5,6] 
when the origin is taken at the smaller mass M2 may be 
written as: 

2 , 2 .x yx ny y nx                  (2.1) 
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Re = Equatorial radius of the larger mass, Rp = Polar 
radius of the larger mass, R = 1 = the mutual distance 
between the primaries. 
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[The larger mass  1 µ  is placed at M1 and the 
smaller one  µ  at 2M . G is their centre of mass and 

1M G
 

  and 2M G 1   . The space-craft is taken at 
M. The line 1 2M M  n for the X-axis with 2is take M  

the origin and perpendicular at 2for M  fo  Y-axis and 
the axes are taken to be rotating along a normal to 

r
xy - 

ne with the angular velocity n]. pla
The inertial kinetic energy per unit mass is given by 
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and the total potential due to the gravitational and the 
control acceleration is:  
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where &x ya a  are the x and y components of the con-
trol acceleration. Thus the Equations (2.1) may be writ-
ten as: 
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(2.2) 

Then the equilibrium point  0 0,x y  for the control 
acceleration will be given by 
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where  0 0,a    are the radial distance of the equilib-
rium point from the primaries.  

3. Linearized Equations of Motion 
Conditions 

In this section we shall find out the conditions for the 
linear stability of the equilibrium points. We have for the 
Lagrangian function as: 

–L T V  

and the canonical variables px & py for Hamiltonian vari-
ables  
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Hence the Hamiltonian H may be written as 

x yH p x p y L    . 
Yielding H as given by  
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Now let us transfer the origin to the equilibrium point 
 0 0,x y  and the new coordinates be written as  ,  , 
so that  

0 0,x x y y      

0?– –x x xp p p p ny    

 0 0  1y y yp p p p n x        

Hence the transformed Hamiltonian may be written 
after eliminating the constant term as  
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where,  
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Now expanding H in powers of &  , we shall have 
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and  = functions of , ,a b c 0x , , or 0y  ,   and they are given by (Refer to Appendix Section I(a)) 
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4. Linear Stability Conditions The corresponding characteristic equation will be 
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Hence the Linearized equations of motion may be written 
as 

2

2

2

2

2

2

H
p p a

H
p p c

H
p n

p

H
p n

P

 

 







b

b

 


 


 

 


    




    



  



  










       (4.1) where f and g may be written as 

  

 

 

 

1

1

3 3 3

13 3 3 5

2
0

6 3
5 3 5 2 6 3 5 2 3 4

0 6 5 6

2
5 3 5 3 6 6 3 3

6 6

2 2
1 0 0 1

12 5

2 1 1
1 9

2 2 4

2 1 2 1   and

2
4 16 4 18 9 2 9 9

4

9 18 9 18 8 9 8 2
4

30 1 9 18

2

A

A

f a c A

g b a c g g

g

A x y A
g

   
   

             
  
           
 

 

  
     

      

 
         

        


    

2 2
22 2 21

0 08

1 1
1 , 4

2 22

A
x y

    


 
1      

 

 
Putting the value for &f g  in the expression for 

1,2 , we get 
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5. Minimum Control Artificial Equilibrium 
Points  

To minimize the objective function, let us consider 
2
x yJ a a   and writing the value for ax & ay, we get 
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Now putting 3
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the corresponding coefficients of μ, μ2 & A1 to zero, we 
get 
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and the value of   corresponding to these δ0, δ1, δ2 & 
δ3 will be the maximum value of  . 

Hence we have, 
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where, we have taken 

 



will be the corresponding dimensional acceleration,  
being taken to be the distance between the primaries. It 
may be verified that when 

l

1   and 1 , the result 
(5.1) & (5.2) are constant giving the control acceleration 
to be zero. 

0A 

Let us look for an analytical estimation of minimum 
distance from the second primary (ρ) allowing the linear 
stability conditions. We have 

   
 
 

 

1 1

2

2
0 0 0

10 2 2 8 7 2

2 6 2 5

4 2 2 3 2 2 2

22
0 0

1 12 2 3

5 3 2 1

10 8

2

47 ( 108 60 ) 4

12 120 108 48 120

43 216 312 180 108

1 9 1
30 2 0,

4

9
0 3 6 3 6 0

4
0

8 4 3 7

A A

f g

f g f f g

y x
A

A
f

g

      

     

      

  

   

   



   

     

    

    

 
      
  

       



      
   

    

7 6

5 4 3 2

23 2 2 3
1 1

8 3 2

6 22 7 8 6 5 32

16 4 4 6 20 0A A

   

      

    

 

     



      

 

We have ignored the term of the  20   in the ex-  



2 2 2
1 1 2 2

2 3 5 6 8 2 4

ˆ,since  0

8 2 4 6 1 1
1

4

GM
A A a

l
 



       

   

      


 

pression for f  and g  and those  k0   in the ex-  

pression for 2 0f g 
6 3

, hence we get equation for ρ as 
2

1

3

8 6 5 3

26 9 20 0

0

2 3 8 16

A   

 

    

   

 

0     

 

From the 1st two conditions we obtain our stability 
boundary limit, i.e.;  
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Thus the value coincides with the value attained by 
[Bombardelli] and the corresponding control acceleration 
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at the boundary will be  

     
1

3
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1
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In dimensional units the minimum distance from the 
second primary in order to have stability will be  
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So it shows that with the presence of obliquity the 
amount of acceleration decreases and a lesser power of 
thrust will be needed. 

6. Conclusion 

We have investigated the properties of minimum control 
artificial equilibrium points in the planar circular re-
stricted three-body problem while the effect of the ob-
lateness of the bigger primary body is also taken into 
account. We have found the analytical expressions which 
characterize their location, control acceleration and sta-
bility properties. It is seen that due to the presence of 
oblateness in the expression all the properties are likely 
to be affected and the disturbance is more natural since 
the study of effect of oblateness is quite necessary for 
exhaustive study of the effect. The specialty of the pres-
ence of the oblateness lies in the fact that the amount of 
acceleration is less and consequently a less power of 
thrust is required for the mission. 
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Appendix I 

(a) Expression for a, b and c: 
Let the suffix (0) denote the terms corresponding to 

the equilibrium position  0 0,x y  and the suffix  1A  
denote the contribution due to the presence of the ob-
lateness of the larger primary body. 
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Appendix II 

Expression for f  and g : We shall now onwards ignore second and higher powers of A1 and also multiple μA1 and so 
on. Thus 
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Appendix III 

Calculation of    
0 0 0 0

2 2, , , & ,x y x ya a J a a J      

We have 
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where we have dropped the suffix (0) with x0, y0, δ0, 0 , 
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Appendix IV Putting 3
2

0 1 2 1A          and equating the 
different corresponding coefficients to zero, we shall get  

Expression for ,f g , & 2f g  for minimum value of 
δ given by 

3

0 1

8 6 5 3 4

2 4

3 3

1
1, ,

6

2 2 2 4
,

36

1

2

 


    






 

    
 



 

2
0 1 2 1 A 3          

We shall ignore the terms of the order of 2  and 

1A  in the expression for ,f g  but the terms of 
 20   will be retained in the expression for 2f g . 
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Ignoring the terms of the order of 2  and also taking into account  2
1 0A  , we have 
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Similarly, we shall have the expression for 2f g  as follows: 
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Thus neglecting the terms as mentioned above, we have 
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