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ABSTRACT 

A square complex matrix A  is called  if it can be written in the form EP  1 0U A U  with U  being fixed uni-

tary and 1A  being arbitrary matrix in . We give necessary and sufficient conditions for the existence of the  

solution to the system of complex matrix equation 

r r rEP

,AX B XC D   and present an expression of the  solution to 

the system when the solvability conditions are satisfied. In addition, the solution to an optimal approximation problem 
is obtained. Furthermore, the least square  solution with least norm to this system mentioned above is considered. 

The representation of such solution is also derived. 

rEP

rEP
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1. Introduction 

Throughout we denote the complex  matrix space 
by  the real  matrix space by 

m n
,

m n m n .
m n  The 

symbols   , , , ,I A A A    and A  stand for the 
identity matrix with the appropriate size, the conjugate 
transpose, the range, the null space, and the Frobenius 
norm of  respectively. The Moore-Penrose 
inverse of  denoted by 

,
,

m nA 
m nA  †A  is defined to be 

the unique matrix n mX   of the following matrix 
equations  

   , , , .AXA A XAX X XA XA AX AX
      

Recall that an  complex matrix n n A  is called 
 (or range Hermitian) if EP † † .AA A A   matrices 

were introduced by Schwerdtfeger in [1], ever since 
many authors have studied  matrices with entries from 
complex number field to semigroups with involution and 
given various equivalent conditions and many characteri- 
zations for matrix to be  (see, [2-5]).  

EP

EP

EP
Investigating the matrix equation 

AX B                    (1) 

with the unknown matrix X  being symmetric, reflexive, 
Hermitian-generalized Hamiltonian and re-positive defi- 
nite is a very active research topic (see, [6-9]). As a gen- 
eralization of (1), the classical system of matrix equa- 

,AX C XB D              (2) 

has attracted many people’s attention and many results 
have been obtained about system (2) with various con- 
straints, such as bisymmetric, Hermitian, positive semi- 
definite, reflexive, and generalized reflexive solutions, 
and so on (see, [9-12]). It is well-known that EP  ma- 
trices are a wide class of objects that include m  ma- 
trices as their special cases, such as Hermitian and skew- 
Hermitian matrices (i.e., *

any

A A  ), normal matrices (i.e., 
* *AA A A ), as well as a gular matrices. There- 

gating the EP  solution of the matrix Equa- 
tion (2) is very meaning .  

Pearl showed in ([2]) that 

ll nonsin
fore investi

ful
a matrix A  is if and 

on
EP  
0 Uly if it can be written in the form U A 1

  with 
U  unitary and 1A  nonsingular. A s x ma- 

 
quare comple

trix A  is called rEP  if it can be written in the form  
  *0 ,U A U  w U  is fixed unitary and 11  here A  is 

 in r rarbitrary matrix  o our knowledge, so far there 
has been little investigation of this rEP  solution to (2). 

Motivated by the work mention bove, we investi- 

. T

ed a
gate rEP  solution to (2). We also consider the optimal 
approximation problem  

ˆ min ,
XX S

X E X E


        (3) 

where is a given matrix in  and of 

 

E  
 

 

n n
ny ca

XS
ati

 the set 
all rEP solutions to (2). In ma se Equ on (2) has 
not rEP  solution. Hence we need to further study its antions  
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least sq s solution, which can be described as follows: 
Let  n n

ep U  denote the set of all rEP  matrices with 
fixed unitary matrix U  in ,n n  

uare

 

2 2
mi .AX C XB D



    
 

 n
n n
epX U

 

LS X

Find 



n n
epX U   such that 

min .
LX S

X X


               (4) 

In n 2, we present necessary and sufficient con- 
di

2. 

 Sectio

r

tions for the existence of the rEP  solution to (2), and 
give an expression of this solutio when the solvability 
conditions are met. In Section 3, we derive an optimal 
approximation solution to (3). In Section 4, we provide 
the least squares rEP  solution to (4). 

n 

EP  

his se

Solution to (2) 

e solvability conditions and 

m

In t ction, we establish th
the general expression for the rEP  solution to (2).  

Throughout we denotes n n
ep  the set of all U

rEP  
, atrices with fixed unitary m  in ,n n  i.e.atrix U

  *n n
ep A A U A U    1 0 ,  

wh d unitary and ere U  is fixe 1A  

A C

is arbitrary matrix in 

 Let 
Th

r r .  
Lemma 2.1. ([3]) , ,m n

uations 
, .n pB D   

,en the system of matrix eq AX C XB D   
is consistent if and only if  

    ,C A B      ,D AD C   .B

neral solution of this system i  In that case, the ge s 

   † † † † † † ,X A C DB A ADB I A A Y I BB       

where n nY   is arbitrary.  
Now we consider the r  solution to (1). By the de- 

finition of  matrix, the solution has the following 
factorization: 

EP

rEP

1 *0
.

0 0

X
X U U

 
  

   

Let 

 1 2, ,AU A A   1 2, ,CU C C  

1*

2

,
B

U B
B

 
  
 

m r

   1*

2

,
D

U D
D

 
  
 
 m n r where  2 2  1 1  

2 2  then (2) has  solution if and only 
if the system of matrix equations  

1 1, ,A C 
 , n r p 

, ,A C 
, rEP

, ,r pB D 
B D

1 1 1 1 1 1 2 2, ,0 ,0 ,A X C X B D C D     

is consistent. By Lemma 2.1, we have the following the- 
orem. 

Theorem 2.2. Let  and  , , ,m n n pA C B D   

 1 2, ,AU A A    1*

2

,
B

U B
B

 
  
 

1*

2

,
D

U D
D

 
  
 

where  
 

 
1 1 2 2

1 1 2 2

, , ,

, , ,

m n rm r

n r pr p

A C A C

B D B D

 

 

 

 

 

 

,

.

Then the matrix Equation (2) has a  solution in rEP
n n  if and only if  

       1 1 1

1 1 1 1 2 2

, ,

, 0.

C A B D

A D C B C D

 

  

    1

 

     (5) 

In that case, the general  solution of (1) is  rEP

   † † † † † †
1 1 1 1 1 1 1 1 1 1 1 1 1 *0

,
0 0

A C D B A A D B I A A Y I B B
X U U

     
  

  
             (6) 

 
h  is arbitrary. 

timal Approximation 

W all  solution to (2) is non- 

hen  

the procrustes problem  w ere 1Y 

3. The Solution of Op

r r

Problem (3) 

hen the set XS  of rEP

XS  
pro

empty, it is easy to verify is a closed set. Therefore 
the optimal approximation blem (3) has a unique so- 
lution by [13]. We first verify the following lemma.  

Lemma 3.1. Let , , .m n n p n nA B C        T

   † †min
n nX

I A A X I BB C


  
  

has a solution which can be expressed as  
† † ,1 2X C A G G B    

1 2,m n n pG G     
f. It follows from th

where are arbitrary matrices. 
Pen- 

ro
 

Proo e properties of Moore-
se generalized inverse and the inner product that  

           
               
        

2
† † † † † †

† † † † † † †

2 2
† † † †

,

, ,

.

I A A X I BB C I A A X I BB C I A A X I BB C

I A A X C I BB I A A X C I BB I A A C I BB I A A C I BB

I A A X C I BB I A A C I BB

         

           

      

 †
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Hence, 

   † †min
n nX

I A A X I BB C


 
  

if and only if  

   † †min .
n nX

I A A X C I BB


  
  

It is clear that † †
1 2X C A G G B  

n p  are arbitrary is 
 with  
the solution of  

the above procrustes problem. 
Theorem 3.2. Let ,

and  

1 ,m nG   2G

, , , ,m n n p n nA C B D E       

1 2*

3 4

,
E E

U EU
E E

 
  
 

             (7) 

where .r rE 1
  Assume SX

lem
 is nonempty, then the 

 prob  (3) has a unique solutionoptimal approximation  
X̂  and  

 

    *

† † † † † †
1 1 1 1 1 1 1 1 1 1 1 1 1

,
0ˆ U

A C D B A A D B I A A E I B B
X U

     
  

  
 

0 0
              (8) 

 
Proof. S  isince  nonempty, XXS  X S  has the form 

f (6). It follow m (7)  invariance of 
Fr orm that  

 
o s fro and the unitary

obenius n

   

   

   

 

2

2
† † † † † †
1 1 1 1 1 1 1 1 1 1 1 0

0

A C A A D B I A Y I B B
U U

 
  

 

1 1 *

2
† † † † † †
1 1 1 1 1 1 1 1 1 1 1 1 1 *

2
† † † † † †
1 1 1 1 1 1 1 1 1 1 1 1 1 1 2

3 4

†
1 1 1 1

0

0

0 0

0

0 0

X E

D B A
C

A C D B A A D B I A A Y I B B
U CU

A C D B A A D B I A A Y I B B E E

E E

I A A Y I B B



   




     
  

  

       
    

    

      2
† † † † †
1 1 1 1 1 1 1 1 1 1

22 2

2 3 4 .

E A A D B A C D B

E E E

   

  

 

 
Therefore, there exists ˆ

XX S  
ds if and o

such that the matrix 
nearness problem (3) hol nly if exist 1

r rY   
such that  

 

     
1

† † † † †
1 1 1 1 1 1 1 1 1 1 1 1 1 1min .

Y
I A A Y I B B E A A D B A C D B       †

, we ha

where  are arbitrary. Substituting 
the solution of the matrix 

 (8). 

4. The Least Squares 

 
According to Lemma 3.1 ve  

† † † † † †
1 1 1 1 1 1 1 1 1 1 1 1 2 1 ,Y E A A D B A C D B A G G B       

1 2,m r r pG G   
into (6), we obtain that 

1
 

e
Y
n arness problem (3) can be expressed as

rEP  Solution to (4) 

section, we give th
le

 

In this e explicit expression of the 
ast squares rEP  solution to (4).  
Lemma 4.1. ([12]) Given , ,m nE F    

    , 1 1diag , , ,ma a    2 1diag , , nb b  
 0 1, , ,ia i m     , , .jb j n    Then th

exists a unique matrix 
0 1 ere 

m nS   such that  

2 2

1 2 min .S E S F       

S  And can be expressed as  

 1 2 ,S E F      

where 
2 2

1
.m n

ja bi


 

 and  

     
  

Theorem 4.2. Let , ,A C  nm n , pB D   
 1 2, ,AU A A  1 2,CU C C ,  

* 1

2

,
B

U B
B

 
  
 

1D 
*

2

,U D
D 
 

 

here 1, m rC1A  , 2 2,A C   m n r  , 1 1, ,r pB D    w
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2 2, .n r pB D    

composition of 
Assume that the singular value de-

1 1
,A B

 

0 0

are as follows  

1 1* *
1 1

0 0
, ,

0 0

M N
A W V B P

   
   

   
 Q     (9) 

where  1 2,W W W  , m m  1 2, ,r rV V V     

 1 2, r rP P P    and  1 2, p pQ Q Q    are unitary 
matrices,  11 1, , ,r  idiM  ag    10 1, ,i r   ,

 1 1rankr M 1W,    1 ,m r 1
1 ,r rV 

 2
,r1 1diag , ,N       20 1, ,j j r    ,

 2 1rank ,r N P 1  
2 ,r r 2

1 . p rQ   Then LX S  
can be expressed as  

 

 * * 1 *
1 1 1 1 1 1 1 1 1 1 1 2 *

** 1
2 1 1 1 4

0
,

0 0

M W C P V D Q N M W C P
V P

X U UV D Q N Y





   
  

     
  

                 (10) 

 

where 1 2
2 2
i j  

 

1



 

,r r
 

     and     r r r r    is 

an arbitrary matrix.  
Proof. It yields from (9) that 1 2

4Y 

   

2 2
2 2 1 1* *

22

1 11 1
1 2 1 2

2 2

2 2 2 2

1 1 1 1 1 1 2 2

2 2
21 1* *

1 1 2

1 *
1

0 0

0 0 0 0

0 0
, ,

0 0 0 0

0 0

0 0

0

0 0

X X
AX C XB D AU U C U U B D

B DX X
A A C C

B D

A X C X B D C D

M N
V X X D

M
V X P

   
         

   

      
         

       

     

 
 

 

 
  

 

2

1 1 20 0
P Q D C
 

   
 

W C 

2 2
2 21* * *

1 1 1 2 2

0
.

0 0

N
W C P V X P V D Q C D

 
     

 

 

 
Assume that 

.   (11) 

Then we have  

   1 21 21 2*
1 1 4

3 4

, , r r r rr rY Y
V X P Y Y

Y Y
   

   
 

 

2 2

2 2* *
1 1 1 1 1 1 1 1 1 1

2 2* * *
1 2 1 1 2 3 1 2 1 1 2 1 1

2

2 2 2 2* *
1 1 2 2 1 2 2 2

 

.

AX C XB D

M Y W C P Y N V D Q

M Y W C P Y N V D Q W C P

V D Q V D Q C D

  

   

    

  

 

Hence 

2*
2 1 2W C P 

 

2 2
min

n n
epX U

AX C XB D    

is solvable if and only if there exist  such that  



1 2, ,Y Y Y

2 2* *
1 1 1 1 1 1 1 1 1 1 min,M Y W C P Y N V D Q       (12) 

2 2* *
1 2 1 1 2 3 1 2 1 1min, min .M Y W C P Y N V D Q     (13) 

It follows from (12) and (13) that 

 * *
1 1 1 1 1 1 1 1 ,Y M W C P V D Q N    1      (14) 

1 * * 1
2 1 1 1 2 3 2 1 1 1,Y M W C P Y V D Q N         (15) 

where 1 2
2 2

.
1 r r

i j 


 
     

  Substituting (14) and (15) 

into (11), we can get the form of elements in LS
ond

 is (10). 
Theorem 4.3. Assume the notations and c itions are 

the same as Theorem 4.2. Then  

min
LX S

X X


  

if and only if  
 

 * * *
1 1 1 1 1 1 1 1 1 1 1 2 *

** 1
2 1 1 1

0
,0

0 0

M W C P V D Q N C P
V P

1M W

X U UV D Q N 

   
  

     
  

  



                  (16) 
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where 
1 2

2 2
.

1 r r
 

i j 
     

  

Proof. In Theorem 4.2, it implies from (10) that  
min

LX S
X


 is equivalent to X  has the expression (10)  

with  Hence (16) holds. 
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