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ABSTRACT 

We are interested in the coexistence of three species forming a tritrophic food chain model. Considering a linear grow 
for the lowest trophic species or prey, and a type III Holling functional response for the middle and highest trophic spe- 
cies (first and second predator respectively). We prove that this model exhibits two small amplitud periodic solutions 
bifurcating simultaneously each one from one of the two zero-Hopf equilibrium points that the model has adequate val- 
ues of its parameters. As far as we know, this is the first time that the phenomena appear in the literature related with 
food chain models. 
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1. Introduction 

In general, the Hopf bifurcation is a useful tool to analyse 
the existence of limit cycles in predator-prey interaction 
models. For instance, in [1] the authors proved the exis- 
tence, uniqueness and nonexistence of limit cycles in a 
predator-prey model considering a strong Allee effect in 
a prey. In [2], it is considered that a model of three spe- 
cies competes for three resources and it is proved that the 
existence of two limit cycles evolves the coexistence equi- 
librium point, and other example is [3]. In a food web the 
Hopf bifurcation is also the principal tool for proving the 
coexistence of species that compose the food chain. In 
this direction Freedman and Waltman [4] studied the per- 
sistence of species in a three-level food chain model. 
They introduce a relative general model, and criteria for 
the boundedness and stability are established. They con- 
sider a Lotka-Volterra predation with a carrying capacity 
at the lowest level via a logistic map and with a Holling 
functional response type II predation at the level of the 
first predator. They gave sufficient conditions for persis- 
tence of all three species. Later on, in [5] Freedman and 
So established criteria for which a simple food-chain 
model had a globally stable positive equilibrium and also 
developed criteria in order that such a food chain model  

exhibited uniform persistence (see also [6]). In these arti- 
cles, the possibility of existence of limit cycles is impor- 
tant, however it was not studied. 

Recently Françoise and Llibre analyse a model repre- 
senting a tritrophic food chain composed of a logistic 
prey, a Holling type II predator and a Holling type II top- 
predator in [7]. Using the averaging theory (see [8-10]) 
they prove the existence of a stable periodic orbit con- 
tained in the region of coexistence of the three species in 
a tritrophic chain. For some values of the parameters 
three limit cycles born via a triple Hopf bifurcation. One 
is contained in the plane where the top-predator is absent. 
Another one is not contained in the domain of interest 
where all variables are positive and the third one is con- 
tained where the three species coexist. In the literature, 
there are many papers dedicated to find these types of li- 
mit cycles which came from a Hopf bifurcation, but in all 
these papers the existence of a triple Hopf bifurcation 
was not proved analytically, see for instance [11-16]. 

In this paper we analyse a tritrophic food chain model 
considering Holling functional response of type III for 
middle and top trophic level and linear grow for the low- 
est tropic level. 

Accordingly with the previous works a general tritro- 
phic food chain model has the form  
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here x represents the number of lowest trophic species or 
prey, y is the number of the middle trophic level species 
or first predator (called also as predator), and z is the 
number of highest trophic level species or second preda- 
tor (super-predator). The parameters a1 and d2 are posi- 
tives. The function  h x  represents the specific growth 
rate of the prey and must always satisfy  

   
0 0, 0 for all 0

h x
h x

x



   


.  

The function  f x  is the functional response of pre- 
dator (second consumer or first predator) and must satis- 
fy  

   
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f
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Finally, the function  g y  is the functional response 
of the super-predator (tertiary consumer or second preda- 
tor) and satisfies the conditions  

   
0 0, 0 for all 0.  
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y


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There are many functions that satisfy the above condi- 
tions, for example the functional responses of predation 
include the usual functions found in the literature (see, 
e.g., [17]). In this paper we will consider linear growth 
without environmental carrying capacity for the prey and 
Holling functional response type III for the predator and 
the super-predator. So we consider the functions  
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where 1 2 1, , ,a a b  and 2  are positive constants. Con- 
sequently, the tritrophic food chain model that we shall 
study is  
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For ecological restrictions the analysis is in the posi- 
tive octant of , i.e. in the region ,  and 

. 

3 0x  0y 
0z 

We give necessary conditions on the parameters to 
guarantee the existence of two equilibrium points of the 
differential System (1) in the region of interest. At these 
equilibrium points we find two families of parameters for 
which these equilibrium are zero-Hopf, see Proposition 1. 
The main result shows that only one of these families of 
parameters produces a double simultaneously zero-Hopf 
bifurcation, appearing at the same time two small ampli- 
tude periodic orbits bifurcating simultaneous of the two 
different equilibria of the system, see Theorem 2. 

2. Equilibrium Points in the Positive Octant 

As we mention above, the tritrophic food chain model (1) 
has two equilibrium points in the positive octant of  
when the parameters satisfy the following three condi- 
tions: 

3
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These conditions are necessary because in the coordinates of these two equilibrium points appear the expression  
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In order that the expression of the equilibrium points become easier we change the parameter  for the new pa- 
rameter  defined through  
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Solving  in terms of  from the above expression 

we obtain  
2b k
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Therefore we need that 2 2 , otherwise  would 
be negative. Hence the Condition (i) becomes 

a d 2b

2 2 0a d  .               (i) 

Now equating system (1) to zero and solving it we ob- 
tain two equilibrium points in the positive octant, which 
are  
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Our first interest is to analyse when of these two equi- 
librium points are of type zero-Hopf. 

3. Zero-Hopf Equilibrium Points and  
Bifurcation 

We recall that an equilibrium point is a zero-Hopf equi- 
librium of a 3-dimensional autonomous differential equa- 
tion, if it has a zero real eigenvalue and a pair of purely 
imaginary eigenvalues. We know that a zero-Hopf bifur- 
cation is a two-parameter unfolding (or family) of a 3- 
dimensional autonomous differential system with a zero- 
Hopf equilibrium. The unfolding has an isolated equilib- 
rium point with a zero eigenvalue and a pair of purely 
imaginary eigenvalues if the two parameters take zero 
values, and the unfolding has different topological type 
of dynamics in the small neighbourhood of this isolated 
equilibrium as the two parameters vary in a small neigh-
bourhood of the origin. This theory of zero-Hopf bifurca-
tion has been analysed by Guckenheimer, Han, Holmes, 
Kuznetsov, Marsden and Scheurle in [18-22]. In particu-
lar it is shown that some complicated invariant sets of the 
unfolding could bifurcate from the isolated zero-Hopf 
equilibrium under some conditions. Hence in some cases 
the zero-Hopf bifurcation could imply a local birth of 
“chaos” see for instance the articles [22-26] of Baldomá 
and Seara, Broer and Vegter, Champneys and Kirk, 
Scheurle and Marsden. 

In the next result we characterize when the equilibrium 
points 1  or 2  of our tritrophic system (1) are zero- 
Hopf equilibrium. 

p p

Proposition 1 The equilibrium points 1  and 2  
are zero-Hopf equilibrium points simultaneously if 
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Imposing the condition that  
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of three equations, that correspond to the coefficients of 
the terms of degree 0, 1 and 2 in   of the polynomial. 
So the solutions of this system in terms of the variables 

1 2, , ,b d  1a and  are the next three group of solutions:  
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Here each i  for 1, 2,3i   is a funciton in the pa- 
rameters of the system that it is not necessary to provide 
explicitly. We must omit solution (s2) because it does not 
satisfy condition (i). 

As we want that the eigenvalues of the linear approxi- 
mation at 1  are 0 and p i , we need that 0   to 
conclude that  is a zero-Hopf equilibrium point. 1

1) When 
p

  is zero we have two cases for (s1).  
a) 0   and 1 2a d1 . Then we have that the eigen- 

values are 0 and 1i d  . Then 1  is a zero-Hopf equi- 
librium. This corresponds to statement (b) for . 

p

1

b) 
p

0   and 2 d22a  . In this case the eigenvalues  

are 0 and   1 2 1 22i d d a d     2 . So in order to  
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obtain purely imaginary conjugate eigenvalues it is nec- 
essary that . Then 1  is a ze-
ro-Hopf equilibrium. This corresponds to statement (a) 
for .  
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ues and then 1  is zero-Hopf equilibrium. Since p
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1 2b k  we again obtain statement (b) for .  1

In a similar way we study the eigenvalues of the linear 
approximation at the equilibrium point 2  to complete 
the proof of the proposition. Thus, the set of solutions of 
the corresponding system of equations determined from 
the coefficients of degree 0, 1 and 2 in 

p

p

  of the 
equality     p I I            , where 
 p   is the characteristic polynomial of the linear part 

at the point , in terms of variables 2p 1, ,b d2,   and 
, are  1a

   2
1 1 2 2

1 1
2

2 2
, , ;

4 2

a d a d k
b

a
  

 
       (s4) 

   
 

2
1 1 1 1 1

2 2
1

2 2

2 2
, ,

2 2

;

a b b d k d

b k

d a

 
  

    
  





 (s5) 

 
 

2 2
1 1

3 12
11

2
, ,

22 2

b k d k
a d

bb k


  

 
    


1 .   (s6) 

Also here each i  for  has an expression in 
function of the parameters that it is not necessary to write. 
Again we must omit the solution (s5) because it does not 
satisfy condition (i). 

1,2,3i 

If we made the analysis using the set of solutions (s4) 
and (s6), we obtain again the statements (a) and (b) for 
the equilibrium point . This completes the proof of the 
proposition.  
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4. The Main Result 

Proposition 1 guarantees the existence of three-dimensio- 
nal parameter families for which the equilibrium points 

1  and 2  are of zero-Hopf type simultaneously. 
Therefore it is possible to have simultaneously two zero- 
Hopf bifurcations, one on each equilibrium. The follow- 
ing theorem establishes that one of these two families of 
parameters gives rise to a simultaneously zero-Hopf bi- 
furcation in each equilibria, in the sense that a small am- 
plitude periodic orbit borns simultaneously at 1  and 

2 . For the other family of simultaneous zero-Hopf 
equilibria it is not possible, using the averaging theory, to 
show that small amplitude periodic orbits borns from 
those equilibria simultaneously. 
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librium point  and the other at the equilibrium point 
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Proof. We prove this theorem using the averaging the- 
ory of first order, a summary of this theory is given in the 
appendix. This summary facilitates to follow the compu- 
tations necessary for proving this theorem. 

The hypotheses of the theorem imply that the equilib- 
rium points 1  and 2  are zero-Hopf when p p 0   
(see statement (a) of Proposition 1). First, we prove that 
at the point 1  there is a zero-Hopf bifurcation. We 
translate the equilibrium point 1 1  to the 
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The matrix of the linear approximation of system (2) at 
the origin is  
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and the eigenvalues when 0   are  
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where  1 2 1 22M a d d d   . Then the origin of co- 
ordinates is a zero--Hopf equilibrium point of (2) when 

0  . 
Now we apply a rescaling of the variables through the 

change of coordinates   , , , , x y z X Y Z    obtain- 
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ing the new differential system  
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Now we shall write the linear part at the origin of the 
differential system (2) when 0   into its real Jordan 
normal form, i.e. as  

,
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uv d
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To do this, we apply a change of variables  
  , , , ,X Y Z u v w , given by  
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       (4) 
and this system has its linear part at the origin in the real 
Jordan normal form. 

To apply the averaging theory we need to write the 
differential system (5) in cylindrical coordinates 
 , ,r  

cosu r
. Then we do the change of variables defined by 
 , sinv r   w w , and system (5) becomes  

In the new variables  the differential system 
(3) writes  
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Using the notation of the appendix we have t  , 
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It is immediate to check that system (6) satisfies all the 
assumptions of Theorem 3. 

Now we compute the integrals (10), i.e.  
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The system  has a unique 
solution , namely 
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Finally, the Jacobian (11) at the point  takes 
the value  
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that by assumptions it is not zero. Then by the averag-
ing theorem (Theorem 3) we have a periodic solution 

    , , ,r w      of system (6) for 0   sufficiently 
small such that      * *0, , 0,r w r w   ,   when 

0  . Hence, the differential system (5) has the peri- 
odic solution  
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        (7) 

considering 0   sufficiently small. Consequently, the 
differential system (3) has a periodic orbit  

      , ,X Y Z    

where  
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obtained from (7) through the change of variables (4). To 
finish, the differential system (2) has a periodic solution  

             , , , ,x y z X Y Z ,          

for 0   sufficiently small. Clearly, this periodic orbit 
tends to the origen of coordinates when 0  . There-
fore, it is a small amplitude periodic solution starting at 
the zero-Hopf equilibrium point located at the origin of 
coordinates when 0   which correspond to the zero- 
Hopf equilibrium point . 1

Following exactly the same computations we prove 
that at the equilibrium point 2  also there exists a small 
amplitud periodic solution bifurcating from the equilib- 
rium point . This concludes the proof of the theorem.  

p

p

2p

Appendix: The Averaging Theory of First Order 

In this section we present some basic results related with 
the averaging theory that we will use in the proof of our 
main result. 

The next theorem establish the existence and stability 
or instability of the periodic solutions for a periodic dif- 
ferential system. The proof of this theorem can be found 
in Theorems 11.5 and 11.6 of Verhulst [10]. 

Consider the differential systems  

     2
1 2, , , , 0F t F t   0  x x x x x     (8) 

with Dx , where  is an open subset of ,  
and 

D n 0t 
  is a small parameter. Moreover we assume that 

both  1 ,F t x  and  , ,F t2 x
D

 are T-periodic in . 
Now we also consider in  the averaged differential 
equation  

t

   1 , 0fy y y 0 , x           (9) 

where 

   1 10

1
, d .            (10) 

T
f F t t

T
 y y

Under certain conditions the equilibrium solutions of 
the averaged Equation (9) correspond to T-periodic solu- 
tions of Equation (8). 

Theorem 3 Consider the two initial value problems (8) 
and (9) and suppose: 

1) 1F , its Jacobian 1F x  , its Hessian 2 2
1F x  , 

2F  and its Jacobian 2F x   are defined, continuous 
and bounded by a constant independent of   in 
  D0,   and  00,  . 

2) 1F  and 2F  are T-periodic in t (T independent of 
 ).  


 

Then the following statements hold. 
a) If p is an equilibrium point of the averaged Equation 
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(9) and  

1det 0,
p

f



 
   y

y
            (11) 

then there exists a T-periodic solution  ,t  
 0,  

 of the 
differential Equation (8) such that  as p

0  . 
b) The stability or instability of the periodic solution 
 ,t    is given by the stability or instability of the 

equilibrium point p of the averaged System (9). In fact 
the singular point p has the stability behavior of the 
Poincaré map associated to the limit cycle  ,t   .  

5. Conclusions 

In this paper we study the coexistence of three species 
forming a tritrophic food chain model. Considering a lin- 
ear grow for the lowest trophic species or prey, a type III 
Holling function responses for the middle and highest tro- 
phic species (first and second predator respectively). The 
explicit differential system modeling of this situation is 
system (1). 

We prove that system (1) for adequate values of its pa- 
rameters has two equilibria in the positive quadrant, and 
that each of these equilibria exhibits a small amplitud pe- 
riodic solution bifurcating simultaneously of both equili- 
bria. These two simultaneous Hopf bifurcations are dege- 
nerate in the sense that the real eigenvalue of the equilib- 
ria at the instant that the Hopf bifurcation takes place is 
zero, i.e., both equilibria are the called zero-Hopf equili- 
bria. As far as we know, this is the first time that the phe- 
nomena appear in the literature related with food chain 
models. 
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