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ABSTRACT

In the present paper, we answer the question: for 0<a <1 fixed, what are the greatest value p(«) and the least
value g(a) such that the double inequality J,(a,b)<aA(a,b)+(1-a)G(a,b)<J,(ab) holds for all a,b>0
with a=b ? where for peR, the one-parameter mean Jp(a,b), arithmetic mean A(a,b) and geometric mean

G(a,b) of two positive real numbers a and b are defined by J, (ab)=

A(a,b) =a%b and G(ab)= Jab , respectively.

a, a=zbh,
ap+l_bp+1

M, a=bh, p=-10,

(p+1)(ap —bp)

ab(loga—logb)’ asbp-_1

a-b
a—_b, aib’pzol
loga—loghb
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1. Introduction

For peR, the one-parameter mean J (a,b), arithme-
tic mean A(a,b) and geometric mean G(a,b) of two
positive real numbers a and b are defined by

a, a=b,
ap+l_bp-¢-1

M, a=b,p=-10,
(p+1)(ap—bp)

J,(ab)= 1)

p —
ab(ILIOQb)’ a;,gb,p:_]_,

a-b
a—_b, a;gb’pzo,
loga—logh
a+b

A(a,b) == and G(ab)= Jab , respectively.
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It is well-known that the one-parameter mean is con-
tinuous and strictly increasing with respectto peR for
fixed a,b>0 with a=b. Many means are special
cases of the one-parameter mean, for example:

J,(a,b) = A(a,b)is the arithmetic mean,
Jy,(a,b)=He(a,b) is the Heronian mean,
J.2(a,b)=G(a,b) is the geometric mean, and
J,(a,b)=H(a,b) isthe harmonic mean.

The one-parameter mean J (a,b) and its inequaliti-
es have been studied intensively, see [1-6].

The purpose of this paper is to answer the question: for
0<a <1, what are the greatest value p(«) and the
least value q(a) such that the double inequality

J,(ab)<aA(ab)+(1-a)G(a,b)< I, (ab) holds
forall a,b>0 with a=b?
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2. Main Result

The main result of this paper is the following theorem.
Theorem 2.1. Let O<a <1. Then for any a,b>0

with a=b, we have
1)

Js,a(ab)=aA(a,b)+(1-a)G(a,b)=J , (ab) for
2 2-a

2
oa=—,
3

2)
Jya(ab)<aA(ab)+(l-a)G(ab)<J , (ab) for

2 2-a

2
(24 E[O,g),
3)
Ja (a,b)<aA(a,b)+(1-a)G(ab)< Jsua (a,b) for

2-a 2

(2

The numbers 3a2—1 and

in 2) and 3) are

-
optimal.

In order to prove Theorem 2.1, we need a preliminary
lemma.

Lemma 2.1. For t>1, one has

t?-1 t°+4t+1
<

t) = - 0 2
g( ) 2logt 6 @)
Proof. Simple calculations lead to
t? +4t+1
t)=—————o9, (1), 3
9( ) 6logt 91( ) 3)
t 3¢ -1) logt 4
gl()_t2+4t+1_ ogt @
limg, (t)=0, (5)
to1*
, —t* + 483 -6t + 4t -1 ~(t-2)"
0 (1) a1 Y o
t(t* +4t+1) t(t* +4t+1)

(2) follows from (3)-(6).
Proof of Theorem 2.1. Without loss of generality we
assume a>b andtake t=./a/b>1. We firstconsider

the case « :é . 1) follows from

t+\/f+1=§A(t,1)+G(t,l).

J, (t1) = He(t,1)=

1
2

2
From now on we assume o # §' Let
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pe {Ba_l,i}, then (1) leads to
2 2-a

f(t)=[@A(t"1)+(1-a)G(t".1)]-3,(t* 1)
h(t) ()

- 2(p+1)(t* 1)
where
h(t)=(ap-2p+a)t®™?+2(1-a)(p+1)t***
+a(p+1)tP —a(p+1)t°
-2(1-a)(p+Y)t—(ap-2p+a).
Simple calculations lead to
limh(t)=0, 8)

h'(t)=2(p+1)(ap-2p+a)t*™
+2(2p+1)(1-a)(p+1)t** +2ap(p+1)t*P
—2a(p+1)t-2(1-a)(p+1)
=2(p+1)hy (1),
where
h(t)=(ap-2p+a)t*** +(1-a)(2p+1)t*®

+ pat®™ —at -(1-a),

limh, (t)=0, ©)

to1"
hi(t)=(2p+1)(ap-2p+a)t®P
+2p(l-a)(2p+1)t**
+p(2p-1)at®®? -a

limh(t) =0, (10)

s
h'(t)=2p(2p+1)(ap-2p+a)t>**
+2p(2p-1)(1-a)(2p+1)t*"?
+2(p-1)p(2p-1)at®®
=2pt**°h, (t),

(11)

where
h,(t)=(2p+1)(ap-2p+a)t’t
+(2p-1)(2p+1)(1-a)
+(p-1)(2p-1)a
t":p h, (t)=3a-2p-1, (12)

hy(t)=2(2p+1)(ap-2p+a)t
+(2p-1)(2p+1)(1-a) (13)
=(2p+1)hy (1),
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where
h(t)=2(ap-2p+a)t+(2p-1)(1-a), (14)

limh, (t)=3ac-2p-1, (15)
t-1"
hi(t)=2(ap-2p+a). (16)
We shall distinguish between two cases.
3a-1

Casel. p= . The left-hand side inequality of 2)

for o :% follows from Lemma 2.1 because in this case
2

o (tz,l)—EA(t2,1)+§G(t2,1)} =g(t)<0

1
forall t>1.In the sequel we assume a;tg.

<0, a e(O,gj,
3
>0, a e(g,l}.
3

Thus h,(t) is strictly decreasing for « (0%} and

We clearly see from (16) that

()= (3a-2)(a 1)

strictly increasing for ae(%,l} . (2.14) vyields
h3(1+):0, then h,(t)<0 for ae(o,gj and

hy(t)>0 for ae(

wlnN

,1} . The same reasoning applies

to hy(t) and h,(t) aswell, and noticing (13) and (12),

one has
>0, ae [Ozj
3

<0, ae[g,lj.
3
This result together with (11) implies
1 2
<O, O,_ _11 1
“e( 3JU(3 j
>0, ae(l,zj.
33

Thus h/(t) is strictly decreasing for
O,%]U(g,lj and strictly increasing for

h, (t)

h(t)

. The same reasoning applies to h/(t),h, (t)

and h(t) aswell, and applying (8)-(10), we derive
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 ee(3
0 ae(12)

Since t?* -1<0 for ae(o,%j and t?*-1>0 for

h(t)

Wl

ae (%1] , then we know from (7) that

>0, a 6(0,3)
3
<0, a e(z,lj.
3

This implies the left-hand side of 2) and the right-hand
side of 3).

f(t)

Case2. p= ZL . From (14) we know that
-

(3a-2)(1-a) | “e(oéj
-0, ae(%,lj.

From (13) we know that h;(t)<0 for ae(o,g]

hs(t):

2—a

and hy(t)>0 for ae[%,lj. This implies h, (t) is
strictly decreasing for « e (Ogj and strictly increasing

for a e [%1} . From (12) we know

<0, ae O,Ej
- L
>0, ae(g,lj.
Therefore
<0, ae(O,g],
(1) ’

>0, a e(g,lj.

3
(11) implies h/(t) has the same property as h, (t),
thus h{(t)is strictly decreasing for ae(o,éj and

strictly increasing for ae(%,l}. The same reasoning

applies to h (t), h'(t) and h(t) as well, and notic-
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ing (9) and (8), one has

<0, ae(o,gj,
3

>0, a e(z,lj.
3

which together with (7) implies

<0, a E(O’Ej’
3
>0, o e(z,lj.
3

This implies the right-hand side of 2) and the left-hand
side of 3).

We are now in the position to prove the constants
3a-1

h(t)

f(t)

[24 .
and are optimal.

2 2—a
Forany & (positive or negative, with |¢| sufficient-
ly small) we consider the case p=3a_1+g. (12)
implies
<0, €¢>0
limh, (t ' ’
to1* 2( ){>O, <0

By the continuity of h, (t), there exists
8, =6,(¢)>0 such that
h, (1) <0, forl<t<1+o,and ¢ >0,
2271>0, forl<t<1+6, and ¢ <0.

By (11), ph/(t) as the same property as h, (t). The
same reasoning applies to ph/(t), ph(t), ph'(t)
and ph(t) as well, and noticing (10)-(8), we know
ph(t) has the same property as h, (t). By (7) one has

; (t){< 0, >0,

>0, €<0.

This proves the optimality for Sa-1 .

To prove the optimality for Za in the right-hand

side of 2) and the left-hand side of 3), we notice from
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1 o
"maA(t,l)+(l—a)G(t,1)_a(p+1) Py
o J,(t2) 2p >1 p<—2,
2—-«a

that there exists T e(l,oo) such that
aA(t)+(1-a)G(t,1) < I, (t,2)

for p> «

and te(T,+o), and
-

aA(t1)+(1-a)G(t,1)> I, (t,1)
for te (T,+oo). This ends the proof of Theorem 2.1.
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