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ABSTRACT 

Several new soliton-like structures have been obtained under the consideration of non trivial boundary condition for the 
difference value of density in the thermodynamic model of nerve pulses. The model is based on thermodynamic princi-
ples of zero transfer of energy to the media. We have studied these solutions for particular values in the parameter space, 
and obtained both bell soliton on the condensate and bubble like solutions as typical non-topological representative so-
lutions. The solutions will propagate along the nerve with constant velocity. The analysis of the properties of the solu-
tions provides us with available permitted velocities and the prediction of the constant density value of the background 
at long distances far from the excited zone in the nerve. 
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1. Introduction 

As it is well known, the nature of the mechanisms for 
propagation signals along the nerve is one of the crucial 
problems in nonlinear biophysics. There are several ap-
proaches that treat of the propagation of nerve pulses 
with the insertion of electric potential signals, for exam-
ple. According to a great number of investigations con-
cerning the complex dynamics of the ionic currents 
through voltage sensitive channels, the first detailed 
measurements of these currents were carried out by 
Hodgkin and Huxley in the 50 s [1]. After these findings 
were presented, Katz [2] proposed the solitonic type of 
transmitting signals along the nerves. By introducing an 
approximate scheme to the famous model of Hodgkin— 
Huxley, Nagumo and FitzHugh proposed a simplified 
neuronal model on the basis of a nonlinear electric circuit 
controlled by an equation system also similar to Van Der 
Pol currents [3,4] and constituted a classical model of 
neurophysiology. By using an analytic technique, the 
homotopy analysis method (HAM) in the FitzHugh-Na- 
gumo (FHN) equation, Abbasbandy [5] has found soli-
tary wave solutions which are subjected to the control of 
new auxiliary parameter. Being susceptible to fairly 
complete analysis, the FHN system allows a qualitative 
understanding of the phenomenon of excitability, from 
the point of view of dynamical systems [6].  

Despite these quite interesting findings, surprisingly, 
Heimburg and coworkers proposed another type of 
model based on the density excitation of nerve mem-
branes. The phase transition in membranes has been 
studied in the work [7]. They have further developed 
their model for nerve pulses that supports several classical 
soliton-like solutions [8-10]. The model is constructed to 
consider the nerve axon as a dimensional cylinder with 
lateral density excitations, moving along the axes, repre-
sented by the coordinate z. This alternative model for the 
nerve pulses is based on the propagation of a localized 
density pulse (non linear wave) in the axon membrane 
and shows the appearance of a lipid phase transition 
slightly below physiological temperatures. Given meas-
ured values of the compression modulus as a function of 
lateral density and frequency, soliton properties can be 
determined by the velocity of the traveling waves. In 
summary, we can say that this theory is based on the 
lipid transition from a fluid to a gel phase at slightly be-
low body temperature. The effects of nonlinearity and 
dispersion, as it is common, would be responsible for the 
appearance of soliton-like structures in nerve membrane 
in the gel state [11].  

We suppose that along the axon, not only the well- 
known “bell” solitons on zero background could propa-
gate, but also, that it is highly likely, we can find non-
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topological bubble and bright soliton-like solutions that 
could propagate with constant velocity along the axon on 
a nonzero density background. The bubble or rarefaction 
structure and soliton on the background would propagate 
along the excited background of the nerve membrane. As 
it is known, bubble solitary waves are ubiquitous nonlin-
ear excitations of dispersive wave models. In the litera-
ture there are several names for this type of solutions 
such as gray or dark solitons. We will keep calling them 
as bubble solitons that were used prolifically by Mak-
hankov et al. [12]. In a general scope, these excitations 
consist of a density dip (i.e., a dark notch) on a back-
ground of constant value field. These nonlinear traveling 
waves could be responsible for conserving and a posteri-
ori efficiently transmitting the necessary information 
along the axons. The appearance of bubble and bright 
solitons on the background is not new: in many branches 
of physics [13-16] the bubble solitons play a crucial role. 
Numerous experiments and theoretical studies have 
demonstrated the emergence of these nonlinear states for 
example in optics [17] with the so-called self-defocusing 
nonlinearity, in BEC systems [18] among others. As it is 
well known, these structures live in the “false” vacuum 
of the potential piece of the energy for the mechanical 
analog problem.  

Thus, we study the model of Heimburg and coworkers 
[9] and by applying the non-trivial or condensate bound-
ary condition, we found non-topological soliton like so-
lutions of two types: the bubble and solitons on conden-
sate (pedestal like solitons). In the next section we briefly 
expose the main nonlinear evolution equation and its 
weak formulation for nerve pulses. In section III the 
bubble and other soliton-like solutions with non trivial 
boundary condition are studied. Section IV is devoted to 
discussing the super and subsonic bubble and anti bubble 
solutions. In section V we briefly expose the stability of 
the background that serves as a background of the non-
topological solitons and finally, in the last section we 
discuss some features surrounding the solutions found 
and outline further implications of the model presented.  

2. “Thermodynamic” Equation of Motion 
for Nerve Pulses 

The detailed discussion on methods and proposals for 
obtaining the nonlinear differential equation which is the 
subject of our analysis, can be found in the appropriate 
literature, see for example [8,9]. Here we outline some 
basic principles of the theory based on hydrodynamic 
properties of a density pulse in the presence of dispersion. 
The analysis carried out in the mentioned works, started 
with the classic sound propagation equation in the ab-
sence of dispersion along the quasi-unidimensional axon 
for the fundamental difference 0

AU A    being the 

change of density in the membrane. Here 0
A  is the 

density of the membrane at physiological conditions 
slightly above melting transition. The excitations move 
along the coordinate x  at the time . Next, the para- t

meter   1 2A A
sc  


  with A

s  being the compressi- 

bility, evolves in dependence on the unknown ”field”  
in a similar fashion to the Kerr Effect in nonlinear optics 
(Nerve Kerr effect in biomembranes?).  

U
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0c c pU q U r U
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with   1 2

0 0
A A
sc  


  being the small sound velocity.  

An important justification for the assumption of an elec-
tromechanical process is the experimental observation of 
reversible heat changes in phase with the action potential 
and a zero net heat release during the action potential [9]. 
Finally, the equation of motion of density waves along 
the axon can be represented by [8,9]:  
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In this paper we will consider that far from the excited 
zone along the axon, the difference density  remains 
constant i.e. it is not completely equal to zero. Thus, for 
this case, the nontrivial boundary condition is considered, 
and it affects the subsequent evolution of nonlinear waves.  

Weak Formulation 

Before the application of the boundary condition we 
slightly modify the Equation (2) bearing in mind the trav-
eling wave solution with the independent variable 
z x vt  . By integrating the Equation (2) it can be 
transformed to the following one  

 
2

2 2 2 3qU0 12

1 1
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here 1  is a constant that is obtained after integration. 
After subsequent integration one can obtain the next 
equation  
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with  
   2 2 2 3

0V U CU v U      4UC U  
and 

13, 6, 2Cp q C  

C V

 (5) 

being  and  the parameters that appear in the Tay-
lor expansion (1). The parameters 0  are the con-
stants of integration for the first and second integration 
correspondingly. For the Equation (4) to make sense in 
terms of distribution it is enough that 

p q

 loc R1U H .  
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3. Traveling Non-Topological Structures in 
the Model 

Now let us study the Equation (4) by keeping in mind the 
non-trivial or the condensate boundary condition, that 
means at long distances from the main excited zone of 
the axon, the perturbation pulse does not vanish while its 
first derivative tends to zero. Thus, the unknown function 

 in the distributional sense satisfies     1
locU z H R

0

d
if      then    and  0

d

U
z U U

z
    (6) 

By applying this restriction, the constants of integra-
tion  and  satisfy the next equation  0V 0U

 2 2 2 3
0 0 0 0 0 0V U v c U U U C           (7) 

As it can be easily seen this constant of integration 
depends on the background value of the difference den-
sity 0  which far from the excited zone will remain 
unperturbed.  

U

Traveling Sonic Solution  

First, let us consider the case: , when the nonlin-
ear wave will move with the sound velocity along the 
axis . Analyzing the possible consequences of this 
reduction, one can find that the right hand side of the 
Equation (4) could be transformed in such a way that this 
equation after integration will take the following form  

2
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and 0
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V
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    where the parameter  needs  a

to satisfy the algebraic cubic equation  
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For solving this cubic algebraic equation (10) we need 
to calculate de discriminant  
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            (11) 

with 23 1P   6  and 3 32 4Q C      
After the necessary algebra we obtain  

3

264 4

C
C


2 

 
  

 
               (12) 

As it is well known the Cardano type of solutions for 
the algebraic cubic equation are determined by the dis-

criminant  . The cubic equation has one real and two 
conjugate complex roots, three real roots of which at 
least two are equal or two different real roots, if   is 
positive, zero, or negative, respectively. By analyzing 
each possibility one can conclude that the case of zero 
value of   will be dropped because the potential piece 
of the energy in this case does not support additional 
relative minimum. Thus, we can use either the case 

0   or 0  . For concreteness we could use the case 
when   is positive, as a valuable example. If this is the 
case, then we have one real root and two conjugate com-
plex roots. Consequently one obtains for the real root  
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Having obtained the value of parameter  from the 
cubic Equation (10), it should be easy to calculate the 
value of parameter 

a

M  by using Equation (9). In order 
to integrate the Equation (8) and obtain analytical and 
nonsingular solutions we impose the condition for the 
discriminant of the expression under the square in the 
Equation (8) as follows  

2 2 24 8 4D M G a a   0      . 

Under all these requirements we can make an assump-
tion that regular localized soliton-like solutions exist  

when the parameters ,  a


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two inequalities 
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These parameter restrictions will be the conditions for 
the existence of a set of non-topological solitons.  

By inverting the integral (8) written above, one has fi-
nally the following solution by avoiding singular behav-
ior  

 
 0
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M
U z a
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D z z

h
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    
  
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 (16) 

As usual, for qualitative purposes, this solution can be 
visualized by taking concrete parameter values. For in-
stance, for a good picture presentation let us suppose that 

2   and, according to the work [10] for unilamellar 
DPPC vesicles, we can take for example the value 
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7   . Thus, the other important parameters should 
estimate straightforward, and after reparameterization of 
variables finally the resulting picture of a soliton on 
background is depicted in Figure 1.  

4. Super and Sub-Sonic Traveling 
Non-Topological Solutions 

Let us now investigate the other case when the values of 
the velocities of traveling structures are different than the 
sound one. We replace the value  of Equaiton (7) in 
the Equation (4) and obtain for   

0V
y U 0U 


2

2d

d
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h y A By
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      (17) 

This equation is obtained considering the following 
relations of the parameter values:  
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To avoid singular behavior, let us suppose that pa-
rameters A ,  and B   satisfy the next inequalities  

20   4 0A A B                (21) 

Thus, after the corresponding integration we have ob-
tained  
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Again  should take only negative values for 
avoiding singularities in the solution (22) and it can be 
completely satisfied because of the availability for nega-
tive and positive values of . Thus the parameters 

B

B A ,  
 

 

Figure 1. Typical “bright” soliton on background traveling 
with the same velocity of sound along the axon. Its existence 
is due to the manifestation of the relative minimum (the 
“false vacuum”) in the potential piece of the energy in the 
mechanical analogy treatment. 

B  and   should satisfy the restriction (21). This sub-
sequently gives us the following bounded values of ve-
locities for traveling solutions.  

2
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Let us transform a little the equation (22) for visualiz-
ing two types of solution; indeed, we can obtain the ped-
estal and bubble type soliton solutions. The pedestal type 
of solution could be visualized easily taking the formula 
(22) for available parameters. In contrast, in order to 
have a picture of bubble soliton we slightly transform the 
equation (22). By considering those requirements on 
nonnegative values of B for avoiding singularities we 
put 2B m   and using the independent variable as 

 0 2z z h 0     one can obtain the next represen-
tation of the solution  
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   (25) 

The “bright” soliton on condensate (pedestal) could be 
represented as Figure 1. This solution is a soliton-like 
excitation on the background of a constant value of con-
densed matter. It should be considered as a dual solution 
to the bubble solitons. Thus, bubble like solutions can 
also be obtained in the case when the velocities satisfy: 

2
0c v . These solitons on the condensate can be easily 

visualized by choosing appropriated values of the pa-
rameters. The simplest ones could be generated when the 
relation    in Equation (25) holds for determined 
parametric values. 

These two types of solutions (bubble and pedestal so-
lutions) can exist inside the nerve dynamics. As we can 
 

 

Figure 2. By using the following parameter values: 

0.      .     3 8 1 4 U 0 5   and making some reparame-

terization of variables in equation (24) one can depict the 
bubble like soliton as a dip on the background. This solu-
tion is also known as gray or dark solitons. 
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see the solutions that represent the local change of den-
sity lay above some baseline. In these two cases we have 
considered the neuron as an infinite entity in such a way 
that the mean density is the baseline that could be differ-
ent from zero. So, we have a plateau with constant am-
plitude and along this plateau, the bubble or in some 
sense the small dip or rarefaction of density and the soli-
ton on the condensate are propagating with some velocity 
whose values are restricted by the Equation (23). Along 
with the existence of bubble type of solitons, the soliton 
on the background also appears that should be dual to the 
first one. These local changes of density live on top of 
the nonvanishing background.  

5. Dispersion Relation for Linear Waves 

The normal mode perturbation with a frequency of  
and wave number  are taken proportional to  

w
k

 0cos wt kx              (26) 

For the linear variant of the Equation (4) the frequency 
is subjected to the dispersion relation . Let us 
calculate the dispersion of small oscillation in vacuum 

0 . For this we use the next representation of the solu-
tion  

 w w k

U
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The linear equation takes the form  

tt xx xxxxh              (28) 

with 0 . As it is well known the dis-
persion relation can be obtained from (28) as  

2
0 0c pU qU    2

2w h             (29) 

From the last equation we see that the considered con-
densate is linearly stable when  provided that 

. In this sense our solutions are constructed above 
some stable vacuum state and are physically accepted. 
When , we observe some restriction for the wave 
number that limits the linear stability of the background. 
These important new properties along with the important 
issue of this investigation concerning the stability of 
these solutions should be reported elsewhere.  

0 
0h 

0 

6. Conclusions 

We have discussed in this contribution the appearance of 
bubbles and solitons on the background along the axon, 
based on the model reported in the pioneering work of 
[9]. These solutions propagate over the spatially homo-
geneous background 0 . The potential piece for the 
solution is represented in Figure 3.   

U U

As we can see from (Figure 3) the vacuum of emer-
gence of bubbles and pedestal soliton solutions is a rela-
tive minimum of the potential. In some sense they seem  

 

Figure 3. The existence of bubbles or gray and pedestal 
solitons is due to the manifestation of relative minimum, the 
“false vacuum” of the potential piece of its energy V(U) 
from Equation (4). 
 
to be dual solutions. The traveling small dip or rarefac-
tion and soliton excitation on the background can exist 
and can run with constant velocity along the nerve. Thus, 
the long pulse plateau in the nerve could be perturbed by 
bubble and bright solitons on the background. Therefore, 
in both directions of the axis, for say  , at long dis-
tances from the active zone, the density displacements 
will maintain their value, forming the nonvanishing 
boundary condition. By taking into consideration this 
physical reason and by integrating the nonlinear equation 
proposed in the work (2), for specific parameter regions, 
we have found solutions that move with the same veloc-
ity of sound i.e. sonic, sub and super sonic bubble and 
solitons on background.  

These solutions could eventually be responsible for 
various fundamental processes inside the nerve, espe-
cially those processes that involve some kind of paramet-
ric phase transitions. This is because of the realistic in-
terpretation of bubbles as a nucleus of some stable phases 
in the bubble vacuum or a metastable one. Also, both 
solutions, that is, the bubble and the soliton on the back-
ground obtained here as particular soliton-like solutions 
for specific values of parameters, could be used by the 
nerve system for enhancing confidentiality in communi-
cation tasks. For instance, as the bubble soliton ampli-
tude vanishes or minimizes during propagation along the 
nerve, this wave could be used to perform communica-
tion transmission for security, whereas the required in-
formation can be retrieved by the dark/bright soliton con-
version on the background. Apparently as has been men-
tioned above, these solutions could conform some infor-
mational code structures for preserving and transmitting 
valid information along the nerve.  
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