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ABSTRACT 

This paper innovates the literature on endogenous discounting in environmental economics, by studying the global 
properties of the equilibrium outside the small neighborhood of the steady state. The internalization of individual con-
sumption in the social discount rate is rich of powerful consequences from the economic point of view, for it leads to a 
qualitative change in the steady state and its transitional dynamics, so that the perfect foresight equilibrium may not be 
unique, and thus both local and global indeterminacy can eventually emerge. The main implication for decision making 
is that if indeterminacy occurs, public policies become not sufficient to drive the economy towards the long-run equilib-
rium. In particular, we show that the onset of parametric restrictions for both global indeterminacy in the full ℝ³ vector 
field, and a quasi-periodic dynamics with trajectories wrapped around an invariant torus, may eventually emerge. 
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1. Introduction 

In the last two decades an increasing interest has been 
devoted to studying the impact of endogenous discounting 
in economic growth models. A bulk of literature postu-
lates that, in sharp contrast with standard neoclassical 
assumptions, the subjective rate of time preference is not 
constant, but may depend on some aggregate economic 
variables, such as individual consumption. The internali-
zation of these external social factors is rich of powerful 
consequences from the economic point of view, for it 
leads to a qualitative change in the steady state and its 
transitional dynamics, so that the perfect foresight equi-
librium may not be unique, and thus both local and global 
indeterminacy can eventually emerge [1,2]. 

This issue is particularly meaningful in the field of en-
vironmental economics, where the economic implications 
behind global indeterminacy can be interpreted as the way 
two identically endowed economies (with the same initial 
stock of both physical and natural capital) may start at 
some point to follow completely different equilibrium 
paths towards the long-run steady state. In detail, the rise 
of multiple equilibria in presence of environmental deg-
radation could be the major cause for a vicious poverty- 
environment trap situation, where policies (i.e., tech- no-
logical innovations, resource taxation) aimed at allevi- 
ating the overexploitation and exhaustion of the environ- 
ment which might not be able to avoid a still unsustain-

able use of natural resources [3-10]. The main implication 
for any policy decision is that if indeterminacy occurs, 
public intervention becomes not sufficient to drive the 
economy towards a good (i.e., less polluting/resource 
preserving) long-run equilibrium. The agents’ decisions, 
despite the initial conditions or other economic funda-
mentals, will locate the economy in a particular optimal 
converging path that could not coincide with the one cor-
responding to the lowest extraction levels of natural re-
sources [11,12]. 

A large strand of analyses demonstrate how a contin-
uum of equilibrium trajectories, existing in the neighbor-
hood of the steady state, can emerge whenever some pa-
rametric conditions are verified. This phenomenon is 
commonly known as local indeterminacy [13-19]. How-
ever, only very few attempts have been made to analyze 
the conditions under which these indeterminacy problems 
arise outside the small neighborhood of the steady state, 
which we refer to as global indeterminacy [20]. The latter 
seems an innovative field to work on, even though it is 
usually related to very complicated nonlinear functions 
which increase the mathematical difficulties in handling 
these models. 

This paper explores the implications of endogenous 
discounting in the framework of a simple optimal growth 
model with the use of natural resources. Consumption is 
made at the expenses of environmental quality, the as-
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sumption of a constant discount rate of time preference, 
though it makes the analysis more tractable, can be 
against the notion of sustainability. To this end, we follow 
the extant literature on the field, by assuming the de-
pendence of the individual discount rate on the average 
consumption [21-23]. The novelty of this paper relies on a 
deep investigation of the global behavior of the economy 
studied in [24], where indeterminacy may occur for a less 
stringent set of parametric restrictions. To tackle this 
problem, we use the principles of bifurcation theory to 
gain hints on the global properties of the equilibrium, and 
to investigate the whole set of conditions which lead to 
the emergence of a quasi-periodic dynamics along an in-
variant torus. This allows us to better understand the de-
terminants for the emergence of endogenous fluctuations, 
and the existence of irregular patterns due to a sensitive 
dependence of our economy on the initial conditions. 

The paper develops as follows. The second section in-
troduces the dynamic system associated with [24]. In the 
third section, we prove the main proposition relating to 
the global properties of the equilibrium, and show the 
parametric onset for the emergence of global indetermi-
nacy and the invariant torus dynamics. A brief conclusion 
reassesses the main findings of the paper, and a subse-
quent Appendix provides all the necessary proofs. 

2. The Yanase (2011) Model 

Assume an economy endowed with a continuum of iden-
tical households, producing according to the following 
production function 

( ),y f k z=                (1) 

where both capital ( )k  and polluting inputs ( )z  are 
used to realize output ( )y 1. 

Consider also that 1) ( , )f k z  is increasing, concave, 
and twice-continuously differentiable in ( ),k z ; 2)  

( ) ( )0, ,0 0f z f k= = ; 

3)  

( )0,k∀ ∈ ∞ , ( )
0

lim ,z
z

f k z
→

= ∞ , 

and there exists 0Z >  such that ( )lim , 0z
z Z

f k z
→

= . 
Since the use of polluting inputs in the production 

process may increase the amount of total polluting emis-
sions in the environment, Z , it is assumed that the gov-
ernment imposes a tax 0τ >  on the use of each unit of 
polluting inputs. Therefore, the law of accumulating capi-
tal stock reads: 

( ) ( ) 0, ,  0 0k f k z c z T k k kτ δ= − − + − = >   (2) 

where c  is consumption, T  is a lump-sum transfer 

from the government, and δ  is a constant rate of capital 
depreciation. 

Let the utility function ( ),u c Z  be increasing with 
respect to consumption, 0cu > , but decreasing in the 
total amount of pollution, 0Zu < . Therefore, the repre-
sentative household's optimal control problem needs to 
maximize 

( )
0

, dU u c Z X t
∞

=                (3) 

where X  indicates the household's discount factor, de-
fined as 

( ) ( )( )
0

exp , d
t

X c v Z v vρ = −          (4) 

subject to (2) and 

( ) ( )( ),X c v Z v Xρ= −          (5) 

so that, the present value Hamiltonian becomes 

( ) ( ) ( ), , ,H u c Z X f k z c z T k c Z Xλ τ δ θρ= + − − + − −    
where λ  and θ  represent the Lagrange multipliers of 
capital and discount, respectively. 

The maximization problem requires the following first 
order necessary conditions: 

c cu θρ λ− =                (6.1) 

zf τ=                  (6.2) 

[ ]kfλ λ ρ δ= + −             (6.3) 

uθ θρ= −                (6.4) 

joint with the transversality conditions 

( ) ( ) ( )lim 0
t

t X t k tλ
→∞

=           (7.1) 

( ) ( )lim 0
t

t X tθ
→∞

=             (7.2) 

Second order sufficient conditions are also shown to 
hold. Therefore, the Hamiltonian is jointly strictly con-
cave in c  and k  (see [24]). 

Since, in equilibrium, both z Z=  and the government 
budget constraint ( )T zτ=  hold, making log-derivatives 
of (6.1), and with a bit of mathematical manipulation, we 
easily derive the following three-dimensional autonomous 
system of first order differential equations 

( )( ) ( )( ), , , , ,k f k z k c z k kτ τ λ θ δ= − −  

( )( ) ( )( ) ( )( ), , , , , , ,kc z k z k f k z kλ λ ρ τ λ θ τ δ τ = + − 
  

( )S  

( )( ) ( )( ) ( )( ) ( )( ), , , , , , , , , ,u c z k z k c z k z kθ τ λ θ τ θρ τ λ θ τ= − +  

Specifically, system S  becomes crucial for the pur-
pose of the analysis we are going to deal with in the rest 

1Since labor is normalized to unity, all variables entering the production 
function can be interpreted as in per capita terms. 
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of the paper. 
Let ∗J  be the Jacobian matrix associated with system 

S  given by: 

( )
( ) ( ){ }

( )

z k

c z k c c

z z z k

c z c c

P k c z c c

c u z c c

λ θ

λ θ

λ θ

ρ τ

λ ρ ρ τ λ ρ λ ρ

λ θ ρ λ λ ρ

∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗

 + − − − 
 ′= − + −   
 − − + − − +  

J  

and let 

( ) ( ) ( ) ( )3 2det Tr DetBκ κ κ κ∗ ∗ ∗ ∗− = − + −I J J J J  

be the characteristic polynomial of ∗J , where I  is the 
identity matrix. and ( )Tr ∗J , ( )B ∗J  and ( )Det ∗J  
are the trace, sum of principal minors, and determinant to 

∗J , respectively. Explicitly: 

( ) ( )Tr 2 z kc zρ τ∗ = + −J           (8) 

( ) ( )
( ) ( )

B z k

z z k c

c z

u z c c P kλ λ

ρ ρ τ

θ ρ λ τ ρ λ

∗

∗ ∗ ∗ ∗

= + −  

′+ − + − +

J
    (9) 

( ) ( )Det c P kλρλ∗ ∗ ∗′=J           (10) 

where  

( ) ( )c k k z k kk kz kP k f z z f f zρ δ τ ρ∗′ = − + + − − . 

It is noteworthy to say that system S  may exhibit 
many types of singularity situations, each of whom de-
serves particular attention, for different interesting con-
sequences on the dynamic evolution of the economy be-
ing considered may eventually arise. 

In [24] it is shown the possibility for local indetermi-
nacy and the presence of multiple equilibria, depending 
on the characteristics of the discount rate function. Un-
fortunately, nothing is said on the long run properties of 
this economy outside the small neighborhood of the 
steady state. The aim of this paper is to show that, near 
the onset of a pitchfork-Hopf interaction, global indeter-
minacy can also arise, joint with the emergence of a qua-
si-periodic invariant torus dynamics in the original ℝ³ 
structure of the model. The next section is devoted to this 
end. 

3. Global Indeterminacy and Invariant  
Torus 

In what follows, we describe the systematic procedure to 
obtain the conditions for system S  to undergo a pitch-
fork-Hopf interaction2. In this case, the linearization ma-
trix, ∗J  , at the origin exhibits one zero and a pair of 
pure imaginary eigenvalues. Interestingly, the possibility 
of a quasi-periodic toroidal motion, in some regions of the 
parameters space, assures that the dynamic motion of both 

predetermined ( )k  and non-predetermined ( ),λ θ  va- 
riables is regular across time, but it is never exactly re-
peating3. These property has a nice counterpart in terms of 
global indeterminacy, since for each initial value of the 
predetermined variable belonging to the three-dimen- 
sional compact set of points composing the interior of the 
torus, it is possible to show that there is 1) a continuum 
(in ℝ2) of possible initial values of the control variables 
(indeterminacy); and that 2) the solution is bound to stay 
in the vicinity of the fixed point (namely, it is an equilib-
rium); which possibly describes a phenomenon of global 
nature. 

Lemma 1 Let δ  be the value that satisfies ( ) 0∗ =J . 
Let furthermore τ  be the value for which ( )Tr 0∗ =J . 
Then, if δ δ=  and τ τ= , the linearization matrix ∗J  
has a simple zero and a pair of pure imaginary eigenval- 
ues, 1 0κ =  and 2,3 iκ ω= ± , where ( )B 0ω ∗= >J . 
Straightforward computations show that  

c k kk kz k z k
k

c

f f f z z
z

ρ ρδ τ ρ
− − +

= + ; 

whereas,  

( ) 2
z z k cu z cλω θ ρ τλ ρ ρ∗ ∗= − − − . 

Proof To have a linearization matrix with a simple zero 
and a pair of pure imaginary eigenvalues in a ℝ3 ambient 
space, we need to make sure that both ( )Det ∗J  and 

( )Tr ∗J  vanish simultaneously. ( )Det ∗J  vanishes 
when ( ) 0P k∗′ = . Solving (8), (9) and (10), we obtain 
the values in the Lemma. 

To ease the mathematical computation, we can trans-
form system ( )S  into a more convenient Jordan normal 
form in cylindrical coordinates ( ), ,r z θ : 

3 2
1 2 3

2 2 3 2
1 2 3 4

2 2
1 2 3

r a rz a r a rz

z b r b z b z b r z

c z c r c zθ ω

= + +

= + + +

= + + +






      (11) 

whose three-dimensional dynamics is topologically equi- 
valent to the evolution of the original vector field in S , 
when Lemma 1 is satisfied (see [25]). 

In particular, r  describes the amplitude of the limit 
cycle oscillations in the vicinity of the Hopf bifurcation. 
Noticeably, the first two equations are independent of θ , 
which describes a rotation around the r -axis with almost 
constant angular velocity θ ω≈ , for any r  small. 
Thus, we can restrain the analysis to a simpler 
two-dimensional vector field, which is often called a 
truncated amplitude system: 

2This is a codimension 2 bifurcation, since two parameters must be 
varied for such bifurcation to occur. 

3This is also known as a codimension two Gavrilov-Guckenheimer 
bifurcation, where the interactions between a multiple equilibrium 
solution and the oscillatory pattern of each variable can lead to quasipe-
riodic motion in the vicinity of the singularity in the appropriate para-
metric set. 
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2 2 3

ˆ

ˆ

r arz

z br z fz

=

= − +




            (12) 

where
 1

2

ˆ
a

a
b

= − , ˆ 1b = ± , and 
1

1
3

f
b

=  (see [25]). 

A Versal deformation of the normal form in (12) can be 
found, and the bifurcation phenomenon can be studied in 
the neighborhood of the origin. This is not, in general, a 
trivial task. For our system we can show the following 

Proposition 1 The transverse family 

1

2 2 3
2

ˆ

ˆ

r r arz

z br z fz

μ

μ

= +

= + − +




         (13) 

is a versal deformation of system (12), and is topologi-
cally equivalent to the original system, S . Therefore, a 
non trivial equilibrium, E∗ , occurs at the pitchfork curve 

( ) ( )
2

22
1 2 1 22
, :

ˆ
H o

a

μμ μ μ μ
 

= = − + 
 

 

along which a cycle of small amplitude, and period 
2T ω= π , hopf-bifurcates from E∗ , which in fact cor-

responds to an invariant torus in the original ℝ3 vector 
field. 

Proof See [26]. 
As clearly depicted in Figure 1, only for a limited set 

of parameters ( )1 2,μ μ  located in region 2, a stable limit 
cycle appears in our model. Interestingly, 

Remark 1 if the planar system in (12) has a closed or-
bit, then the corresponding three-dimensional vector field 
in (11) has an invariant torus, which is encircling the 
z -axis, with angular velocity ω  (see, Figure 2). 

We proceed now to locate more precisely the region of 
the parametric space implying the quasi-periodic dynam-
ics described so far, and validate our findings with some 
numerical computations. To do so, we use the same set of 
parameters and the assumed explicit functions defined in 
[24], though we leave the chosen bifurcation parameters, 
δ  and τ , free to vary4. 

Example 1 Set  

( ) ( ), , , , 1 3, 2,3,1, 2α σ ε χ ζ =  

and 0.01τ = . Then 0.4016174830δ = , with  

0.09050014048zc =  and 71.185429450 10ω = × . 

A limit cycle emerges in the ( ),r z  phase space (see, 
Figure 3). 

Example 2 Set  

( ) ( ), , , , 1 3, 2,3,1, 2α σ ε χ ζ =  

and 0.75τ = . Then  

0.7644280126δ = . 

this choice implies  

0.1490319331zc =  and 0.01248033802ω = . 

A limit cycle emerges in the ( ),r z  phase space (see, 
Figure 4). 
 

 

Figure 1. The bifurcation diagram. 
 

 

Figure 2. The invariant torus. 
 

 

Figure 3. The limit cycle ( )zc<τ . 
4To simplify the analysis, [24] has set 0δ = . Our results are therefore 
more general and without restrictions. 
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Figure 4. The limit cycle ( )zc>τ . 

 
Interestingly, we can notice that [24] finds that local 

indeterminacy occurs only when the condition zcτ <  is 
verified, as in Example 1. However, the requirements for 
global indeterminacy are less stringent, since a pitch-
fork-Hopf bifurcation can emerge even when the above 
condition does not hold. In contrast to [24], we may say 
that, global indeterminacy is likely to occur even if the 
pollution tax rate is either too low or too high, both of 
them possibly giving rise to free-riding problems, and an 
unsustainable use of natural resources, at the expenses of 
the long-run consumption pattern of future generations. 

Therefore, if the initial condition on capital is chosen in 
such a way that system S  gives rise to a toroidal motion, 
then a continuum of equilibria can depart from a given 
initial condition of the predetermined variable. Since this 
continuum of equilibria exists beyond the region relevant 
for the linear approximation of the dynamics in the 
neighborhood of the steady state, the result implies inde-
terminacy of global nature [28]. 

Besides the result of global indeterminacy, the possibil-
ity that the model can exhibit toroidal motion is of great 
interest also because the decomposition of the dynamics 
into phase/amplitude equations allows us to better under-
stand the nature of the cyclical behavior of an economy 
where the intertemporal consumption is influenced by the 
use of natural resources, and the long run properties of the 
equilibrium become totally unpredictable. 

4. Concluding Remarks 

This paper shows that the growth model with endogenous 
discounting proposed in [27] presents global indetermi-
nacy of the equilibrium in the full onset of the original ℝ3 
structure. In detail, a study of the properties of the steady 
state in the vicinity of a codimension 2 pitchfork—Hopf 
interaction, allows us to demonstrate that global indeter-
minacy can arise from plausible values of the parameters 

in correspondence of the emergence of a trapping region 
with an invariant torus quasi-periodic dynamics. The me-
thod innovates the literature in many aspects. First of all, 
it is the first time (to our knowledge) that a toroidal mo-
tion is shown to emerge in simple two-sector endogenous 
growth models of the standard type. Second, the form of 
indeterminacy of the equilibrium we detect is obtained in 
the full ℝ3 dimension, which implies that, given any ini-
tial value of the predetermined variable, there exists a 
continuum of initial values for the control 
(non-predetermined) variables in the ℝ2 submanifold. 
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Appendix 

Given the following system  

( )( ) ( )( )
( )( ) ( )( ) ( )( )

( )( ) ( )( ) ( )( ) ( )( )

, , , , ,

, , , ), , , ,

, , , , , , , , , ,

k

k f k z k c z k k

c z k z k f k z k

u c z k z k c z k z k

τ τ λ θ δ

λ λ ρ τ λ θ τ δ τ

θ τ λ θ τ θρ τ λ θ τ

= − −

 = + − 

= − +







 

(A.1) 
the associated Jacobian matrix is 

( )
( ) ( ){ }

( )

z k

c z k c c

z z z k

c z c c

P k c z c c

c u z c c

λ θ

λ θ

λ θ

ρ τ

λ ρ ρ τ λ ρ λ ρ

λ θ ρ λ λ ρ

∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗

 + − − − 
 ′= − + −   
 − − + − − +  

J

 
with 

( ) ( )
( ) ( )

( ) ( )
( ) ( )

Tr 2

B

Det

z k

z z k c

z k

c z

u z c

c z c P k

c P k

λ

λ

λ

ρ τ

θ ρ λ τ ρ

ρ ρ τ λ

ρλ

∗

∗ ∗ ∗

∗ ∗

∗ ∗ ∗

= + −

= − + −

′+ + − +  

′=

J

J

J

 

Consider a second-order Taylor expansion of the vector 
field in (A.1): 

( )
( )
( )

1

2

3

, ,

, ,

, ,

f kk k

f k

f k

λ θ

λ λ λ θ
θθ λ θ

∗

             = +                 

J

     
     

    

      (A.2) 

Where 

 

( ) ( )
( )

( )
( )

2 2 2
1 2 2

1, ,
2

c cc cc cc c
kk zz k z kk z k z k

cc cc cc cc

uccf k f c z c z k c z k c z k
u u

θ
λ θ

ρ ρ θρ ρ ρ
λ θ λ θ λθ θ

θρ θρ
− + = − + − − − −  − −

            

( ) ( ) 2
2 , , 2k kkf k f k λ θλ θ ρ λ ρ λ ρ λθ= − + +       

  
( ) 2

3 , , 2kf k k λ θλ θ ρ θ ρ λθ ρ θ= + +         

 
Assume now that system (A.1) undergoes a triple-zero 

eigenvalue structure, which allows us to make the fol-
lowing change of coordinates 

1

2

3

k w

w

w

λ
θ

   
   =   

     

T





             (A.3) 

via an appropriate transformation matrix 

1 1 1

2 2

3

0

1 0

u v z

u v

z

 
 =  
  

T            (A.4) 

whose columns represent the eigenvectors associated to 
the triple-zero eigenvalues (see [28]). 

We are thus able to put (A.2) in a Jordan normal form 

( )
( )
( )

1 1 1 1 2 3

2 2 2 1 2 3

3 3 3 1 2 3

0 1 0 , ,

0 0 1 , ,

0 0 0 , ,

w w F w w w

w w F w w w

w w F w w w

     
     = +      

            





   (A.5) 

where: 

( ) ( )
( )

2 3 1 1 3 2 2 1 3

1 2 3 2 3 1 1 1 3 2 2 1 3

2 1 1 2 1 2 2 1 3

1
, ,i

v z f v z f v z f

F w w w u z f z u z f u z f
D

v f v f u v u v f

 − + +
 = + − − 
 − + − + 

(A.6) 

with  

2 1 1 2 3 2 1 3D v z u v z u v z= − + 5. 

Let us repeat the same procedure of above, and intro-
duce a second transformation matrix: 

2

0 1

0 0

0 0

δ
ω

ω

− 
 = − 
  

B          (A.7) 

which allows us to put system (A.5) into the normal form 
suitable to describe the presence of one zero and a pair of 
pure imaginary eigenvalues: 

11 1

2 2 2

3 3 3

0 0

0 0

0 0 0

fx x

x x f

x x f

ω
ω

 −          = +                    





     (A.8) 

where 

 

( ) ( )
( ) ( )

( ) ( )

2 2 2 2 2 2
1 1 3 1 2 3 2 1 1 2 2 2 1 2 3 1 3 3 2 31

2 2 2 2 2 2
2 1 2 3 1 1 3 2 2 1 2 2 2 1 2 3 2 3 3 1 3

2 2 2 3 2 2
3 1 1 2 2 3 3 3 4 1 2 3

a x x c x x a x x x c x x x a x x c x xf

f a x x c x x a x x x c x x x a x x c x x

f b x x b x b x b x x x

 − + + − + + −      = + + + + + + +       + + + + +   





 
5All further computations are available upon request. 
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which can be easily transformed in cylindrical coordi-
nates: 

3 2
1 2 3

2 2 3 2
1 2 3 4

2 2
1 2 3

r a rz a r a rz

z b r b z b z b r z

c z c r c zθ ω

= + +

= + + +

= + + +






      (A.9) 

given 1 cosx r θ= , 2 sinx r θ= , 3x z=  (see [25]). 
Following [29], the truncated-amplitude system is de-

rived from (A.9), keeping θ ω≈ : 
2 2 3ˆˆr arz z br z fz= = − +           (A.10) 

where  

1

2

ˆ
a

a
b

= − , ˆ 1b = ± , 

and  

( )
ˆ4

3 2 z k

af
c zρ τ

= −
+ −  

. 

A candidate for versal deformation of (A.10) is then 

1

2 2 3
2

ˆ

ˆ

r r arz

z br z fz

μ

μ

= +

= + − +




 

with the following explicit values of  

( )
1

2

2
z kc zρ τ

μ
+ −

=  

and  

 

( ) ( ) ( )2 2

2

4 4
.

2

z k z z k c c k k z k kk kz kc z u z c c f z z f f zλ λτ θ ρ λ τ ρ λ ρ δ τ ρ
μ

∗ ∗ ∗  − − + − + − + − + + − − =  

 


