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Neither the Greek nor the Alexandrian nor the early Arabic philosopher/scientists ever developed a 
mathematical representation of qualities, a prerequisite for a mathematical physics. By the early seven-
teenth century the quantification of qualities was a common practice. This article traces the way this prac-
tice developed. It originated with a medievally theological problem and was developed by philosophical 
logicians who did not have mathematical physics as a goal. The verbal algebra they developed was given 
a mathematical formulation in the late fifteenth century. This was subsequently assimilated into a 
neo-Platonic revival that stressed mathematical forms. The quantification of qualities developed in phys-
ics supplied the paradigm for quantification in other fields. 
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Introduction 
Greek and Alexandrian scientists developed geometry and 

arithmetic. Yet, neither they nor the Arab successors ever deve- 
loped a quantitative science of qualities. At the start of the scien- 
tific revolution in the early 17th century, a quantitative treatment 
of qualities was a common practice. We will consider what 
prepared the way for this practice (MacKinnon, 2011: chap. 2). It 
helps to begin by considering why the Greeks and Alexandrians 
did not have this practice. 

Historical Development 
Two basic reasons might explain this deficiency. The first 

stems from the Greek understanding of the relation of mathe- 
matics to reality. For Plato mathematical forms exist in a sepa- 
rate realm of ideas. For Aristotle mathematics is derived from 
physical reality by a process of concept abstraction. Since his 
position supplies the background for the medieval philosophers 
we will consider, it requires a more detailed treatment. 

In his de Interpretation (chap. 1) Aristotle declared that 
though different languages have different word to symbolize 
mental experiences, all men have the same mental experiences. 
The alleged reason is that the things determine our concepts of 
them. Aristotle’s ordered list of categories: substance, quantity, 
quality, relation, place, time, situation, state, action, and passion, 
provide the most basic concepts. The first three categories have a 
conceptual ordering that determines the way quantities are 
treated. Consider the predicate “red”. This cannot be applied in a 
literal sense to an immaterial being, such as an idea, or an 
unextended being, such as a point. A quality, such as color or 
taste, pre-supposes extension which, in turn, presupposes a 
substance that is extended and colored. Any discussion of the 
quantity of a quality perverts the proper conceptual ordering. 

In addition to speculative difficulties, there were practical 
difficulties. The Greeks and Romans represented integers by 

arbitrarily chosen letters. This blocked any mathematical repre- 
sentation of continuously varying qualities. It also made it ex- 
tremely difficult to develop any sort of isomorphism between 
numbers as a system and the quantity of qualities. Numbers were 
generally treated in a way that obscured the logical structures 
needed. In the Pythagorean tradition numbers were classified as 
even and odd, and then into evenly even (powers of two), evenly 
odd, and oddly even, with a further distinction into prime, com- 
posite and perfect numbers. This supported the popular trend 
seeking properties of particular numbers that were associated 
with particular qualities, rather than the properties of numbers as 
a system. 

Aristotle’s doctrine of categories were well known to me- 
dieval scholars even before the systematic translation of Aris- 
totle’s works in the late twelfth and early thirteenth century. 
Porphyry, a disciple of Plotinus, wrote a commentary on the 
Categories, the Isagoge. This was translated into Latin, Syrian, 
Arabic, and Armenian and served as a staple text for the early 
arguments between Nominalists and Realists. The basic cate- 
gories were accepted as something determined by the nature of 
reality. This put analysis in ontological terms. Since the basic 
categories as well as concepts of particular objects are deter- 
mined by the reality known, one can analyze objects by analyz- 
ing concepts of objects. This linguistic analysis was carried on in 
a theological perspective. 

This theological perspective seemed to require a quanti- 
fication of qualities. One’s rank in heaven, according to accepted 
teaching, depends upon the degree of grace, or charity, that one 
has at the moment of death. Dante’s Divine Comedy vividly 
illustrates the different places assigned in hell, purgatory, and 
heaven. Since grace is a quality, albeit a supernatural one, com- 
paring degrees of grace is comparing quantities of qualities. 
Accordingly, a way had to be found to discuss the quantity of a 
quality. St. Thomas Aquinas, the most Aristotelian of the me- 
dieval philosophers, seems to have been the first to give a 
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coherent account of the way in which quantitative determi- 
nations can be given to qualities. Aquinas distinguished between 
quantity per se, or bulk quantity, and quantity per accidens, or 
virtual quantity. (Summa Theologiae, I, q. 42, a.1, ad 1) Virtual 
quantity, or the quantity of a quality, can have magnitude by 
reason of the subject in which it inheres, as a bigger wall has 
more whiteness than a smaller one, or it can have magnitude by 
reason of the effect of its form. The first effect of a form is a way 
of existing, e.g., as human. The secondary effect of a form is 
shown through its action on objects. A comparison of relative 
effects serves as a measure of virtual quantity. Thus, one with 
greater strength can lift heavier rocks. 

Measurement did not rest on the modern idea of a unit of 
measure or even a practice of measuring things. In medieval 
thought the Platonic idea that the perfect form is the measure for 
any being that participates in that form was reinforced by the 
scriptural statement that in creating the world God disposed all 
things in number, weight, and measure. Even when measure- 
ment is separated from a doctrine of participation and treated in 
terms of numbers, as in Aristotle’s treatment of time, the 
constraint is that everything must be measured “by some one 
thing homogeneous with it, units by a unit, horses by a horse, 
and similarly times by some definite time” (Physics, 223b14). 
Applying quantities to qualities broke this Aristotelian constraint. 
This new idea of the quantity of a quality was the pivot leading 
from the Aristotelian philosophy of nature to a mathematical 
physics. 

The historical development of medieval natural philosophy 
has been treated in detail elsewhere (Lindberg, 1992: chap. 12; 
Clagett, 1959). In summaries, this is often done by presenting the 
aspects leading to Newtonian physics in a manner intelligible to 
a modern audience. Here I wish to do the opposite, to bring out 
the complexities and confusion involved in developing an 
account of properties of matter and motion that admitted of a 
mathematical representation. The evolution of the quantification 
of qualities followed the general evolutionary pattern of advan- 
cing by coping with particular problems and without any goal of 
developing a mathematical physics. 

The idea of the quantity of a quality matured into a doctrine of 
the intensification and remission of qualities. This led to a nest of 
conceptual problems. Does the quality itself change, the degree 
of participation in a quality, or does one quality replace another? 
If the quality changes by addition, rather than replacement, how 
is the addition of qualities to be understood? 

The nominalism, spearheaded by William of Ockham, led to a 
de-emphasis on the ontological aspects of this discussion. Ins- 
tead of asking how intensification and remission of a quality 
takes place he sought a criterion allowing one to predicate 
“strong” or “weak” of the qualities a thing has. 

The mathematization of this came chiefly from the “Cal- 
culators” of the Merton school in fourteenth century Oxford and 
later from the Parisian school. What mathematics did they have 
(Mahoney, 1987)? In the twelfth century, three new elements 
were introduced and gradually assimilated: Hindu-Arabic 
arithmetic with its superior notation, Euclidean geometry, and 
the algebra in the first (of three) parts of al-Khwarizmi’s treatise. 
This part ended with the rule of three, or how to infer a fourth 
number on the basis of three. Thus, if eight cost five, how much 
do eleven cost? It was a verbal algebra. No symbols were used 
even for numbers. Jordanus Nemorarius in the thirteenth century 
first introduced these, in a very limited way. This treatment of 
proportions was gradually fused with Euclidean geometry. 

Euclid, more an organizer than an originator, had two distinct 
theories of ratios and proportions. The one in Book VII, 
stemming from Pythagoras, was limited to integers. The one in 
Book V, stemming from Eudoxos, treated continuous mag- 
nitudes. The mediaevals who adapted this lacked Eudoxos’s 
concern with incommensurables and existence theorems. From 
these elements, they fashioned conceptual tools that could treat 
intensification of quantities through a kind of verbal algebra. 

To grasp the conceptual problems it is important to change 
perspectives. Today we would express the rule of three in a ratio 
which we would symbolize as A/B = C/D. The Merton cal- 
culators would symbolize this rule as (A,B) = (C,D). What is 
significant is not the change in format, but the interpretation 
given to it. The terms we treat as numerators and denominators 
were understood as parts of a system of classification which 
admitted of groups and sub-groups. If A is a multiple of B then 
(A,B) is a multiple ratio. If A contains B once with a remainder 
of 1 then (A,B) is a superparticular ratio. This admits of 
different kinds. (3,2) is a sesquialterate ratio; (4,3) is a ses- 
quitertian ratio. If A contains B once with a remainder greater 
than one, then (A,B) is a superpartient ratio, which also admits 
of sub-groups. If A contains B more than once, then one has the 
general categories of multiple superparticular ratios and mul- 
tiple superpartient ratios. In this way, Euclid’s system of pro- 
portions gradually became assimilated to the arithmetic of 
fractions. This was extended to ratios of ratios, but still using 
terms and categories rather than mathematical symbols for 
numbers. Thus a limited verbal algebra was developed for ex- 
pressing proportions for quantities of qualities. It could not yet 
treat a continuous variation in the quantity of a quality. 

This systematization was given a kind of state-space repre- 
sentation in the late fifteenth century by Nicole Oresme at the 
University of Paris. Since this represents the transition from a 
verbal algebraic treatment of quantification to the beginning of a 
mathematical treatment is deserves more consideration. In 
interpreting this it is important to realize the very abstract level at 
which the physical-mathematical correspondence is found. I will 
present Oresme’s explanation of this and then comment on it. 

Every measurable thing except numbers is to be imagined in 
the manner of continuous quantity. Therefore for the men- 
suration of such a thing, it is necessary that points, lines, and 
surfaces, or their properties be imagined. For in them (i.e., the 
geometrical entities), as the philosopher has it, measure or ratio 
is initially found, while in other things it is recognized by 
similarity as they are being referred by the intellect to them (i.e., 
to geometrical entities). Although indivisible points, or lines, are 
non-existent, still it is necessary to feign them mathematically 
for the measures of things and for the understanding of their 
ratios. Therefore, every intensity which can be acquired succe- 
ssively ought to be imagined by a straight line perpendicularly 
erected on some point of the space or subject of the intensible 
thing, e.g., a quality. For whatever ratio is found to exist be- 
tween similar ratio is found to exist between line and line, and 
vice versa (Clagett, 1966: pp. 165-167). 

Consider a body and a variable quality, such as motion or heat. 
Represent the quality by a base line (eventually an x-coordinate) 
and the intensity by a perpendicular (or y-coordinate). “Measure- 
ment”, as Oresme uses this term, does not presuppose any unit or 
method of measurement. The length of the lines representing 
intensities has no absolute significance. What counts are the 
ratios. If the intensity doubles then the length of the perpen- 
dicular line should double. The initial assignments are always 
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arbitrary, e.g. “Let the intensity of a quality have a value of four”. 
As the intensity of a quality changes, the ratio of line lengths 
representing the ratio of the changing intensities also change. 
The mathematics of proportions handled ratios. 

F. This seems to involve vanishingly small distances and times. 
The development of this path led to Newton’s theory of fluxions, 
or differential calculus. The notion of quantity of motion was 
still obscure. However, it was represented by the area under a 
line. For uniformly difform motion the areas involved triangles 
and rectangles, something these medieval logicians could handle. 
However, for difformly difform motion the quantity of motion is 
the area under an irregular curve. Archimedes had treated some 
such areas by his method of exhaustion. His works were not yet 
available. The development of this path led to the integral 
calculus of Leibnitz and his account of functions. For Leibnitz a 
function expressed the relation of a dependent variable to an 
independent variable. The ultimate independent variables are 
space and time. Functions, so defined, express the relations 
represented in Oresme’s diagrams. 

The men who developed these systems were, by our occu- 
pational categories, logicians, not physicists. They developed 
logical systems that admitted of mathematical representation and 
which might, incidentally, admit of physical examples. The term 
“motion” still meant change in a quality with local motion 
gradually emerging as the most significant type and “velocity” a 
term for the intensity of local motion. Wallace (1981) has 
clarified the basic systematizations used. I will use his notation. 
A uniform motion (U) is one with a constant velocity (v), while a 
difform motion (D) has changing velocity. Motion may be 
uniform or difform in two different ways: with respect to space 
(U(x) or D(x)) depending on whether all the parts of a body 
move with the same velocity; and with respect to time, U(t) or 
D(t). Difform motion is of various kinds. Motion that is difform 
with respect to the parts of the object moved may be uniformly 
difform, U(x), in the sense that there is a uniform spatial 
variation in the velocity of the various parts of the body, or 
difformly difform, D(x), if there is no such uniformity, or it may 
be uniformly difform, U(t), or difformly difform, D(t), with 
respect to time. This allows of various schema for treating 
velocity. I will outline the one that Oresme used (Figure 1). 

In the sixteenth century, Italy became the center for the deve- 
lopment of mechanics, and of a mechanics that became more 
clearly related to dynamics. There were three somewhat separate 
traditions. The first, an academic tradition, was an extension of 
the work of the Calculators. Paul of Venice studied at Oxford 
and then, on his return, taught Mertonian ideas (Wallace, 1981: 
Part II). Here the treatment of motion was caught up in the 
traditional clash between Nominalists and Realists. This concern 
influenced the dynamic tradition that Galileo redeveloped. The 
Nominalists focused on the new mathematical treatment and 
slighted the realistic significance of their formalism. The other 
two traditions, developed apart from the universities, were 
strongly influenced by the publication, in 1453 and later, of 
Moerbeke’s translation of some of Archimedes’ works. The 
Northern group, Tartaglia, Cardano, and Benedetti, was very 
concerned with applications of mechanics to ballistics. The 
group in central Italy, Commandind, Ubaldo, and Baldi, were 
more mathematically oriented. (Drake & Drabkin, 1969). 

The standard example of (3) is a rotating wheel, or, for 
Oresme, the heavens, as circling around the earth or the sun (a 
hypothesis he considered). The different parts move at different 
velocities, but do not change in time. An example of (2) is a 
falling stone. All the parts move at the same velocity, but the 
overall velocity increases. This is not as good an example, since 
it is not really uniformly difform. The increase in velocity 
gradually stops, especially for light bodies. Either (2) or (3) may 
be represented by a diagram which illustrates the Merton 
theorem on uniformly difform motion. AC is the time axis, while 

After the fall of Constantinople (1453) some Greek scholars 
moved to Italy and taught Greek literature and philosophy in the 
Academies sponsored by some noble families. This led to a type 
of Neo-Platonism opposed to the Aristotelianism taught in the 
universities. The Neo-Platonists especially studied Plato’s 
Timaeus, where the astronomer, Timaeus, presents an extended 
explanation (29e - 92c) of the order of the universe, beginning 
with the Demiurge fashioning preexistent matter in accord with 
mathematical forms and proportions and terminating with an 
explanation of illness and disease resulting from a lack of 
proportion of the four elements. A fusion of this idea of the 
universe as an embodied mathematical system with the Biblical 
account of creation supported the idea that God created the world 
in accord with ideal mathematical forms. The further fusion of 
these rather nebulous ideas with the mathematical treatment of 
quantities of qualities led to the conclusion that in coming to 
know things through their proper mathematical forms human 
knowledge matched divine knowledge. 

BF and CD represent intensities of uniformly difform motion. 
The quantity of motion is represented by the area under the line 
representing motion. Flipping the triangle, FGD, over so that D 
coincides with C produces the rectangle, ACGE. This de- 
monstrates that the total motion of a uniformly difform motion is 
equal to the total motion of a uniform motion with half the 
terminal velocity. It also follows that the total motion in the 
second interval is three times the motion in the first interval. This 
is the aspect Galileo adapted in treating acceleration. 

This abstract approach raised questions that could not be 
handled in the received Aristotelian terminology. Thus, half the 
terminal velocity meant the instantaneous velocity at the point, 
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(2)      U(x) D(t)

(3)     D(x) U(t)
(4)    D(x) D(t)

(1)       U(x) U(t)

 

In the Preface to his Mysterium Cosmographicum, Kepler 
wrote: “The ideas of quantities have been in the mind of God 
from eternity, they are God himself; they are therefore also 
present as archetypes in all minds created in God’s likeness” 
(Cited from Koestler, 1960: p. 65). In a letter to a friend he said: 
“For what is there in the human mind besides figures and 
magnitudes. It is only these which we can apprehend in the right 
way, and if piety allows us to say so, our understanding is in this 
respect of the same kind as the divine, at least as far as we are 
able to grasp something of it in our mortal life. Only fools fear 
that we make man godlike in doing so; for the divine counsels 

Figure 1. 
Oresme’s representation of the Merton theorem of uni- 
formly difform motion. 
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are impenetrable, but not his material creation” (Citation from 
Baumgardt: p. 50). 

Galileo did not share Kepler’s mathematical mysticism. Yet, 
he assumed a similar relation between quantitative forms as 
archetypes in the mind of God and men: “I say that human 
wisdom understands some propositions as perfectly and is as 
absolutely certain thereof, as Nature herself; and such are the 
pure mathematical sciences, to wit, Geometry and Arithmetic. In 
these Divine Wisdom knows infinitely more propositions, be- 
cause it knows them all, but I believe that the knowledge of these 
few comprehended by human understanding equals the Divine” 
(Galileo: p. 114). 

As these citations indicate, physical explanations were still 
functioning in a theological context that had been stretched to 
accommodate the mathematical representation of qualities. This 
was regarded as objective, representing reality as it exists 
independent of our knowledge of it. There was, however, the 
beginning of a shift from a theological perspective to an obser- 
ver-centered perspective. Early in the 15th century, the Floren- 
tine architect and engineer, Filippo Brunelleschi, developed the 
basic laws of linear perspective, reportedly by painting a copy of 
part of the cathedral on top of its mirror image. Massaccio, della 
Francesca, and others transformed painting by making 
perspective basic. Leon Batitista Alberti codified the rules of 
perspective in his book, Della pittura, (1436) with a vanishing 
point and a horizon, both determined by the position of the 
observer. This is a geometrical representation of space. In linear 
perspective, the two dimensional representation of a three-di- 
mensional space is thought of as a projection on a two dimen- 
sional surface of light rays travelling from the source to the eye 
of the observer, rather than the flat space of medieval painters. 
The space represented is a Euclidean homogeneous space 
organized from the standpoint of an outside viewer. In spite of 
strenuous opposition this new way of organizing representations 
of reality from the perspective of an outside observer rapidly 
spread to other fields. (Frey, 1981; Chevalley, 1993). 

Classical French drama respects the “Aristotelian” dramatic 
unities of an integrated story completed in one day at one locale. 
Aristotle had only insisted on unity of action. The “classical 
Aristotelian doctrine” was articulated by sixteenth century Ita- 
lian critics influenced by perspective. The dramatic action 
should be presented from the perspective of an observer. Pers- 
pective spread to physics when Kepler, influenced by Dȕrer’s 
perspectival methods as well as Galileo’s account of his teles- 
cope, showed, in  his Dioptrice, how a correct geometrical 
analysis of light rays explained vision. The theory it replaced, 
Aristotle’s doctrine of transmitted images received as impressed 
sensible species, was never able to account for the fact that 
distant objects look smaller. Descartes’ La Dioptrique extended 
Kepler’s work by giving a correct law of refraction. He 
explained different colors in terms of light producing different 
pressures on the eyeball. In his earliest experiments Newton 
refuted this by inserting a stick behind his own eyeball and 
exerting pressure. 

Perspective entered mathematics with Descartes’ analytic 
geometry and the representation of bodies through coordinates in 
Euclidean space. Most analyses of this focus on the fact that the 
geometry is Euclidean. What was also novel was the portrayal of 
space from the perspective of an outside observer. The idea of 

the detached observer regarding physical reality from an external 
viewpoint culminates in Descartes’ Discourse on Method and 
Meditations. This detached-observer view of reality was gra- 
dually transformed into the notion of classical objectivity that 
Husserl sharply criticized. 

Conclusion 
Regardless of whether gunnery practice or perspective was the 

primary factor relating the observer to the described motion, the 
final result is clear. In place of the abstract ratios of the Cal- 
culators, the new methods begin with a three dimensional space, 
which supplies a framework for the measurement of motion. The 
bodily presence of the subject anchors this framework. Galileo 
extended this through his development and use of the telescope, 
describing in precise detail the positions of the Medicean stars 
(Jupiter’s moons) as he saw them on January evenings in 1610. 
Galileo’s work is not simply an extension of the preceding 
developments. Galileo played a pivotal role in developing em- 
pirical science, shaping and judging mathematical formulas by 
the way they fit controlled observations. In spite of his early 
exposure to Aristotelian natural philosopher, he took Archi- 
medes, the prototypical mathematical scientist, as his ideal. 
However, these advances were only possible because of the 
developments we have been surveying. The mathematical treat- 
ment of motion and forces emerged from three centuries of 
muddling through quantities of qualities, verbal algebra based on 
proportions, and a gradual switch from a theological inter- 
pretative perspective to an observer-centered viewpoint. This 
quantification of qualities gradually spreads to other fields, 
something treated by other authors in this issue. 
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