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ABSTRACT 

Cubic structured nickel-zinc ferrite nanoparticles (Ni0.25Zn0.75Fe2O4) have been synthesized by thermal treatment 
method. In this procedure, an aqueous solution containing metal nitrates as precursors, polyvinyl pyrrolidone as a cap-
ping agent, and deionized water as a solvent were thoroughly stirred, dried at 353 K for 24 h, and crushed into powder 
before calcination to remove organic matters and crystallize the particles. The structure and particle size were charac-
terized by X-ray powder diffraction and transmission electron microscopy. The average particle size increased from 7 to 
25 nm with increase of calcination temperature from 723 to 873 K respectively. The magnetic properties were deter-
mined by vibrating sample magnetometer and electron paramagnetic resonance electron paramagnetic resonance at 
room temperature. By increasing the calcinations temperatures from 723 to 873 K it showed an increase of the mag-
netization saturation from 11 to 26 emu/g and the g-factor from 2.0670 to 2.1220. The Fourier transform infrared spec-
troscopy was used to confirm the presence of metal oxide bands at all temperatures and the removal of organic matters 
at 873 K. 
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1. Introduction 

The last two decades have seen a remarkable progress in 
the synthesis of spinel ferrites nanocrystals, aiming at a 
better material with excellent chemical stability, low 
magnetic coercivity, moderate saturation magnetization, 
high permeability, high electrical resistivity and low 
eddy current. In particular, the nickel-zinc (Ni-Zn) ferrite 
nanocrystals have been extensively studied for their su- 
per-paramagnetic properties, which are suitable for high- 
frequency applications such as rod antennas and cores of 
inductors and transformers [1,2]. The magnetic proper-
ties of ferrites of spinel structural formula AB2O4 are 
mainly controlled by the divalent cations, which occupy 
the tetrahedral A sites and the trivalent cation, which has 
high degree affinity for octahedral B sites [3,4]. Zn fer-
rite bulk material has a normal spinel structure, where all 
divalent cations are located on the tetrahedral sites and 

trivalent cations all located on the octahedral sites. Ni 
ferrites bulk materials on the other hand have an inverse 
spinel structure, where half of trivalent cations occupy 
the tetrahedral sites while the other half remain on octa-
hedral, while divalent cations all migrate to octahedral 
positions. It has been shown that for the Ni-Zn ferrite 
nanoparticles, octahedral sites prefer for Ni and tetrahe-
dral prefers for Zn [5]. Substituting Zn for Ni cations 
leads to the formula ( 2

xZn  3
1 xFe 
 ) ( 1 xNi 

3
1 xFe 
 )O4 (0 ≤ x 

≤ 1), in which the first and second brackets indicate oc-
cupancy of the A and B sub-lattices respectively. Beside 
the distribution of divalent and trivalent cations in the 
spinel structure, the properties of Ni-Zn ferrite nanopar-
ticles are highly sensitive to the quantum confinement 
effect of particle size, which in turn depends on the 
method of preparation of the nanoparticles [6].  

A variety of methods have been proposed for the syn-
thesis of Ni-Zn ferrite nanoparticles with controllable size, 
shape, and chemical stability such as sol-gel methods [7], *Corresponding author. 
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thermal combustion method [8], citrate precursor route 
[9], co-precipitation method [6,10], thermal plasma syn-
thesis [11], reverse micelle [12,13], hydrothermal [14], 
micro-emulsion [15] and sonochemical reaction [16]. 
Some disadvantages of these methods include compli-
cated procedure, high reaction temperature, long reaction 
time, and use of reduction agents, which are potential 
upsetting the environment. In the present study, Ni-Zn 
ferrite nanoparticles (Ni0.25Zn0.75Fe2O4) were synthesized 
from an aqueous solution containing only metal nitrates 
as precursors, polyvinyl pyrrolidone (PVP) as a capping 
agent and deionized water as solvent by a simple thermal 
treatment at moderate calcinations temperatures. No 
other chemicals were added, thus this method offers the 
advantages of simplicity, low reaction temperatures, a 
low cost, and an environmentally friendly operation since 
it produces no by-product effluents [17-20].  

2. Experimental Procedure 

2.1. Preparation 

Iron (III) nitrate, Fe(NO3)3·9H2O, nickel(II) nitrate, 
Ni(NO3)2·6H2O, and zinc nitrate, Zn(NO3)2·6H2O were 
purchased from Acros Organics and PVP (MW = 10,000) 
was supplied by Sigma Aldrich. All the chemical re-
agents were of research grade and used without further 
purification. 3 g of PVP was dissolved in 100 ml of de-
ionized water at 343 K before mixing 0.2 mmol of iron 
(III) nitrate, 0.025 mmol of nickel nitrate and 0.075 
mmol zinc nitrate and the solution stirred for 2 hours. No 
precipitation occurred in the solution. The brown solu-
tion was poured into a glass Petri dish and heated at 353 
K in an oven for 24 hours to release most of the water. 
The brown solid material was crushed into powder and 
the samples were heated for 3 hours in alumina boat at 
different calcination temperatures of 723, 773, 823 and 
873 K to decompose the organic matters and crystallize 
the nanoparticles. 

2.2. Characterization 

The textural and morphological characteristics of the pre- 
pared Ni0.25Zn0.75Fe2O4 nanoparticles were studied with 
several techniques to verify the particle size, shape and 
size distribution as well as to explore the parameters of 
interest. The structure was characterized by the XRD 
technique using a Shimadzu diffract meter model XRD 
6000 employing Cu Kα (0.1542 nm) radiation to generate 
diffraction patterns from powder crystalline samples at 
room temperature in 2θ range of 10˚ - 70˚. The infrared 
spectra in the range 280 - 4000 cm−1 were recorded using 
FTIR spectrometer (Perkin Elmer model 1650). The 
FTIR spectra are used to confirm the presence of metal 
oxide bands and the removal of organic matters at 873 K. 
The structural and particle size of the calcined Ni0.25 

Zn0.75Fe2O4 nanoparticles were determined at room tem-
perature by using transmission electron micrograph 
(TEM) (JEOL 2010 UHR version microscopy) at an ac-
celerating electron voltage of 200 kV. The magnetization 
was measured using a vibration sample magnetometer 
(VSM) (Lake Shore 4700) at room temperature with a 
maximum magnetic field of 15 kOe. The electron para-
magnetic resonance (EPR) spectra were recorded on a 
JEOL JES-FA200 EPR spectrometer (JEOL, Tokyo, Ja-
pan) at room temperature. 

3. Results and Discussion 

3.1. Structural Studies 

The FTIR spectra recorded for Ni0.25Zn0.75Fe2O4 nanopar-
ticles in the range between 280 cm−1 and 4000 cm−1 are 
shown in Figure 1. The spectra give information about 
the chemical and molecular structure changes in the syn-
thesized ferrites after calcination treatments. For all cal-
cined samples at calcination temperatures from 673 to 
873 K, shown in Figures 1(a)-(d), two assigned absorp-
tion bands appear at 528 cm−1, which is attributed to 
stretching vibration of octahedral group Fe-O stretching 
band and that at 351 cm−1 are attributed to the tetrahedral 
group Zn-O and Ni-O stretching bands. All absorption 
peaks above 1000 cm−1 were attributed to covalent bonds 
of PVP. The bending mode around 1602 - 1637 and 
33,274 - 3390 cm−1 were associated with C = O stretch-
ing and O-H stretching vibration respectively. The ab-
sence of these peaks at 873 K confirmed the organic 
sources were removed from the calcined samples and 
pure Ni0.25Zn0.75Fe2O4 nanoparticles were obtained. 

Figure 2 shows EDX pattern of the sample calcined at 
873 K, which confirms the Ni, Zn, Fe and O peaks ap-
pearing along with the C substrate peak. No contaminat- 
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Figure 1. FTIR spectra of Ni0.25Zn0.75Fe2O4 nanoparticles 
calcined at (a) 723, (b) 773, (c) 823 and (d) 873 K. 
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Figure 2. The EDX spectra of Ni0.25Zn0.75Fe2O4 nanoparticles grown on carbon at calcination temperature of 873 K. 
 
ing elements from organic reagents, such as hydrogen or 
nitrogen were detected. 

Figure 3 shows the XRD diffraction patterns of the 
Ni0.25Zn0.75Fe2O4 nanoparticles at 353 K and at calcina-
tion temperatures from 723 to 873 K. The diffraction 
peaks show the reflection planes (111), (220), (311), 
(400), (422), (333) and (440) which are consistent with 
the standard powder diffraction reported from XRD li-
brary code (00-052-0279) and no other metal oxides 
could be identified. The diffraction peaks become shar- 
per when the calcinations temperature increased. It can 
be said that all samples formed the spinal phase with a 
face centered cubic structure (f.c.c). The particle size of 
the ferrite nanoparticles has been estimated from the 
XRD plane (311) by the Scherrer’s formula: d = 0.9 λ/β 
cosθ, where d is the average particle size in nm, β is the 
FWHM of the intensity measured in radians, λ is the 
X-ray wavelength and θ is the Bragg angle. The average 
particle size increased from 9 nm to 23 nm at calcination  
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Figure 3. XRD pattern of Ni0.25Zn0.75Fe2O4 nanoparticles at 
(a) 353 K, and calcined at (b) 723, (c) 773, (d) 823 and (e) 

tempera

873 K. 

ture from 723 K to 873 K, as listed in Table 1. 
d 

si

3.2. Magnetic Studies 

s of magnetization measured at 

The TEM images in Figure 4 show the size, shape an
ze distribution of the Ni0.25Zn0.75Fe2O4 nanoparticles at 

different calcination temperatures. The particle size in-
creased from 7 nm at 723 K to 25 nm at 873 K (Table 1). 
The reason for the increase in the particle size is that the 
surface of the nanoparticles melted and fused with the 
neighboring particles at higher calcination temperatures 
[17-20]. Thus it is possible to control particle size by the 
calcination temperature. Smaller particle size has been 
reported for Ni0.25Zn0.75Fe2O4 nanoparticles prepared by 
wet co-precipitation routes with the average particle size 
of about 4 nm [21] and 7 nm for Ni0.3Zn0.7Fe2O4 prepared 
by co-precipitating aqueous solutions in alkaline medium 
[6]. By ball-milling on Ni0.2Zn0.8Fe2O4 nanoparticles fab-
ricated by mechanochemical method, particle size of 
about 11 nm was obtained but following annealing at 773 
K the particle size increased to about 26 nm [22]. 

Figure 5 shows the curve
room temperature. Table 1 depicts the values of satura-
tion magnetization (Ms) and coercivity (Hc) of different 
samples. Increasing the calcination temperatures from 
723 K to 873 K, the Ms value increased from 11 emu/g to 
26 emu/g and the coercivity value also increased from 7 
to 29 G, when the particle size increased from 7 to 25 nm, 
as listed in Table 1. The magnetization curves demon-
strate a typical superparamagnetic behavior. The Hc is in 
direct proportional to the volume of single domain grains. 
Therefore, Hc increased when the particles size increased. 
Higher Ms values of about 30 emu/g have been achieved 
for 15 nm Ni0.25Zn0.75Fe2O4 nanoparticles prepared by co- 
precipitation [21], 22 emu/g for 6 - 7 nm Ni0.2Zn0.8Fe2O4 
synthesized by forced hydrolysis in diethylenglycol [23] 
and 28 emu/g for 6 - 8 nm Ni0.35Zn0.65Fe2O4 obtained by 
thermal decomposition [6].  
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Figure 4. TEM images of Zn0.75Fe2O4 nanoparticles 
calcined at (a)723, (b) 773, (c) 823 and (d) 873 K. 

 

ed a thermal treatment method for the  

Ni0.25

Figure 6 shows the EPR spectra of the samples cal-
cined at (a) 723, (b) 773, (c) 823 and (d) 873 K. Peak-to-
peak line width (ΔHpp), resonant magnetic field(H),and 
g-factor are three parameters that characterize the mag-
netic properties. The g-factor can be calculated according 
to the equation: g = hν/βH where h is Planck’s constant, ν 
is the microwave frequency, β is the Bohr magneton 
(9.274 × 10−21 erg·G−1), and H is resonant magnetic field. 
The values of g-factor increased from 2.0670 to 2.1220 
correspond to the decrease of the resonance magnetic 
field from 3170 to 3090 G with the increase of calcina-
tion temperature from 723 K to 873 K. 

4. Conclusion 

This paper present
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Figure 5. VSM curves of Ni0.25Zn0.75Fe2O4 nanoparticles ca
cined at (a)723, (b) 773, (c) 823 and (d) 873 K. 
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Figure 6. EPR spectra of Ni0.25Zn0.75Fe2O4 nanoparticl
calcined at (a) 723, (b) 773, (c) 823 and (d) 873 K. 
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Ni0.25Zn0.75Fe2O4 Calcinations Average particle Average particle Saturation magnetization, Coercivity Peak to peak line 
factor

Resonance 

 
Table 1. The average particle sizes (nm) of Ni0.25Zn0.75Fe2O4 oparticles determined from XRD and TEM andn
properties observed from VSM and EPR at room temperature. 

nanoparticles temperature (K) size XRD (nm) size TEM (nm) Ms (emu/g) field Hc (G) width ΔHpp (G) 
g-

field, Hr (G)

Ni- 2.0670Zn ferrite 1 723 9 7 11.414 7 758 3170 

Ni-Zn ferrite 2 773 11 9 15.785 10 755 2.0885 3140 

Ni-Zn ferrite 3 823 14 13 20.320 26 753 2.1050 3118 

Ni-Zn ferrite 4 873 23 20 26.447 29 750 2.1220 3090 

 
nthesis of Ni0.25Zn0.75Fe2O4 nanocrystals with grain 

by the Ministry of Higher 

[1] A. Goldman, “ logy,” 2nd Edition, 
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sy
size ranging from 7 to 25 nm at the calcination tempera-
tures from 723 to 873 K as measured by XRD and TEM. 
The PVP stabilized the particles and prevented them 
from agglomerating. The FTIR measurement confirmed 
the removal of all organic matters and leaving pure metal 
oxides at 873 K. The VSM results showed that the satu-
ration magnetization increased from 11 emu/g to 26 emu/ 
g and the coercivity value increased from 7 to 29 G at 
calcination temperatures from 723 K to 873 K due to the 
increasing of the volume of single domain grains. The 
values of g-factor increases with increase of calcination 
temperature and particle size were increased. This simple 
method, which is cost-effective and environmentally 
friendly, produces no toxic byproduct effluents and can 
be used to fabricate pure, crystalline spinel ferrite nano- 
crystals. 
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