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ABSTRACT 

In this paper we introduce a formal theory on unveiling relativistic effects during electron emission from clean metallic 
surfaces upon high charged particle impact using a Jellium-type wave function including suitable spinors. In addition 
image charge final state electron surface interactions have been initiated in the relativistic region as well as the scatter-
ing of the projectile from the multi-center bulk potential. Finally, a semi-relativistic condition is considered in place of 
the ionization mechanism of scattering from an aluminium semi-infinite solid target by non-relativistic electrons to de-
termine multiple differential cross-section. 
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1. Introduction 

In the last three decades significant progress has been 
made in understanding the atomic physics of electron- 
atom ionization both theoretically and experimentally for 
relativistic energies [1-14] as well as for non-relativistic 
energies [15-26]. Capabilities of different theoretical mod-
els in reproducing various features of experimental re-
sults have been widely tested for different kinematical 
conditions. Study of energy spectrum of ejected electrons 
could be very interesting. The complexity of this reaction 
is already revealed in the simplest case of low-energy 
electron impact ionization of atomic hydrogen where 
final state interactions of escaping particles strongly mod-
ify the observed electron spectra [16,21]. Hence a realis-
tic approximate eigenfunction of the non-separable three 
body Hamiltonian is essential. Generally, a theoretical 
description of this process from solid targets has to deal 
with various aspects of the beam-solids interactions. A 
relativistic charge particle impinging on a metallic target, 
which is the study of this work, leads to charge-density 
fluctuation of the solid. Asymptotically, this causes an 
image-charge distribution of the incoming and outgoing 
particles [22]. Moreover, the motion of the various elec-
trons is periodically distributed by the interaction with  

the bulk potential [24,25]. The aim of this paper is to 
investigate the energy spectrum of electron ejection from 
clean metalic surfaces upon higher charged particle im- 
pact for relativistic energies [10,12,23]. The present study 
of the formal theory is the assumption that the degrees of 
freedom of the projectile can be decoupled from those of 
the target. This is justified, since we assumed the mo- 
menta of the incoming and outgoing electron to be con- 
siderably larger than the Fermi momentum. To obtain the 
analytical theory that can be analyzed, a Jellium wave 
function [23] with suitable spinors [12] of the initially 
bound electron is assumed. Asymptotic image-charge dis- 
tribution of the Vacuum electron is taken into account. 
As well as the binary collision of the projectile with the 
bound electron, the scattering of the incident particle from 
the multicenter bulk potential is treated in the kinematic 
approximation [25,26]. A screened Coulomb muffin-tin 
bulk potential is adopted. Recently using the multiple 
scattering theory [17] multiplied with some spinors has 
calculated the energy spectrum of scattered electrons in 
k-shell ionization of medium heavy atoms by relativistic 
electrons [10-12] which agree nicely with experiments. In 
the present study we developed the theory of relativistic 
 e,2e  scattering mechanism process using a Jellium 
wave function [23] of the undistributed surface in the *Corresponding author. 
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initial state. In addition, image-charge final state electron 
surface interactions have been included. Moreover, the 
scattering of the projectile from the multicentre bulk po-
tential is considered. The proposed theory will provide 
scattering cross-sections results of different kinematical 
conditions. Hence we introduced a modified theory on 
semi-relativistic effects during electron emission from 
aluminium surfaces upon the impact of high energy par-
ticles. 

2. Theory 

In this theory, we consider an atomic scattering system 
consisting of a projectile with nuclear change pZ  and 
mass pm  being inelastically scattered from a clean me-
tallic semi-infinite solid ejecting one electron into the 
vacuum level of the solid. Then the total Hamiltonian of 
the projectile-solid system is 

p e peH H H W                (1) 

where eH  is the Hamiltonian of the simi-infinite solid 
in the absence of the projectile, Wpe is the projectile- 
ejected electron interaction, and Hp represents the 
projectile-crystal interaction and contains the plasmon 
and phonon modes and their interaction with electron. 
The initial and final state boundary conditions are speci-
fied by eigenstates ,i f  of asymptotically unper-
turbed initial and final channel Hamiltonian iH  and 

fH  respectively, i.e.,  

  0i iH E i                (2) 

  0,f fH E f              (3) 

where  are the corresponding asymptotic eigen 
energies. The transition amplitude T for the scattering 
system from initial state 

,i fE E

i , to the final state f  is 
determined by the prior form  

,iT V  i               (4) 

or the post form  

,fT f V                (5) 

where    and    are the eigensates of the total 
Hamiltonian H according to the state i  and f  re-
spectively. From Equations (4) and (5) the perturbations 
potential  and iV fV  are given by  

iV H H  i                 (6) 

f fV H H  .               (7) 

The eigenstates    of H can be written as  

f                   (8) 

where the MØller wave operator  is given by  

1 fG V                  (9) 

where G  is the Green operator of the total Hamilto-
nian H. Combining Equations (9), (8) and (4), the T 
matrix element may be written as 

,sin multT T T              (10) 

where  

,sin
iT f V i             (11) 

mult
f iT f V G V i .         (12) 

Here assuming iV  to be a multiple-center potential, 
the first term of Equation (10), that is sinT  describes the 
transition of the system from state i  to f  due to a 
single scattering from each individual scattering center. 
One center and multicenter multiple scattering is con- 
tained in the matrix element  in Equations (10) and 
(12), since the Lippmann-Schwinger equation of the total 
Green operator leads to the expansion  

multT

0 0
0

,
jmult

f
j

T f V G VG


 



    i       (13) 

where 0G  and V are the full free propagator and the 
total potential of the projectile-solid compound. It should 
be noted here that the labels sin  and mu  of the am- 
plitudes 

lt
sinT  and  refer to single and multiple 

scattering specifically from the potential i . The poten- 
tial  in the initial channel can be written as  

multT
V

iV

.s vac
i pe p pV W W W             (14) 

The operator s
pW

vac
pW

 stands for the particle-bulk interac- 
tion and its explicit functional form is specified below. 
The potential  is less prominent. Since it is an 
asymptotic (imagine charge) perturbation. For the as- 
ymptotic final-channel Hamiltonian [23] is given by  

.vac vac
f e p p e peH k k W W W           (15) 

Here the kinetic-energy operator of the secondary 
electron is referred to by e , whereas  amounts to 
the asymptotic final state interaction of this electron with 
semi-infinite solid. The choice Equation (15) leads to the 
final-channel distribution operator  

k vac
eW

,s s
f p eV W W                (16) 

where s
eW  denotes the short-range interaction of the 

secondary electron with the surface. Upon substitution of 
Equation (14) into Equation (11), the matrix element 

sinT  can be decomposed into the form  

, , ,sin sin sin sin
pe p s p vT T T T             (17) 

where 

,sin
pe peT f W i               (18) 
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, ,sin s
p s pT f W i              (19) 

, .sin vac
p v pT f W i             (20) 

The amplitudes, given by Equations (18) and (19), 
provide the first-order approximation of the matrix ele-
ment T. The term in Equation (20) is less prominent since 

 is an asymptotic (image charge) perturbation. 
Hence it has no significant contribution to the 

vac
pW

sinT  term. 
So, the amplitude, given by Equation (20) is neglected 
here. 

2.1. Analytical Calculation of the Transition 
Amplitude Term sin

peT  in Relativistic Effects 

In a position-space representation the transition operator 
occurring in the Equation (18) has the form  

0 ,pe eff p eW Z   r r         (21) 

where pr  and e  are the position vectors of the projec- 
tile and ionized electron respectively. Also 0

r
  is time 

structure constant and effZ  (effective nuclear charge) = 
Nuclearcharge  pz  − 0.3. To avoid difficulties arising 
from the infinite range of coulomb interactions we intro-
duce the cutoff potential [23] 

 
1

0 1

0

exp
lim

eff e p

pe

e p

Z
W



 


  




r r

r r
.    (22) 

The eigenfunction of fH  of Equation (15) at a given 
asymptotic energy f  [23] is readily deduced in semi- 
relativistic form [1,12] as 

E

 
       3

, , ,

, , ,

2π exp .
p e

e p e p

f e p e p

p p e e e e e

f

i i i u u 

 

  


 

 

 

      

r r

r r

k r k r r k k

(23) 

In addition the Jelliun wave function [23] can be ex-
pressed in terms of reflection and transmission coeffi-
cient may be written as in semi-relativistic form [1,12] as  

   

     

   

3 2

0

11 ,11, , exp

e e 0 , <

e 0 , > 0.

z e z e

p e

e

p e

eff

e p e k e

ik z ik z
i

z
i

Z
i

V

R u u z

T u u z

 


 


  





 

  






r k

k

k

0

r



  (24) 

Here  ,p e   and 

trons and the incident electron. Also  pp
 and u  k

 eu  ke
 represent the Dirac spinors of scattered and 

ejected electron. In the Equation (23) the term  
   ,ln 2e ea k z

ˆe zk

z e  is the phase modification of the 
asymptotically free electron motion due to its image 
charge where , e

 r

z k  and the Sommerfeld parame-
ter ,1 4 e za k   indicates the strength of this interaction. 
In case 0a  , we end up with the final state being a 
product of the two free-particles states. The final state 
energy is given by 2 22 2f e p p . The refection 
and transmission coefficient R and T are given by 

E k k m 

2
,z

z z

i
R T

i i

 z

 


 
 

k

k k

k
         (25) 

and 

2
02 zv k   .             (26) 

In the present case, the transition amplitude term sin
peT  

may be written as in semi-relativistic integral form [23] 
as  

   
  

 
         

3 29 2

0

01

1 † †

2π

d d explim

exp
0 .

p p e e

sin
pe eff

p e p e e e

e p

k e p e i

e p

T Z

i

u u u u



   














   

 

       

 








r r Q r k r r

r r
r k k k

r r

(27) 

Therefore  

 1 ,sin
pe p eT t M M k k 1 1             (28) 

where  

     
  

 
 

3 29 2

1 0

01

1

, 2π

d d explim

exp

p e eff

p e p e e e

e p

k e

e p

t Z

i















 

       

 






k k

r r Q r k r r

r r
r

r r

  (29) 

and  

   
   

†
1

†
2

0 ,

.

p p

e e

p

e i

M u u

M u u

 

 

 

 





k

k k
            (30) 

Upon replacing the logarithmic phase in Equation (29) 
by its integral representation, given by  

,p e    are the spin co-ordi- 
nates in the initial and the final states of the electrons. 
 , p ek k  and  ,p e  are the momenta and energies 
of the final two electrons and  are the momen-
tum and energy of the incident electron. Here 

E E
 ,i iE

     
3

1

0
0

1
exp d exp ,lim ei t 







t 


 

  ξ r    (31) 

k
 0u 

p
 

and  are the Dirac spinors of the atomic elec-  ike
u

where 3ia    , ,1 4 e za k   and . . Then 
performing the integral over the projectile co-ordinates, 
Equation (29) simplifies to 

ˆ2 e zk tzξ
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 

 
 

 
3 1

1

3 2

0 1
2 2 2 0

, 0 1

,

1
d ,lim

2π

p e

eff

t

Z
tJ t t

Q


 



 

 






   


k k

(32) 

where  

 

      

 

3 2
2π d exp

, .

e e e

k

J t

i i

t





    

 




kr Q k ξ r re   (33) 

In Equation (33) we introduced the complex vector 
. Using the theory [23], we have  e i  Λ Q k ξ

 

 2
11 11

,

2π 1
,

z z z z z

t

R T
i

V k k




i



 
          

k

k 
(34) 

where the vector  is given by . 
By the Fourier transform 

 e i   Q K k ξ
 J t  evaluates to  

 

   2
11 11

2π 1
.

z z z z z

J t

R T
i

V k k


i
 

          
k 

(35) 

Now after inserting the Equation (35) into a Equation 
(32), the remaining one dimensional integral can be 
algebraically transformed to the Beta function integral 
representation  

   

 

1

0
1 d ,

arg π, 0,e

t t t B

R

  ;    

 

    

 


    (36) 

give  

   
 

 

 
 

3 1

3 2

0 2
1 11 111 2

1 2 32 2
, 0

,
2π

1
.lim

eff

p e

Z
t

V

J RJ TJ
Q 




 


 

 
   

k k k 



(37) 

The functions iJ  are given by  

 
1

1 ,1

0

2
d 1 , 1, 2,e z

i i
i

i k
J b tt t i

b



    

  
 

 3,   (38) 

where  

1 ,

2 , 3 ,

,

, .

z e z z

z e z z z e z

b Q k k

b Q k k b Q k i

  

     
    (39) 

Making use Equation (36) and after calculation, the 
final expression 

   
 

   

 

           

3 2

0 2 2 π 3
1 11 111 2 2

,

1 1 1

1 2 3

1
, e

2π

exp ln 2

.

eff a
p e

e z

ia ia ia

i Z ia
t

QV

ia k

b R b T b


 

     

  
 

   
       

k k k 

 

(40) 

2.2. Analytical Calculation of the Transition 
Amplitude Term  in Relativistic  
Effects 

sinTp,s

In this case the transition amplitude term of the Equation 
(19), the screened Coulomb potential [26] for relativistic 
case is given by  

  0 exp .effion
p

p

Z
V r

r


 r eff p         (41) 

The effective parameter eff  account for the scream-
ing of the pure ionic field due to the presence of the 
localized positive cores as well as delocalized electrons 
[26]. For aluminum surface the numerical value of eff  
is 0.886. Equation (19) can be written as in semi-relativ- 
istic form 

, , , , , , ,

, , , , , , .

sin s
p s p e p e p k i p e

s
p e p e pe pe p k i p e

T W

W g W

    

    

 

 

k k k

k k k
(42) 

Here 

1

,
N

s ion
p i

i

W V


                 (43) 

where  is the ionic core potential at the state , N 
is the number of ions in the solid and 

ion
iV i

s
pW  is periodic in 

each layer parallel to the x − y plane, but not in z- 
directions. The j-th ion in the  layer has the coordi-
nates 

lth
 ,, 11, ,j l  j r r r l . Thus the periodic potential s

pW  
at the position r  can be written as 

   11 11 11, ,, ,s ion
p j

i j

W z V z r      lr r r .    (44) 

Since s
pW  is periodic in the x and y directions, we can 

introduce [26] two dimensional reciprocal vectors  
 11 2π , , ,x x y y x yn d n d n n Z g  and write s

pW  at 
the position r  as  

     
11

11 11 11 11, , exps s
p p

g

W z W z i .     r g g r     (45) 

The two dimensional  Fourier transform  11g
 11,s

pW z g  is given by  

    2
11 11 11 11 11

1
, d , exps s

p puc
uc

W z r W z i
A

       g r g r  (46) 

where uc x yA d d . The lattice constants in the x, y and z 
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directions are xd , yd  and zd  respectively. 
Using Equations (23), (24) and (42) the final expres-

sion for ,
sin
p sT  may be written as in the semi-relativistic 

form  

 p     † †0 ,
e

sin
p s i p eT u u u t  k k 

e e k k 2 ,k, p p
u  

  (47) 

where  

 

 
   

 1

e 1

  
11

2

5 2

0 2 π 3
,

2
11 11 11 ,1 0 1 2

,

,

8
exp ln 2

π

£ £ £

p e

eff a
e z

uc

e
l g

t

Z
ia ia k

V A





      

    

k k

k Q g k

(48) 

with  

 

 

1

0 0 , 0 11

1 12 2 2
,11 11 , 11 0

£ exp 2

.

l

i i eff

iz r B i Q g

K k g k g z 





 



    

            

11

2 2

0z z 2
  

(49) 

In case 
22

,11 11> iK k g   we obtain for ,  1£

   
12 2

1 1 , 1 11 1

1 2 12 2 2
,11 11 1 1

£ 1 2 exp l z

i eff

iz r B g Q z

K k g g z 

11

2 2
1

Q




 



       

          


(50) 

whereas if 
22

,11 11< iK k g   the following relation is  

valid:  

   
12 2

1 1 , 1 11 11 1

1 2 122 2 2 2
,11 11 11 1

£ 2 exp

.

l z

i eff

i iz r B Q g Q z

K k g g z 





 



      

            


(51) 

Also, the expression for  may be written as  2£

   

 

2 2 2
11

12

2 , 2 11 11 2

12 22
,11 11 , 2

£
2

exp

.

eff

l z

i i z

i

g

iz r B Q g Q z

K g k z



2 












    

     
k






2
1

   (52) 

The function , we have been defined as  ; 0,1,jB j 

           1 1ia ia ia

j j z j z jB b k R b k T b i
     

       

(53) 

where ,j z j e z

        † †
, 0 ,

p p e e

sin p s p e i pT u u u u t       k k k k ek  (54) 

where  

    1 2, , ,p e p e pt t t k k k k k ke .       (55) 

Now taking sum over final spin states and an average 
over initial states 

         

2

2 22† †1
0 ,

4 p p e e

sin

p e i

T

u u u u t      k k k .p ek k

(56) 

Now the spin sums can be obtained  

     2
†

1
0

p p

p

p
p

E
u u

E 


 k ,       (57) 

   
 2†

1
e e

i p i e

e i
p e

E E
u u

E E 

  


k k
k k .    (58) 

So, we obtain from Equation (56),  

      

2

2 2, ,
1 1

sin

R p e I p e

i e i e p
p e i

T

t t
E E E

E E E

      
k k k k

k k
 

(59) 

where  ,R p et k k  and  , I p et k k  are the real and 
imaginary parts of the sinT  matrix element. 

Finally, the differential cross-section [23] for sinT - 
matrix in semi-relativistic form is given by  

    24

2

d ,
2π

d d d d
p ei sin f i

ie e p p

k k
T E E

vE E


 

 

k k
  (60) 

where i i p , v m k 2 2 2f p p eE k m k  2  also e  
and p  are the solid angles of the emitted electron and 
scattered projectile respectively. 

This is the modified formal theory on semi-relativistic 
effects during electron emission from metallic surfaces 
upon impact of high energy particles to determine dif-
ferential cross-section of different kinematic conditions. 

3. Concluding Remarks 

b Q z k   ,  p p p eK m  k k  and 


A theoretical formulation of scattering cross-section of 
high energy change particles from clean metallic semi- 
infinite solid in the relativistic region has presented 
single scattering amplitude sinT  term [23]. In this the-
ory, for multiply differential cross-sections, we used a 
semi-relativistic Jellium initial state wave function. A 
relativistic final state electron surface image charge in-
teraction has been included in its asymptotic form. We 
will utilize another multiple scattering term  [23] multT

1p p pm m   . Since  is an asymptotic (image 
charge ) perturbation, so the term 

vac
pW

,
sin
p vT  is neglected here. 

Therefore the expression for the sinT -matrix element 
may be written as in semi-relativistic form 
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which can provide better results for cross-section. Such 
analytical calculation and numerical results are in pro- 
gress and will be reported in the next work. 
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