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ABSTRACT 

This study is primary to develop relevant techniques for the bearing of wind turbine, such as the intelligent monitoring 
system, the performance assessment, future trend prediction and possible fault classification etc. The main technique of 
system monitoring and diagnosis is divided into three algorithms, such as the performance assessment, performance 
prediction and fault diagnosis, respectively. Among them, the Logistic Regression (LR) is adopted to assess the bearing 
performance condition, the Autoregressive Moving Average (ARMA) is adopted to predict the future variation trend of 
bearing, and the Support Vector Machine (SVM) is adopted to classify and diagnose the possible fault of bearing. 
Through testing, this intelligent monitoring system can achieve real-time vibration monitoring, current performance 
assessment, future performance trend prediction and possible fault classification for the bearing of wind turbine. The 
monitor and analysis data and knowledge not only can be used as the basis of predictive maintenance, but also can be 
stored in the database for follow-up off-line analysis and used as the reference for improvement of operation parameter 
and wind turbine system design. 
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1. Introduction 

At present, the comparatively attractive wind power gen- 
erator can be mainly divided into onshore wind turbine 
and offshore wind turbine in accordance with the setup 
location. The maintenance time of wind turbine can be 
divided into the predictable periodic maintenance and the 
unpredictable breakdown repair. When the unpredictable 
breakdown is occurred, such as the breakdown of gear- 
box, several months may be required for the repair, lift- 
ing, or waiting for material, which may cause large loss 
of windfarm. In order to prevent the unpredictable break- 
down, the intelligent monitoring and diagnosis analytical 
technique can be used to assure the normal condition of 
whole wind turbine, and the preventive maintenance 
schedule can be arranged for key components [1-3]. 

The base for intelligent monitoring and diagnosis ana- 
lytical technique of wind power generator system is the 
setup of Condition Monitoring System (CMS). The pur- 
pose of CMS is to monitor the operation condition of key 

parts in each subsystem of wind turbine, such as the vi- 
bration for the parts of transmission system and generator. 
The physical signals are analyzed statistically through 
breakdown diagnosis, in order to assess the condition and 
probable failure type of monitoring subject. Finally, the 
alarm is provided in accordance with the analytical con- 
clusion to prevent unpredictable breakdown and major 
failure, in order to raise the usability and reliability of 
whole wind turbine system. The CMS can grasp the con- 
dition of wind turbine system to reduce the unpredictable 
maintenance cost effectively, especially to the offshore 
wind turbine system. Because the maintenance of off- 
shore wind turbine system must be matched with the 
schedule of fleet, and the uncertainty of weather shall 
also be considered, so when the unpredictable breakdown 
is occurred, extra maintenance expenses, schedule delay 
and substitute power generation will cause large loss of 
relevant firm. Through the advanced alarm of intelligent 
maintenance system, not only the unpredictable break- 
down can be reduced, but also the arrangement and de- 
ployment of operation and maintenance schedule can be *Corresponding author. 
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conducted, in order to reach the requirements of fastest 
maintenance achievement and lowest maintenance cost 
by matching the maintenance facility and the manpower 
deployment [4-7]. 

Figure 1 shows the annual failure rate and downtime 
per failure for every subsystem in accordance with LWK 
and WMEP wind turbine statistical database specified in 
[5], wherein the statistical data for the operation status of 
about 20,000 wind turbines operated in 13 years are 
adopted. As shown in Figure 1, it is observed that there 
is higher failure rate for the electric system and electric 
control. Although the failure rate is higher for these elec- 
tric devices, the replacement cost is not high, the spare 
parts are easy to be obtained, and the repair time of fail- 
ure is pretty short, then the influence on downtime of 
whole wind turbine system is not significant. On the con- 
trary, the failure rate of large-scale devices such as gear- 
box, drive train, generator, rotor blades is very low, less 
than one time per year, but once these devices break 
down, if there are no spare parts ready in advance, the 
wind turbine must shut down and wait for the material, 
which will elongate the downtime. Figure 2 shows the 
comparison for the failure location of electric machine in 
wind turbine. It is found that there is very high failure 
rate at the part of bearing. So the condition monitoring 
and fault diagnosis techniques have become very impor- 
tant and been the center of attention [1-7]. 

The maintenance way of mechanical equipment can be 
divided into the breakdown maintenance, time-based 
maintenance, preventive maintenance, and predictive 
maintenance in accordance with the maintenance timing. 
Figure 3 shows the difference for comparison of periodic 
maintenance and predictive maintenance. If the CMS is 
added in relevant equipment of wind turbine, the main- 
tenance period can be lengthened greatly compared to 
traditional periodic maintenance. Not only many unnec- 
essary maintenance times can be reduced, but the unpre- 
dictable breakdown due to severe damage of components 
can also be avoided. So, if the optimal predictive main- 
tenance can be arranged in accordance with the monitor-  
 

 

Figure 1. Annual failure rate and downtime per failure for 
every subsystem of wind turbine [5]. 

 

Figure 2. Ratio for failure location of electric machine in 
wind turbine [5]. 
 

 

Figure 3. Difference for comparison of periodic mainte-
nance and predictive maintenance [8-10]. 
 
ing and diagnosing condition, not only the downtime can 
be reduced, but the optimal maintenance schedule can 
also be planned, in order to shorten the failure time 
[8-10]. 

2. Intelligent Monitoring System Structure 
of Wind Turbine 

The goal of intelligent monitoring system developed by 
this study is to integrate the information and communica- 
tion technique and equipment condition monitoring tech- 
nique, and apply it to the intelligent maintenance for key 
components of wind turbine. This intelligent system is 
featured in the intelligent, determined and web-based 
real-time monitoring and detecting function, which can 
effectively raise the operation efficiency and mainte- 
nance service ability of wind turbine. 

The intelligent monitoring system of wind turbine 
mainly provides the monitoring, predicting and prevent-
ing services, in order to avoid unpredictable breakdown 
of wind turbine, and raises the usability of wind turbine 
through predictive maintenance mechanism to maintain 
stable power generation ability of wind turbine. The op- 
eration mechanism of this system is to summarize rele- 
vant operation data through the parameter collection de- 
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vice of wind turbine first, and transmit these data to 
monitoring database of cloud computing platform through 
internet. Then, these data are analyzed, assessed, and 
predicted by the computing modules of cloud computing 
platform, and the analysis data are displayed by graph on 
the operation interface of client end through internet. If 
there is any abnormal condition, relevant operation per- 
sonnel will be noticed through message or email, in order 
to achieve the purpose of quickest troubleshooting. 

The simple structure for intelligent monitoring system 
of wind turbine is shown in Figure 4, which mainly in- 
cludes the cloud computing platform (including Web- 
based server and application server) and Data Acquisi- 
tion (DAQ) equipment. The user can operate the system 
by the mobile device, notebook or personal computer 
through internet. In addition, the system can provide the 
alarm function for the user to deal with abnormal condi- 
tion of wind turbine in time. The user can also use real- 
time graph to display the analysis and comparison data of 
cloud computing, in order to grasp the performance con- 
dition and relevant index of wind turbine totally. The 
monitoring hardware setup of system is shown in Figure 
5. An anemometer, a tachometer and a triaxial acceler- 
ometer are installed at the top of tower. Two seismic ac- 
celerometers are installed at the 1st floor and 2nd floor of 
tower column, respectively. The triaxial accelerometer is 
used to measure the vibration signal of main bearing, and 
the seismic accelerometers are used to measure the vibra- 
tion signal of tower column. 

As shown in Figure 6, the monitoring system for per- 
formance assessment and diagnosis of wind turbine 
bearing is mainly composed of three computing modules. 
First, the LR algorithm is adopted to assess the bearing 
performance condition (confidence value, CV). Then, the 
ARMA algorithm is adopted to predict the future per- 
formance variation trend of bearing in accordance with 
known bearing performance record. When possible fault  
 

 

Figure 4. Structure for intelligent monitoring system of 
wind turbine. 

 

Figure 5. Monitoring hardware setup of wind turbine. 
 
of bearing is occurred, the SVM algorithm is adopted to 
classify and diagnose the possible fault of bearing. The 
relevant technique for setting up intelligent monitoring 
system is relatively mature and there are many successful 
application examples, the required technique, such as 
assessment, diagnosis, prediction, classification and data 
mining can be found in [10-18]. The monitoring system 
developed by this study will select suitable and stable 
algorithms to conduct the development, integration, and 
test analysis. The rules and preliminary test results of the 
abovementioned three computing modules will be de- 
scribed as follows. 

3. Performance Assessment for Wind 
Turbine Bearing 

3.1. LR Algorithm [19] 

The Logistic Regression (LR) algorithm is mainly used 
to assess dichotomous problems. If the performance as- 
sessment result of wind turbine lies between normal and 
abnormal condition, this algorithm may be adopted. The 
purpose of LR algorithm is to obtain the optimal model 
for representing output dependent variable  and 
input independent variable x. Then, this model is repre- 
sented by the logistic model to reveal the probability 

 of event represented by the output dependent 
variable. This probability is ranged between 0 and 1. 

 is a logistic function, which is shown as Equation 
(1). 
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Figure 6. Module structure for performance assessment and 
diagnosis of wind turbine bearing. 
 

The logistic model can be shown as Equation (2). 
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From Equation (2) it is known that the logistic model 
is , which is the linear combination of input inde- 
pendent variable x and its corresponding coefficient β. 

( )g x

This study will adopt the abovementioned logistic 
function  as the Confidence Value (CV) for as- 
sessing the performance index of wind turbine bearing. 
CV can be shown as Equation (3). 
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where the variables x1 to xK represent the statistical fea- 
ture of time domain and relevant bearing feature of fre- 
quency domain calculated in accordance with the bearing 
vibration signal. The corresponding coefficients α and β1 
to βK should be obtained from the training in advance. 
First, sufficient bearing vibration signals at normal con- 
dition are selected to calculate the representative feature 
group of time domain and frequency domain. The CV of 
these feature groups is defined as 0.95 (95%). Then, suf- 
ficient bearing vibration signals at abnormal condition 
are selected to calculate the representative feature group 
of time domain and frequency domain. Then the CV of 
these feature groups is defined as 0.05 (5%). The corre- 
sponding coefficients of logistic model are obtained from 
these known feature groups at normal condition and ab- 
normal condition. After the corresponding coefficients α 
and β1 to βK are obtained by the maximum likelihood 
estimator, the CV value of current bearing performance 
index can be calculated by Equation (3). 

3.2. Performance Assessment Test of Wind  
Turbine Bearing 

Figure 7 shows the monitoring database of wind turbines 
tested in this study, and the record period was from  
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Figure 7. Wind turbine database of original monitoring and 
assessment data. 
 
2012/11 to 2013/06. Among them, the wind speed (m/sec) 
and revolution (RPM) are direct recording values, and 
CV values are calculated in according with the bearing 
vibration signal at the corresponding time specified in 
database. The assessment standard is based on β calcu- 
lated by LR algorithm in accordance with the vibration 
signal at given normal and abnormal condition and se- 
lected CV index.  

Upon observing the record variance in Figure 7, the 
values are not recorded successfully in many intervals. 
This is because the abnormal connection between field 
monitoring equipment and database. These abnormal 
intervals will cause the difficulty of off-line signal proc- 
essing and analysis. So, the data in successful record in- 
tervals are integrated to continuous time series, as 122- 
day records shown in Figure 8. 

Because the initial continuous data contain many 
spikes in Figure 8, these spikes may be generated by the 
disturbance of sensor or data acquisition equipment, the 
median filter can be used to remove these spikes effec- 
tively to obtain smooth monitoring and assessment data 
of wind turbine, and the result is shown as Figure 9. 

The fine solid line shown at upper part of Figure 10 is 
the amplification result of CV ordinate of Figure 9. Upon 
observing the CV variance trend, it is found that many 
CV values assessed by LR will be shifted to around 0.8. 
The reason for CV shift is that the original bearing vibra- 
tion signals used for training LR coefficients do not rep- 
resent normal operation condition of these intervals, in- 
cluding constant speed at different revolution, accelerat- 
ing and decelerating operation, and stationary condition 
etc. According to the wind speed and revolution of these 
intervals, the LR algorithm can complete the representa-
tion of the coefficients; then, it can be used to modify 
previous CV values off-line, and the results are shown as 
bold dotted line at upper part of Figure 10 and fine solid 
line shown at lower part of Figure 10. The CV values  
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Figure 8. Wind turbine time series of continuous monitor- 
ing and assessment data. 
 
will not shift significantly after modification. Upon ob- 
serving the variance of CV, it is composed of gentle deg-
radation trend and high frequency fluctuation. The itera-
tive Gaussian filter proposed in [20] is adopted to smooth 
the historical records of CV to obtain the medium and 
highly smooth CV trend shown as bold dotted line and 
bold solid line at lower part of Figure 10 for the further 
prediction step. The iterative Gaussian filter is used as a 
low-pass filter to extract the non-sinusoidal part of the 
historical records of CV. The cutoff frequencies are se- 
lected as 0.2 cycle/day in medium smooth case and as 
0.02 cycle/day in highly smooth case, respectively. 

4. Performance Prediction of Wind  
Turbine Bearing 

4.1. ARMA Algorithm [21,22] 

The Autoregressive Moving Average (ARMA) algorithm 
is a system identification model. According to the col- 
lected historical performance data of wind turbine bear- 
ing, it is able to identify relevant parameters sufficient to 
represent the performance behavior, and predict the fu- 
ture performance trend in accordance with ARMA model. 
ARMA model is composed of AR model and MA model, 
which can be expressed in Equation (4), where y repre- 
sents the output of system, x represents the input of sys- 
tem, a and p represent the coefficient and order of AR 
model, and b and q represent the coefficient and order of 
MA model. 

1 1

p q

i j i j j
j j

y a y b x−
= =

= +  i j−          (4) 

In Equation (4), it is found that ARMA model is a 
general equation of linear differential equation, which 
can be used to represent common linear systems. A gen- 
eral mechanical system can be simplified to the combi- 
nation of many multi-degree-of-freedom systems. So,  
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Figure 9. Wind turbine time series of smoothed monitoring 
and assessment data. 
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Figure 10. Off-line processing for assessment data of wind 
turbine bearing. 
 
ARMA model is often used to represent the feature of 
mechanical system at time domain and frequency do- 
main. 

4.2. Performance Trend Prediction Test of Wind 
Turbine Bearing 

Figure 11 shows the use of 90-day historical CV data for 
training ARMA model and future performance trend 
prediction result of next 32 days. Figure 12 shows the 
use of 100-day historical CV data for training ARMA 
model and future performance trend prediction result of 
next 22 days. The historical CV data are divided into two 
sections. The first section is used for training and shown 
as blue solid line, and the second section is used for test- 
ing and shown as green dashed line. The performance 
trend forecasted by ARMA model is shown as red dotted 
line. Upon observing CV trend of actual assessment, it is  

Open Access                                                                                            JSIP 



Construction of Wind Turbine Bearing Vibration Monitoring and Performance Assessment System 435

 

Figure 11. Performance trend prediction result of wind 
turbine bearing: 90 days of training data. 
 

 

Figure 12. Performance trend prediction result of wind 
turbine bearing: 100 days of training data. 
 
found that CV has significant degradation trend about 80 
days after. So, the prediction deviation is larger by using 
90-day historical CV data for training ARMA model. 
After comparison, the prediction accuracy is higher by 
using 100-day historical CV data for training ARMA 
model. In Figure 11, the performance predictions are 
overestimated by using the original and medium smooth 
historical CV data, and the prediction is underestimated 
by using the highly smooth historical CV data. In Figure 
12, the performance predictions are correlated well to the 
testing data by using the original and highly smooth his- 
torical CV data, but the prediction is still overestimated 
by using the medium smooth data. 

The historical CV smoothing degree will also influ- 
ence the prediction result of ARMA model. So, the sys- 
tem developed by this study will re-train the prediction 
ARMA model regularly and determine the influence of 
different CV historical data length and smoothing degree 

on prediction ARMA model. Then, the system uses the 
rule as the basis of dynamic ARMA parameter adjust- 
ment and verifies the reliability of prediction model. 

5. Fault Classification of Wind  
Turbine Bearing 

5.1. SVM Algorithm [23-25] 

The Support Vector Machine (SVM) algorithm is a su- 
pervised learning classifier derived from the statistical 
learning theory. Unlike other learning network, the goal 
of SVM is to minimize structural risk not to minimize 
empirical risk. So, it is guaranteed as the optimal classi- 
fier after learning process. SVM mainly uses binary clas- 
sification way to classify the samples. As shown in Fig- 
ure 13, SVM transfers the samples from original space to 
the feature space for really classifying the samples by a 
linear hyperplane, and guarantees that two classes of 
samples have equal distance from the plane. Finally, this 
hyperplane is transferred back to original space to obtain 
optimal nonlinear classification curve for two classes of 
samples. If more than two classes of classification are 
required, the binary SVM classifier can be expanded to 
multiple SVM classifiers. Figure 14 shows the structure 
of Decision Directed Acyclic Graph (DDAG) SVM clas- 
sifier, which can be used for classifying 4 classes of fault. 
In Figure 14,  represents the binary classifier of 
i class and j class. According to the directed decision 
flow to conduct several binary classification, the sample 
x will finally be able to be classified successfully. 

( )ijD x

5.2. Bearing Fault Classification Test 

Figure 15 shows the bearing vibration signal and its short- 
time Fourier spectrogram. In the figure, the 6-second  
 

 

Figure 13. Binary SVM classifier [23]. 
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Figure 14. Multiple DDAG SVM classifier [24]. 
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Figure 15. Bearing vibration signal and short-time Fourier 
analysis. 
 
vibration signal is composed of three 2-second segments, 
in order to compare the bearing vibration waveform and 
frequency component between normal and abnormal con- 
dition. From the vibration signal, the first segment repre- 
sents normal bearing, the middle one slightly abnormal 
bearing, and the last one significant abnormal bearing.  

Upon observing the amplitude variance of waveform 
and spectrogram, it is found when the bearing is abnor- 
mal, the amplitude modulation will be occurred, and the 
modulated frequency will be correlated to bearing char- 
acteristic frequency. Figure 16 shows the comparison 
result of vibration envelope spectrum and characteristic 
frequencies for bearing vibration signal specified in Fig- 
ure 15. In the figure, BPFO represents the ballpass fre- 
quency at outer race, BPFI represents the ballpass fre- 
quency at inner race, BSF represents the ballspin fre- 
quency, and FTF represents the fundamental frequency. 
The calculation is shown in Equations (5)-(8) [26]. 

BPFO 1 cos
2 r

n d
f

D
φ= −

 

 .        (5) 

BPFI 1 cos
2 r

n d
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D
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
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D d
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d D
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   

 .        (7) 

FTF 1 cos
2 r

n d
f

D
φ= −

 

 .         (8) 

where n is ball number, d is ball diameter, D is bearing 
pitch diameter, φ is contact angle, and fr is rotation fre- 
quency of inner race. 

Figure 17 shows multiple SVM classification test re- 
sult of bearing vibration fault features, in which 8 kinds  

 

Figure 16. Comparison of vibration envelope spectrum and 
characteristic frequencies for bearing vibration signal. 
 

 

Figure 17. Multiple SVM classification test result of bearing 
vibration fault features. 
 
of known fault feature are used, including normal condi- 
tion and other fault combination. In the figure, the ab- 
scissa is the first principle component PC1 of signal fea- 
ture, and the ordinate is the second principle component 
PC2 of signal feature. The center lines represent the clas- 
sification curves of fault. The results show that multiple 
SVM classifiers can distinguish different bearing fault 
classification effectively. The feature series can be ob- 
tained after comparing and analyzing the bearing vibra- 
tion behaviors at time domain and frequency domain. In 
order to represent the bearing fault sufficiently, at least 
10 kinds of feature are required in general. If the original 
feature series is used to conduct the classification directly, 
not only the SVM classification computing efficiency 
will be poor due to high dimension of feature series, but 
also the distribution of feature space may be overlapped 
to cause difficult SVM classification. So, the Principle 
Component Analysis (PCA) will be matched with SVM 
classifier to reduce the dimension of feature series, where 
only the most key components will be used for faster and 
more accurate classification [16-18]. 

6. Conclusion 

The final purpose of this study is to set up the intelligent 
monitoring system for predictive maintenance of wind 
turbine, particularly the monitoring, assessment, and di- 
agnosis for key components, such as bearing and gearbox, 
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so that the user can predict the best replacement timing 
of the abnormal component in advance, and grasp the 
usability and maintenance cost. The condition monitoring 
and prediction system of wind turbine bearing integrates 
three functional modules. Firstly, the real-time bearing 
performance assessment module retrieves current bearing 
vibration signal from wind turbine database and adopts 
the LR algorithm to access current CV value. Then, it 
transfers CV value back to the database. Secondly, when 
the CV historical data of bearing performance are accu- 
mulated to a sufficient number, the ARMA algorithm is 
adopted to predict the future variation trend of bearing 
performance in accordance with known CV historical 
data of bearing performance and assure if the predicted 
performance is lower than the threshold value. Then, it 
transfers relevant predicted data back to the database. 
Thirdly, when the identification for reason of bearing 
performance reduction is required, the SVM algorithm is 
adopted to determine the fault classification through re- 
trieving bearing vibration signal at fault interval from 
wind turbine database. Then, it transfers fault condition 
data and corresponding records back to the database in 
order to strengthen the completeness of bearing fault 
condition database, which not only can modify the coef- 
ficient correctness of LR algorithm, but also can be used 
as the reference for operation parameter adjustment and 
modification of follow-up design. 
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