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ABSTRACT 

Concentrated integration of large scale wind power demands stronger robustness of VSC-HVDC transmission. Based 
on PCHD (Port Controled Hamiltonian with Dissipation) equation, the PCHD model of voltage source converter (VSC) 
in abc frame and d-q rotating frame are built and the strict passivity of VSC is proved. Desired energy function is con-
structed and used as Lyapunov function by assigning link matrix and damping matrix. Impact from VSC equivalent dc 
resistance is eliminated by additional damping matrix. The IDA-PB (Interconnection and Damping Assignment Passiv-
ity-based) controller is designed based on desired equilibrium point and state variable. With different operation condi-
tions, VSC-HVDC and its control system are simulated by software PSCAD/EMTDC, the results show the proposed 
control strategy has good performance and strong robustness. 
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1. Introduction 

The use of wind power is a keystone in the policy of 
every country for its renewable energy development 
goals. Meanwhile wind farm is large-scalely developed 
and the capacity of a single wind farm increases to hun-
dreds or thousands of MW [1]. HVDC with voltage 
source converter (VSC-HVDC) has fine dynamic char-
acteristic and transmission flexibility, furthermore it im-
proves the stability of power system [2,3]. In addition, 
VSC-HVDC is more economical for hundred megawatts 
wind farm connection [4]. Therefore, VSC-HVDC has 
obvious techno-economic advantages for the connection 
of large scale wind farm. The VSC-HVDC system can be 
operated in three modes: 1) constant dc voltage control 
mode; 2) constant active and reactive power control 
mode; and 3) constant ac voltage control mode[5]. And 
one of converters has to control the dc voltage to make 
power balanced and the dc voltage stable[6]. However 
four control inputs of the VSC-HVDC and their interac-
tion make it a truly nonlinear multiple-input and multi-
ple-output system. Furthermore the fluctuation of wind 
power will cause deviation of the electric variable in 
connection point. So VSC-HVDC need strong robustness 
to deliver power.  

At present, voltage vector oriented double closed loop 
PID control[7] based on synchronously rotating frame 
and direct power control are commonly used. But they 

both have weak robustness and it is difficult to tune PID 
parameters. To eliminate the impacts of nonlinearity of 
VSC-HVDC and improve its robustness, many research 
works have been carried out, including feedback lineari-
zation and sliding mode control[5], adaptive 
back-stepping control in Ref.[8], fuzzy PI control in 
Ref.[9] and neural network PID in Ref. [10]. But it is still 
difficult to achieve ideal effects because of the multi-
variable structure and highly coupled nonlinearity of the 
VSC-HVDC system. 

Passivity control is an emerging nonlinear control the-
ory based on the energy dissipation of system[11,12]. Its 
profound physics meaning has significant relation with 
Lyapunov function. IDA-PB control is a passivity control 
based on PCHD. This paper, IDA-PB control strategy is 
proposed based on the PCHD model of VSC-HVDC. The 
control decreases dependence of system parameters and 
makes VSC-HVDC connected large wind power has 
smaller static error and stronger robustness. The simula-
tion results show its advantages. 

2. Topology and Model of the VSC-HVDC 

The single line diagram of the VSC-HVDC connected a 
wind farm is shown in Figure 1. 

The detailed structure of VSC is shown in Figure 2, 
the transformer reactance and power loss are equivalent 
to L and R, and the parameters of the three phase circuits 
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are assumed to be identical. sau , sbu  and scu

bu
dcu

 are 
phase voltage of the point of common coupling (PCC), 

,  and  are line current at PCC. ,  and 

 are phase voltage at the ac side of the VSC,  is 
the dc voltage,  is dc current in the dc transmission 
line. 

ai
cu
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The mathematical model of the VSC-HVDC VSC in 
the three phase static frame is 
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where (j=a,b,c) is the logic switch function, 
when  the upper bridge arm is conductive and low-
er bridge arm is turn-off, when  the contrary is the 
case. By Park transformation matrix and its inverse ma-
trix, Equation (1) can be transformed to Equation (2) in 
d-q rotating frame 
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where  and  represent the d and q components of 
the switch function, 

ds qs
sdu  and squ

u
 are the d and q 

components of the voltage at PCC,  and  are the 
d and q components of the voltage at ac side of VSC. The 
active power  and reactive power  in the d-q 
rotating frame are 

d qu

sP sQ
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Figure 1. Wind farm VSC-HVDC connection topology. 
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Figure 2. VSC-HVDC circuit topology. 
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When d axis is oriented at the vector of the voltage at  

PCC, then 0squ  , and s sd di3
2P u ,

3
sd qs 2Q u i , so  

controlling the and respectively can realize the 
decoupled control of and . 

di qi
sP sQ

3. PCHD Model of VSC-HVDC Converter 

Port-controlled Hamiltonian with Dissipation(PCHD) 
model[13,14] is the form 

T
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where are the state variables, nRx T( ) ( ) Rn nJ x J x   
T ( ) 0x x   rep
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of the system total energy, we obtain 
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Because of T( ) ( ) 0x x   , we obtain 
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Therefore energy input from external is always greater 
than stored in the system, this makes the system passive.  

Make the switch control variable 
, ,

1
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where , ,i a b c , according to Equations (1) and (4), we 
obtain the PCHD model of VSC in abc frame 
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and dc dc dc/R u i i.e. the equivilent resistor at the dc side 
of VSC. By Park transformation, Equation (7) can be 
transformed to PCHD model in d-q synchronously rotat-
ing frame as Equation (9) 
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4. IDA-PB Controller Design of Converter 

According to IDA-PB control theory[14][15], it need to 
find out functions ( )x , a( )J x , a( )x  and vector func- 
tion ( )K x

nR
 for the desired stable equilibrium points 

by assigning interconnection and damping ma- 
rix and make they meet the Equation (11) 
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decoupled control of active power and reactive power. 
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Then the expasion of Equation (16) is Equation (17) 
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Setting 1 1 1( )K k x , 2 2 2( )K k x and 3 3 3( )K k x , 
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where  ,  , 0  . 
Substituting Eqation (19) to Eqation (17) and con- 

sidering that the dc voltage of VSC is equal to desired 
stable equilibrium voltage i.e.  at steady state, 
then the VSC control laws can be obtained and simplified 
as 
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where and can be obtained by outer-loop control. *
di *

qi
In order to facilitate active power setting and voltage 

control for wind farm, active power and constant voltage 
control are used at the outer-loop controller of sending 
end, and constant dc voltage and constant voltage 
controls are used at receiving end, Figure 3 shows the 
control diagram. 

5. Simulation and Analysis 

The VSC-HVDC linked wind farm and its control strat- 
egy are modeled and simulated by software PSCAD/ 
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EMTDC. The rated dc voltage of the VSC-HVDC is 
±160kV and the base capacity is 100 MVA. The power 
production of the wind farm is 180 MW, the PCC voltage 
of both ends is 110kV. The simulation time span is 20 s. 
Comparison is made between PI double closed-loop con- 
trol and IDA-PB control, and the outer-loop PI parame- 
ters of both are identical so as to ensure comparison valid. 
Figure 4 to Figure 7 show the steady simulation results. 
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Figure 3. IDA-PB control strategy for both ends VSC. 
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4. Voltage value in PCC under two 
strategies. 
 

and Figure 7(b) show ac voltage, wind farm power 
production, active power transmitted by VSC-HVDC, dc 
voltage and direct current reach set value quickly and 
keep stable, no oscillation and very small overshoot un-
der IDA-PB control. Comparison demonstrates that IDA- 
PB control make the system has stronger robustness. 

In order to compare dynamic response performan
ake the wind speed have a step change at 10 s and 15 s 

under both control modes, as shown in Figure 8. Figure 
9 shows the simulation results of each variable. 

Figure 9(a) shows the dc voltage at sending e
le fluctuation and smaller flutter under IDA-PB con- 

trol. The receiving end dc voltage is stabilized on set 

value and error is ±0.05 kV under IDA-PB control, but it 
fluctuates greatly and need much time to reach stability 
under PI double closed-loop control, as shown in Figure 
9(b).  
 

 
(a) Wind power and transmited powoer under PI double closed-loop 
control. 

 
(b) Wind power and transmited powoer under IDA-PB control 

Fig wo ure 5. Wind power and transmited power under t
control strategies. 
 

 

Figure 6. Direct voltage of receiving end under tw control o 
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(a) Direct current under PI double closed-loop con ol tr

 
(b) Direct current under IDA-PB control 
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Figure 8. Wind speed. 
 

 
(a) Direct voltage of sending end under two control strategies 

 
(b) Direct voltage of receiving end under two control strategies 
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igure 9. Direct voltage under step wind disturbance. 

 

Figure 10. Voltage step change at PCC of receiving end. 
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he VSC-HVDC transmission linked 

 receiving end to simulates voltage disturbance of con- 
nected grid, as shown in Figure 10. Figure 11 and Fig- 
ure 12 show the results. 
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bance under IDA-PB control, as shown in Figure 12. 

6. Conclusions 

The robustness of t
large wind power is discussed, a IDA-PB control strategy 
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(b) Voltage pu value in PCC under IDA-PB control 

Figure voltage 11. Voltage value in PCC under step 
disturbance at PCC of receiving end. 
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