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ABSTRACT 

Resistant training in radial basis function (RBF) networks is the topic of this paper. In this paper, one modification of 
Gauss-Newton training algorithm based on the theory of robust regression for dealing with outliers in the framework of 
function approximation, system identification and control is proposed. This modification combines the numerical ro- 
bustness of a particular class of non-quadratic estimators known as M-estimators in Statistics and dead-zone. The al- 
gorithms is tested on some examples, and the results show that the proposed algorithm not only eliminates the influence 
of the outliers but has better convergence rate then the standard Gauss-Newton algorithm. 
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1. Introduction 

Function approximation involves estimating (approxi- 
mating) the underlying relationship from a given finite 
input-output data set 

   y x f x                 (1) 

where 1Mx R   is an input vector;  f   is the arbi- 
trary nonlinear function, unknown in the general case;   
is the unobserved disturbance with unknown characteris- 
tics; has been the fundamental problem for a variety of 
applications in system identification, pattern classifica- 
tion, data mining and signal reconstruction [1-4].  

Feedforward neural networks such as multilayer per- 
ceptrons (MLP) have been widely used as an approach to 
function approximation since they provide a generic 
black-box functional representation and have been shown 
to be capable of approximating any continuous function 
defined on a compact set in NR  with arbitrary accuracy 
[5-7]. 

It has been proved that a radial basis function network 
(RBF) can approximate arbitrarily well any multivariate 
continuous function on a compact domain if a sufficient 
number of radial basis function units are given [8]. 

In contrast to MLPs, RBF networks use a localized re-
presentation of information. The RBF network requires 
less computation time for the learning and more compact 
topology than MLP. The network can be configured with 
one radial basis function centre at each training data  

point. Thus, the complexity of the network is of the same 
order as the dimensionality of the training data and the 
network has a poor generalization capability. The RBF 
decomposition of  f x  is 

     
0

ˆ , ,
N

T
i i

i

f x w x r w x r 


       (2) 

where 1Nw R   is a vector of linear weights, 1NR   
is a vector of RBFs and r  is a distance. 

An important advantage of RBFN from viewpoint of 
practitioners is, therefore, clear and understandable in- 
terpretation of the functionality of basis functions. 

The traditional RBF basis function is defined by Euc-

lidian distance E i jr x t   and Gaussian activation 

function by    2 2exp 0.5j i Ex r    , where ix  is the 

input sample number i, jt  is the center of j-th radial 

basis function (radii),   is the standard deviation. If we  

use the Mahalanobis distance    1T

M i j i jr x t R x t    

where 1 k
ijR r      is weight matrix, M is the dimension 

of input vector ix , N is the number of neurons, for the 

RBF activation function we have  

     1exp
T

j j j jx x t R x t       
      (3) 

where jR  is the covariance matrix. Geometrically jt  
represents the center and jR  the shape of the j-th basis 
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function. A hidden unit function can be represented as a 
hyper-ellipsoid in the N-dimensional space. 

All the network parameters (weights, centers and radii) 
may be determined using various learning algorithms 
have been used in order to find the most appropriate pa- 
rameters for the RBF decomposition. 

A network iteratively adjusts parameters of each node 
by minimizing some cost function which can be defined 
as an ensemble average errors. 
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              (4) 

where   ,e i  is a scalar loss function; 

     ˆ,e i y i f i    represents the residual error be- 
tween the desired  y i , and the actual network outputs, 
 f̂ i ; i—indicates the index of the series;   comprises 

all the unknown parameters of the network,  
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The problem of neural network training (estimating  ) 
which approximates the function (1) “well”, has essen- 
tially been tackled, based on the following two different 
assumptions [9]: 

(A1) The noise has some probabilistic and/or statistical 
properties. 

(A2) Regardless of the disturbance nature, a noise 
bound is available, i.e. 2 2

k k  .  
Assumption (A1) leads to different stochastic training 

methods that are based on minimization of some loss 
function. Different choices of loss functions arise from 
various assumptions about the distribution of the noise in 
measurement. The most common loss function is the 
quadratic function corresponding to a Gaussian noise 
model with zero mean, and a standard deviation that does 
not depend on the inputs. The Gaussian loss function is 
used popularly as it has nice analytical properties. How- 
ever, one of the potential difficulties of the standard qua-
dratic loss function is that it receives the large contribu-
tions from outliers that have particularly large errors. The 
problems in the neural network training are that when the 
training data sets contain outliers, traditional supervised 
learning algorithms usually cannot come up acceptable 
performance. Since traditional training algorithms also 
adopt the least-square cost function (4), those algorithms 
are very sensitive to outliers.  

Techniques that attempt to solve these problems are 
referred to robust statistics [10,11]. In recent years, vari- 
ous robust learning algorithms based on M-estimation 
have been proposed to overcome the outlier’s problems 
[12-17]. 

The basic idea of M-estimators is to replace the quad- 
ratic function in the cost function (4) by the loss function 
so that effect of those outliers may be degraded. 

Traditional approaches of solving such a problem are 
to introduce a robust cost function (4), and then, a steep- 
est descent approach is applied. The idea of such an ap- 
proach is to identify outliers and then to reduce the effect 
of outliers directly.  

Alternative approaches have been formulated in a de- 
terministic framework based on Assumption (A2). In this 
context the training problem is then to find a θ belonging 
to the class of models (2) for which the absolute value of 
the difference between the function (1) and model is 
smaller than k  for all times k. 

Three different types of solutions to this problem have 
mainly been explored in literature. The first method is to 
formulate the estimation problem in a geometrical setting. 
Different proposals result from this approach but Fogel 
and Huang [18] proposed a minimal volume recursive 
algorithm (FHMV) which minimizes the size of an ellip- 
soid and was attractive for on-line estimation. 

The second alternative is to derive estimation algo- 
rithm for stability consideration together with the geo- 
metrical (ellipsoidal-outer-bounding algorithm by Lozano- 
Leal and Ortega) [19]. The third approach is to obtain 
estimation (training) algorithm from modifying the ex- 
ponentially weighted recursive least squares algorithm 
(EW-RLS) [9]. 

All these algorithms have a dead zone. The dead zone 
scheme guarantees convergence of the neural network 
training algorithm in the present of noise 2 2

k k  . 
It should be noted that this dead zone may serve as 

value that limits the accuracy of the obtained solutions, 
i.e. determines its acceptable inaccuracy. 

The proposed method combines the numerical robust- 
ness of a particular class of non-quadratic M-estimators 
and dead-zone. 

2. Robust Gauss-Newton Training  
Algorithm 

The estimation ̂  is the solution of the following set of 
equations 
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where      
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 is the  

influence function and   ,e i   is the weight function. 
For quadratic function   ,e i   in the maximum 

likehood estimation case (5) has a closed form solution, 
the sample mean. The sample mean is substantially af- 
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fected by the presence of outliers.  
For many non-quadratic loss functions, the Equation 

(5) does not have closed form solution, but can be solved 
by the some iterative or recursive methods. 

The minimization of the criterion (4) can therefore be 
performed using Gauss-Newton algorithm. 
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where 
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with    1T

j jA x t R x t   . 

The initial value of the matrix  0P  is chosen as in 
the recursive MLS (RMLS), i.e.  0P I , where 

1  , and the initial dimension of the identity matrix 
I  is given as S S , where  21 1S M M     is 
number of adjustable parameters of a network contain-
ing 1 neuron. Because after the introduction into the 
network a new n-th neuron the dimension of the  P k  
increases, the values of elements in matrix  P k  are 
reset and initialized again, then S  becomes equal to  

 21 1S n M M    , where n —the current number 
of neurons in the network. 

The influence function  e  measures the influence 
of a datum on the value of the parameter estimate. For 
example, for the least-squares with   20.5e e  , the 
influence function is  e e  , that is, the influence of a 
datum on the estimate increases linearly with the size of 
its error and without bound, which confirms the non- 
robustness of the least-squares estimate. 

Huber proposed a robust estimator so-called an M-es- 
timator, M for maximum likelihood. M-estimator is the 
solution of (5) where different non-quadratic loss func- 
tion   ,e i   are used. 

Following Huber [10], a distribution of the noise con- 
taminated by outliers expressed by a mixture of two 
probability density functions 

       01p x p x q x             (8) 

where  0p x  is the density of basic distribution of a 
measurement noise;  q x  is the density of a distribu-  
tion of outliers;  0,1   is the probability of occurring 

a large error. 
Even if the basic  0p x  and contaminating  q x   

distributions are Gaussian with zero mean and variances  
2
1  and 2

2 , 2 2
1 2   hence, than optimal for the  

Gaussian distribution estimations (6)-(7), obtained by 

choosing   20.5e e  , will be unstable. 

The density distribution *p  for  —contaminated pro- 
bability distributions (8), which gives the minimum Fisher  
information, contains a central region    01p p    

and tails with exponentially decreasing density  0p    

xce  . Usage of these distributions allowed to ob-  
tain nonlinear robust Maximum likelihood estimates, that 
are workable for almost all the noise distributions. This 
algorithm combines the conventional least mean  

square (LMS) if   2
13e k   and least absolute devia-  

tion (LAD) if   2
13e k   stochastic gradient algo-

rithms and called the mixed-norm LMS algorithm 
[10,20,21]. 

On the other hand, the choice of loss function, differ-
ent from the quadratic, ensures the robustness of esti-
mates, i.e. their workability for almost all distributions of  
noises. Currently, there are many such functions  e , 

however, keeping in mind that      e k e k    is  
used in the learning algorithm (6)-(7) it is advisable to 
choose such functions   e k , which have nonzero 
second derivatives. As these functions can be taken, for 
example [22,23],  
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graphs of which are shown in Table 1. 
It should be noted that in case of using functionals as 

(9) and (10) a problem of the selection (evaluation) of 
parameter с (in Table 1 shapes of the functionals with c = 
5 are shown) arises. 

The standard deviations 2
1  and 2

2  in (8) are 
usually unknown and must be estimated and they can be    
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Table 1. Graphs of functions (9)-(11), their first and second derivatives and weight functions. 
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taken into account in the learning algorithm. If 2

1  and 
2
2  do not change over time, this evaluation can be car-

ried out by stochastic approximation: 
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The total variance of noise, calculated as 
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can be used for normalizing the selected functional 

    * 2
2

,
, ,

e k
e k


   


 

  
 

         (14) 

It should be noted that as estimation of the parameter с 
in the functionals (9) and (10) 3  can be used. 

3. Modification of Robust Gauss-Newton  
Algorithm with Dead Zone 

Dead zone, which determines the degree of permissible 
errors, can be set as follows:  
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and 
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, 0 for 
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  (16) 

The forms of functions (12) and (13) are shown in the 
Table 2 (columns 2 and 3, respectively). 

In this case, the robust Gauss-Newton algorithm takes 
the form   
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Table 2. Graphs of (9)-(11) functions derivatives with dead zones. 

 F e k      *

1 ,e k     *

2 ,e k   

 1F e k    

  

 2F e k    

  

 3F e k    

  
 

   
      
        

*

*

ˆ ˆ 1

ˆ1 ,

ˆ ˆ1 , 1T

k k

P k f k e k

e k f k P k f k

 

  

 

 

 


   

   (17) 

   
       
        

  *

*

1

ˆ ˆ1 1
,

ˆ ˆ1 , 1

T

T

P k P k

P k f k f k P k
e k

e k f k P k f k


 

 

 

   


   

 

(18) 
where 

  
    

 
    

* *

* *

* *

 for 

, 0 for 

 for 

e k e k

e k e k

e k e k

  

  

  

  

 


  

 

 *1 for 

0 otherwise

e k 


  


 

Table 1 (column 3) shows that for the functional (11) 
there are areas where 0   . This can lead to instabil-
ity of estimates ̂ . In this case, in the algorithm (17), 

(18) instead of   * ,e k   the weighting function 

  * ,e k   should be used, which, as seen from the  

Table 1 (column 4) is always greater than zero. In this 
case, algorithm (17, 18) takes the form 
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4. Experimental Results 

Consider using an RBF network to approximate the func-
tion [24]  

   1 2
1 22 2

1 2

16 8
0.725sin 0.2 0.2

3 4 4

x x
y k x x k

x x


 
    

  
 

(21) 

where  1 2,
T

x x x  is an input signal that was generated 

using uniformly distributed random data in range [–1, 1]. 
The additive noise  k is a Gaussian mixture that 

smixes two types of noises, a large portion of normal 
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noise with smaller variance and a smaller portion of noise 
with higher variance, i.e.        1 21k q k q k     , 
where 0 0.2   is a small number to denote the con- 
tamination ratio and (  1q k ,  2q k —normally distrib- 

uted noises with variances 2
1  and 2

2  respectively). 

50000 training data points were used for investigation of 
the given function. A surface described by function (21) 
without noise is shown on the Figure 1(a), on the Figure 
1(b) the same surface with noise  k  (

1 0.6   and 

2 12  ) is shown. On the Figure 2 the cross-sections of 

the function (21) are given (dashed line denotes the re- 
constructed function). The results of approximation of  

the function (21) with different values of  , 2
1  and 

2
2  are given in the Table 3. Here are the values of the 

RMS error, calculated after training the network for 2500 
reference values using the formula 

    
2500 2*

1

1
ˆ

2500 i

y i y i


   

where *y —the reference value of the output signal in 
the absence of interference measurements; ŷ —real 
networks output.  

Graphs of the adjustment 1  and 2  estimations at  

 

   
(a)                                                                 (b) 

Figure 1. A surface described by function (21), (a) without noise   k ; (b) with noise   k . 

 
Figure 2. The cross-sections of the function (21). 
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(a)                                                                 (b) 

Figure 3. Results of the estimation 1 0.6   and 2 12   with 0.2  . 
 

Table 3. The results of function (21) approximation. 

 
Table 4. Estimations of 1 , 2  and N . 

Given parameters Estimations 

  
1

ref  2

ref  Real number of outliers 1

est  2

est  Estimated number of outliers N

0.0 0 0 0 - - - 

0.1 0.6 

3 5061 0.6369 4.0902 4758 

6 5008 0.6166 6.7468 4984 

12 4991 0.6073 12.5611 4969 

0.2 0.6 

3 10013 0.7351 4.3658 9957 

6 10020 0.6151 6.8815 9897 

12 10111 0.6220 12.8381 10005 

 
each step of training the network are shown in Figure 3. 
Estimations of 1 , 2  and number of outliers are given 
in Table 4. 

As seen from the simulation results, the algorithm (12) 

gives reasonably accurate estimates of 2
1  and 2

2  

(assuming 2 2
1 2  ) that are used in the normalization 

of the loss function, which ensures high accuracy of ap- 

Given parameters    2
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3 21
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(with a weight function) 

  1

ref
 2

ref
 

Number of 
outliers

  
without 

dead zone 

  
With dead 
zone (15)

  
with dead 
zone (16)

  
without 

dead zone

  
with dead 
zone (15)

  
with dead 
zone (16)

  
without 

dead zone 

  
with dead 
zone (15)

  
with dead 
zone (16)

0.0 0 0 0 0.6286 - - - - - - - - 

0.1 0.6 

3 5061 1.5252 2.7339 2.6047 1.5556 2.4468 2.3937 2.0836 2.8747 2.8137 

6 5008 1.6415 2.4909 2.4697 1.6553 2.2052 2.2047 1.8936 2.7882 2.7199 

12 4991 1.9389 1.9634 1.9491 1.7256 1.7386 1.7379 1.6365 2.3665 2.3088 

0.2 0.6 

3 10013 1.6497 2.1061 2.0698 2.3438 3.0111 2.9940 2.9080 2.9365 2.9198 

6 10020 2.0402 2.1209 2.0813 2.2875 2.4361 2.4113 2.2054 2.7103 2.5998 

12 10111 1.9863 2.2117 2.1887 2.3682 2.7750 2.7217 2.5152 2.7012 2.6260 
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proximation of very noisy nonlinear functions. Also it 
should be noted that the usage of dead zones has reduced 
training time by about 20%. 

5. Conclusions 

This paper proposes a resistant radial function network 
on-line training algorithm based on the theory of robust 
regression for dealing with outliers in the framework of 
function approximation.  

The proposed algorithm minimizes an M-estimate cost 
functions instead of the conventional mean square error 
and represents one modification of recursive Gauss- 
Newton algorithm with dead-zone. These dead zone may 
serve as value that limits the accuracy of the obtained 
solutions. 

Utilization of dead zones can decrease training time of 
the network. 

If the distribution of the noise contaminated by outliers 
expressed by a mixture of two Gaussian distributions with 
unknown standard deviations 2

1  and 2
2 , 2 2

1 2   
these can be estimated and taken into account in the 
training algorithm. 

It is an efficient algorithm for practical using in inves- 
tigation of real nonlinear systems. It is expedient to 
develop this approach further and to investigate other 
robust cost functions and training algorithms such as 
Levenberg-Marquardt algorithm. 
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