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ABSTRACT 

This article presents a finite element analysis of reinforced concrete deep beams using nonlinear fracture mechanics. 
The article describes the development of a numerical model that includes several nonlinear processes such as compres- 
sion and tension softening of concrete, bond slip between concrete and reinforcement, and the yielding of the longitu- 
dinal steel reinforcement. The development also incorporates the Delaunay refinement algorithm to create a triangular 
topology that is then transformed into a quadrilateral mesh by the quad-morphing algorithm. These two techniques al- 
low automatic remeshing using the discrete crack approach. Nonlinear fracture mechanics is incorporated using the fic- 
titious crack model and the principal tensile strength for crack initiation and propagation. The model has been success- 
ful in reproducing the load deflections, cracking patterns and size effects observed in experiments of normal and 
high-strength concrete deep beams with and without stirrup reinforcement. 
 
Keywords: Automatic Remeshing; Bond Slip; Concrete; Discrete Crack; Finite Element; Fracture Mechanics; Size  

Effects; Tensile Softening 

1. Introduction 

Reinforced concrete (RC) deep beams have useful appli- 
cations in tall buildings, offshore structures, foundations, 
and military structures. A significant number of failures 
in RC structures initiate in tension regions caused by 
areas of high-stress concentrations or preexisting cracks. 
Stable growth of these tensile cracks, until peak loads, is 
associated with the development of large zones of frac- 
ture (fracture process zone (FPZ)). The growth of the 
FPZ, until peak load is reached, introduces the effect of 
structural size on the failure loads. Hence, if one was to 
design structures based on equations that were developed 
based on strength analysis, as in current American Con- 
crete Institute (ACI) code [1], the margin of safety pro- 
vided would depend upon the size of the structure. The 
margin of safety will be higher for smaller structures than 
for larger ones. It is also conceivable that this approach 
would lead to unconservative designs for some very large 
structures, e.g., deep slabs for underground storage tanks. 

Early attempts [2] to analyze failure in concrete struc- 
tures caused by crack growth were not successful, even  

though it was obvious that a fracture mechanics approach 
would be realistic to model brittle crack propagation type 
failures. The lack of success in the early attempts to ana- 
lyze crack propagation failures was due to the use of lin- 
ear elastic fracture mechanics (LEFM). LEFM assumes 
that the fracture process is small and can be replaced, and 
that the rest of the member volume remains elastic; 
however, research in the last four decades has resulted in 
modifications to LEFM to account for the distributed 
nature of pre-peak micro-cracking and the presence of a 
large FPZ in concrete [3-6]. These modifications have 
produced better results in the application of fracture me- 
chanics concepts to brittle failure in reinforced concrete. 
Theories that allow tensile softening and FPZ of rela- 
tively large sizes are classified as nonlinear fracture me- 
chanics models. 

A considerable effort has been committed to develop 
numerical models to simulate the fracture behavior of  
materials exhibiting tensile softening and FPZ, such as 
mortar, concrete, rock, or bricks used in civil engineering 
structures [4,7]. Two numerical methods to simulate frac- 
ture are available; the smeared crack approach and dis- 
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crete crack approach. In the smeared crack approach, in- 
troduced by [8], the crack is replaced by a continuous 
medium with altered mechanical properties. Because the 
crack is established through stress computations at inte- 
gration points, a significant number of cracks with small 
openings are imagined to be continually distributed over 
the finite element. The constitutive laws, defined by stress- 
strain relations, are nonlinear and may exhibit strain sof- 
tening. Strain localization instabilities and spurious mesh 
sensitivity of finite element calculations are likely, when 
strain softening is modeled numerically. These difficul- 
ties can be overcome by adopting appropriate mathe- 
matical techniques [6]. 

In the discrete crack approach, the crack is formulated 
as a geometrical change that requires remeshing each 
time a crack is initiated or propagated. The computa- 
tional demand, as a result, has been one of the biggest 
drawbacks of the method; however, this article shows the 
development of multicrack initiation and propagation pro- 
cedures that enhance the method and make it less cum- 
bersome. The cohesive crack model, developed by [2] 
and discussed in [9], has been shown to be effective for 
modeling the nonlinear fracture behavior of RC (fracture 
process of quasi-brittle materials). 

Several numerical models have been developed to study 
the behavior of brittle failure (shear) of reinforced con- 
crete beams [10-13]. Because these models differ in ma- 
terial models, element formulations, and solution proce- 
dures, a specific approach will be more suited for spe- 
cific structures and/or loading situations and less suited 
to others [13]; however, nonlinear fracture mechanics 
models are capable of analyzing the complete behavior 
of reinforced concrete beams of any size and loading 
geometry. 

This article presents a nonlinear fracture mechanics 
finite element code that incorporates nonlinear fracture 
mechanics analysis on reinforced concrete beams. The 
system uses the discrete crack approach with the ficti- 
tious crack model (FCM) [2,9,14,15] to represent the 
tensile softening of concrete; the Shah-Fafitis-Arnold model 
[16] to characterize compression softening; a nonlinear 
bond-slip constitutive model to account for bond-slip 
degradation observed when cracks cross the tensile rein- 
forcement [12,17] and an elastic, perfectly plastic con- 
stitutive model to represent the yielding of the tensile 
reinforcement.  

A multicrack initiation and propagation routine incor- 
porating the Delaunay refinement algorithm [18] to cre- 
ate a triangular topology necessary to obtain a high- 
quality mesh when multiple cracks are generated in RC  
beams that are transformed into a quadrilateral mesh by 
the quad-morphing algorithm [19] has also been devel- 
oped. 

The primary motivation for this investigation is to 

study brittle shear failures in reinforced concrete beams 
from a nonlinear fracture mechanics and finite element 
point of view and to study the implications for shear de- 
sign practices. A secondary motivation is to study brit- 
tleness in a more general context that includes structural 
(size and loading geometry) and material contributions to 
brittleness. The model has been successful in reproduc- 
ing the load deflections, cracking patterns and size ef- 
fects observed in experiments of normal and high-strength 
concrete deep beams with and without stirrup reinforce- 
ment [20] with shear-span-to-depth ratios a/d of 1.5 and 
2.5. 

2. Experimental Evaluation 

[21] conducted systematic experiments to characterize 
the structural and material response of over 150 rein- 
forced concrete deep beams with and without shear rein- 
forcement. Four beam sizes and three different concrete 
mixes were used. The effective depths d used were 50, 
100, 200, and 800 mm (2, 4, 8, and 32 in.). Shear-span- 
to-depth ratios a/d of 1.5 and 2.5 were also used to char- 
acterize different failure modes. Results from the two 
larger beams with and without shear reinforcement were 
used in this numerical study for comparisons (Figure 1 
and Tables 1 and 2). 

Compressive response of concrete was obtained using 
specimens cored (75-mm (3 in.) diameter, 150-mm (6 in.) 
length) and tested under specimen displacement controlled 
conditions to obtain the complete (including post-peak 
softening) stress strain response [22]. Mode I fracture 
parameters were obtained testing notched beams on a  

 

 
(a) 

 
(b) 

Figure 1. Details of beam geometry and loading configura- 
tion for beam (a) without stirrup reinforcement and (b) 
with stirrup reinforcement. 
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Table 1. Dimensional details of the reinforced concrete 
beams (dimensions are in mm (inches)). 

 Size A Size B 

L 
5486.4 
(216.0) 

1422.4 
(56.0) 

S 
4876.8 
(192.0) 

1219.2 
(48.0) 

H 
914.4 
(36.0) 

241.3 
(9.5) 

b 
152.4 
(6.0) 

152.4 
(6.0) 

d 
812.8 
(32.0) 

203.2 
(8.0) 

1219.2 [1.5] 
(48.0) 

304.8 [1.5] 
(12.0) 

a [a/d] 
2032.0 [2.5] 

(80.0) 
508.0 [2.5] 

(20.0) 

 
Table 2. Material properties from tests. 

Mix 

NSC HSC Property 

28 Days Test 28 Days Test 

cf  , MPa 

(psi) 

32.2 
(4668) 

43.0 
(6238) 

- 
72.9 

(10,570) 

E, MPa 
(psi) 

19,289 
(2,797,650) 

29,320 
(4,252,520) 

- 
31,354 

(4,547,560)

ft, MPa 
(psi) 

4.3 
(618) 

4.6 
(664) 

Gf, N/mm 

(lb/in.) 
0.10028 

(0.57267) 
0.09100 

(0.51967) 

 
three-point loading configuration. Material properties and 
fracture energy for normal-strength concrete (NSC) and 
high-strength concrete (HSC) are presented in Table 2. 

For beam sizes A and B, [20] used two ram displace- 
ments controlled by a dual ramp command function. For 
size A beams he used an initial load ratio of 25 mm (1 
in.)/hour for the first half hour and a ratio of 76 mm (3.0 
in.)/hour thereafter. For size B beams he used an initial 
load ratio of 7.1 mm (0.28 in.)/hour and a ratio of 25.0 
mm (1.0 in.)/hour until failure. Load displacement be- 
haviors obtained in the experiments were then used in the 
numerical model to determine the force boundary condi- 
tions needed to predict a similar response. 

3. Fracture Mechanics Analysis of  
Reinforced Concrete Beams (FMARCB) 

A finite element system, Fracture Mechanics Analysis of 
Reinforced Concrete Beams (FMARCB) [23], has been  

developed to perform nonlinear fracture mechanics analy- 
sis on reinforced concrete beams. The system consists of 
a graphic input interface, analysis routines using finite 
element techniques, and graphic output interface. FMA- 
RCB is a two-dimensional finite element program with 
triangular (3 and 6 nodes), isoparametric (4 and 8 nodes), 
bar (truss), and interface elements (bond-link). The sys- 
tem uses the discrete crack approach with the FCM 
[2,9,14,15] to represent the tensile concrete softening; the 
Shah-Fafitis-Arnold model [16] to characterize the com- 
pression softening; a nonlinear bond-slip constitutive 
model for the bond-slip phenomenon, which is degraded 
when cracks cross the tensile reinforcement [12,17] and 
an elastic perfectly plastic constitutive model to represent 
the yielding of the tensile reinforcement. 

The analysis begins with the definition of the finite 
element model of the continuum in the elastic state. Once 
the elastic analysis of the system is completed for the 
first load step and the principal stresses are extrapolated 
at the nodes, cracking criteria based on the principal 
tensile stresses are verified. If the principal tensile stress 
exceeds the tensile strength, a fictitious crack is incorpo- 
rated at the location and automatic remeshing is under- 
taken. Once the system has cracked, the nonlinear solver 
is activated. If new cracks and extensions are required 
after the nonlinear problem satisfies equilibrium for an 
unbalanced tolerance, the system is remeshed with new 
cracks and the existing crack extensions. It is then cali- 
brated again for the same load step until no new cracks or 
extensions are required. This iterative process is repeated 
for each load step. 

FMARCB incorporates the Delaunay refinement algo- 
rithm [8] to create a triangular topology that then is 
transformed into a quadrilateral mesh by the quad-morph- 
ing algorithm [19]. The Delaunay refinement mesh gen- 
eration algorithm constructs meshes of triangular ele- 
ments. The algorithm operates by imposing a Delaunay 
or constrained Delaunay triangulation that is refined by 
inserting additional vertices until the mesh meets con- 
straints on element quality and size. These algorithms 
simultaneously offer theoretical bounds on element qual- 
ity, edge lengths, and spatial grading of element sizes. 
They also possess the ability to triangulate general 
straight-line domains. 

Quad-morphing [19] is a technique used for generating 
quadrilaterals from an existing triangle mesh. Beginning 
with an initial triangulation, triangles are systematically 
transformed and combined. Quad-morphing can be cate- 
gorized as an unstructured, indirect method that utilizes 
an advancing front algorithm to form an all-quad mesh. 
As an indirect method it is able to take advantage of local 
topology information from the initial triangulation. Unlike 
other indirect methods it is able to generate boundary- 
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sensitive rows of elements, with few irregular nodes. 

4. Nonlinear Fracture Mechanics Using the 
Fictitious Crack Model 

The FCM assumes that there is an inelastic zone (FPZ) 
ahead of the crack tip [2,14]. Along the FPZ, the stress 
carrying capacity decreases as a function of the crack 
opening displacement (COD). The FPZ is characterized 
by a normal stress versus COD response (Figure 2), 
which is considered a material property. This model 
adopts the tensile strength criterion for crack initiation 
and subsequent growth. It also assumes that a stress-free 
crack occurs when the COD is larger than the critical 
COD wc. 

5. Material Properties Characterization 

Tension softening curve. FMARCB has the capability 
to use either a linear or bilinear softening curve (Figure 
2). The fictitious crack model is incorporated into the 
finite element analysis by employing interface elements. 
For a linear softening curve, the critical COD value wc is 

2 f
c

t

G
w

f
                  (1) 

where, Gf is the fracture energy, ft is the tensile strength, 
and wc is the COD, when the tensile capacity is reduced 
to zero. 

Figure 2 also shows the bilinear softening curve pro- 
posed by [24], where wc is 

3.6 f
c

t

G
w

f
                 (2) 

and w1 is 

1 0.8 f

t

G
w

f
                 (3) 

where w1 is the COD at the kink of the bilinear curve, wc 
is the COD when the tensile carrying capacity is com- 
pletely lost, and the stress at the kink is 1/3 ft. In the 
FCM the interface element is a nonlinear function of the  

 

 
(a)                            (b) 

Figure 2. FMARCB tension softening models: (a) Linear; (b) 
Nonlinear. 

COD as shown in Figure 2. When interface elements are 
used to model the FPZ, care must be taken to avoid di- 
vergent numerical behavior. Figure 2 shows that when 
the COD is small, the stiffness of the interface element is 
large, which requires a small load step for convergence 
[25]. A finite initial stiffness has to be used as shown in 
Figure 2. An initial stiffness corresponding to wc/20 to 
wc/30 has been used by [25] with success. 

Compression softening. The compression softening 
model used in this work is the one proposed by [16]. The 
model describes well, the stress-strain relation for con- 
fined and unconfined concrete. The ascending part of the 
model is described by 

0
0

1 1

A

f f



  
    
   

           (4) 

and the descending part as 

  1.15

0 expf f k     0         (5) 

where f is the stress corresponding to the predefined 
strain ε, and the peak stress f0 and peak strain ε0 for later- 
ally confined concrete are defined as 
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where cf   is the compressive strength for unconfined 
concrete and fr is the confinement pressure. 

The confinement pressure fr is then defined as 

2 v y
r

c

A f
f

sd
                (8) 

where Av is the area of the lateral reinforcement, fy is the 
yield strength of the stirrups, s is the spacing between 
stirrups, and dc is the diameter of the concrete core. 

Parameters A and k are constants that were statistically 
evaluated from experimental data of unconfined and con- 
fined concrete subjected to monotonically increasing load- 
ing [16] and are defined as 

0

0

cE
A

f


                 (9) 

  0.025 exp 0.00145 KPac rk f f       (10a) 
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 0.17 exp 0.01 psic rk f f           (10b) 

where Ec is the secant modulus of elasticity. 
Bond-slip curve. The bond between concrete and re- 

inforcement is one of the most important factors influ- 
encing the capacity of a reinforced concrete beam. Bond 
is the load-carrying mechanism between concrete and 
reinforcement in the longitudinal direction of the rein- 
forcing bar. In regions of high stress at the contact inter- 
face, the bond stresses are related to relative displace- 
ments, usually called bond-slip, which are caused by 
different average strains in the concrete and reinforce- 
ment [26]. 

The bond stress-slip relationship depends on a consid- 
erable number of influencing factors including bar rough- 
ness (relative rib area), concrete strength, position and 
orientation of the bar during casting, state of stress, 
boundary conditions, and concrete cover [12]. 

Figure 3 shows the bond-slip curve used in FMARCB; 
here the ascending part of the curve refers to the stage in 
which the ribs penetrate into the mortar matrix, charac- 
terized by local crushing and microcracking. The de- 
scending part that starts at the maximum bonding strength 
τmax of the curve refers to the reduction of bond resistance 
from the occurrence of splitting cracks, transverse to the 
bars. The horizontal part characterizes a residual bond 
capacity τmin, which can be attributed to frictional slip 
based load transfer. 

The following considerations apply to the generation 
of bond stresses. Reinforcement and concrete have the 
same strain (εs = εc) in those areas of the structure under 
compression and in the uncracked parts of the structure 
under tension. Bond stresses are generated between the 
concrete and the reinforcing steel by the relative dis- 
placement ss = us − uc where us is the displacement of the 
steel and uc is the concrete displacement. The magnitude 
of these bond stresses depends predominantly on the steel 
stresses, the slip s, the concrete compressive strength cf  , 
and the position of the reinforcement during placing (top 
cast or bottom cast). Tension stiffening, a term needed to 
describe the contribution of the concrete between cracks  

 

 

Figure 3. Bond-slip model. 

to the stiffness of the cracked concrete beam, is also ef- 
fective as a result of the interface bond between steel and 
concrete. 

Degradation of bond-slip caused by cracking. Bond 
behavior has the same important influence on the re- 
sponse to applied loads of reinforced concrete beams as 
the properties of reinforcement and concrete. Bond stiff- 
ness and maximum bond stresses deteriorate near the 
cracks in proportion to the distance to the crack and the 
bar diameter [17]. [12,17] have reported that bond deg- 
radation occurs in the vicinity of flexure cracks. To ac- 
count for this degradation of bonding, they recommend 
the calculation of the reduction factor α, which is then 
applied to the bond stresses of the original bond-slip 
function. The reduction factor proposed by [12] is deter- 
mined as follows: 

0.20 1
s

x
a

d
              (11) 

where x is the distance from the crack-rebar intersection 
center line to the desirable location, and ds is the bar di- 
ameter. 

6. Interface Element 

To model tensile softening in concrete and bond-slip for 
the steel-concrete interaction, the bond-link element [27] 
was implemented in FMARCB. These elements can cal- 
culate the stresses generated between any two surfaces 
(steel and concrete (bond-slip) or concrete to concrete 
(softening)) as a function of the relative displacements 
between the surfaces. This type of element relies on 
normal and shear stiffness to simulate the strength be- 
tween the two surfaces. The constitutive models used for 
the concrete tensile softening and the bond-slip are shown 
in Figures 2 and 3. As seen in the constitutive models, 
the bond-link element requires a nonlinear solver in con- 
trast to the linear behavior first proposed by [27]. 

7. Model Validation 

Numerical analyses were conducted on two sizes of 
geometrically proportionate reinforced concrete beams 
[20] with normal and high compressive strengths with 
and without shear reinforcement. The beams were ana- 
lyzed with a/d ratios of 2.5 and 1.5. Figure 1 and Table 
1 show the beam size and loading configurations, while 
Table 3 lists the parameters used in the numerical com- 
putations for beams with and without shear reinforce- 
ment. Results from numerical models were then com- 
pared to experimental results [20]. Further analyses were 
also conducted on the larger size beams with shear rein- 
forcement. Results of load displacement, cracking pat- 
terns, size effects, and concrete strength are discussed in 
the following section. 
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Table 3. Numerical model parameters for beams without shear reinforcement. 

Beam 

Parameter ANW21 
and 

ANW11 

AHW21 
and 

AHW11 

BNW21 
and 

BNW11 

BHW21 
and 

BHW11 

ANS22 
and 

ANS11 

AHS22 
and 

AHS11 

E, GPa 
(psi) 

29 
(4.25E6) 

31 
(4.50E6) 

29 
(4.25E6) 

31 
(4.50E6) 

29 
(4.25E6) 

31 
(4.50E6) 

cf  , MPa 

(psi) 

44.8 
(6500) 

68.9 
(10,000) 

44.8 
(6500) 

68.9 
(10,000) 

44.8 
(6500) 

68.9 
(10,000) 

ν 0.18 0.18 0.18 0.18 0.18 0.18 

ft, MPa 
(psi) 

4.1 
(600) 

4.3 
(625) 

4.1 
(600) 

4.3 
(625) 

4.1 
(600) 

4.3 
(625) 

As 2#8 4#8 2#4 4#4 2#8 4#8 

A’s     2#4 2#4 

Es, GPa 
(psi) 

209 
(30E6) 

209 
(30E6) 

209 
(30E6) 

209 
(30E6) 

209 
(30E6) 

209 
(30E6) 

fy, MPa 
(psi) 

462 
(67,000) 

462 
(67,000) 

441 
(64,000) 

441 
(64,000) 

462 
(67,000) 

462 
(67,000) 

wc, mm 
(in.) 

0.0484 
(0.0019) 

0.0422 
(0.0016) 

0.0484 
(0.0019) 

0.0422 
(0.0016) 

0.0484 
(0.0019) 

0.0422 
(0.0016) 

τmax, MPa 
(psi) 

5.5 
(800) 

5.5 
(800) 

5.5 
(800) 

5.5 
(800) 

5.5 
(800) 

5.5 
(800) 

u1, mm 
(in.) 

0.0127 
(0.0005) 

0.0127 
(0.0005) 

0.0127 
(0.0005) 

0.0127 
(0.0005) 

0.0127 
(0.0005) 

0.0127 
(0.0005) 

u2, mm 
(in.) 

1.02 
(0.04) 

1.02 
(0.04) 

1.02 
(0.04) 

1.02 
(0.04) 

1.02 
(0.04) 

1.02 
(0.04) 

 
8. Numerical Solution without Shear  

Reinforcement 
curve toward midspan at beam midheight and continue to 
grow. This is shown as Point 3 in Figure 5. Longitudinal 
steel yielding initiates at Point 4 in Figure 5. Ultimate 
failure occurs after reinforcement reaches failure. 

Typical load deflection response. Load deformation 
responses are discussed for sizes A and B. The overall 
load deformation behavior, observed in size A beams, is 
representative of the other sizes. Aspects of the response, 
unique to size B members, are also discussed. In the 
analysis presented herein, the results shown included the 
members’ self-weight. 

Figure 6 presents results from the test of an HSC 
beam without lateral reinforcement (Beam AHW22). A 
shear-span-to-depth ratio of 2.5 was used in the numeri- 
cal model. The beam failed from diagonal tension failure. 
Once again, the failure was driven by the unstable crack 
growth of a flexure shear crack combined with debond- 
ing of the longitudinal reinforcement; however, no yield- 
ing of the longitudinal reinforcement was observed prior 
to failure. 

Results from the numerical analysis of an NSC beam 
without lateral reinforcement (Beam ANW21) and a shear- 
span-to-depth ratio of 2.5, indicated a diagonal tension 
failure after yielding of the longitudinal steel reinforce- 
ment. This type of failure was driven by an unstable 
growth of a flexure shear crack (Figure 4). 

Initial stiffness differences result from the higher 
modulus for the HSC matrix and the larger steel content 
used in the HSC beam. The increased load and deflection 
capacity between diagonal cracking and ultimate capac- 
ity depends upon the geometry and material characteris- 
tics. For the beam geometry and material properties used 
in this investigation, ultimate capacity in all the modes of 
failure and for all beam sizes was distinct from diagonal 
cracking. 

Typically, the load deflection response is linear until 
the first flexural crack appears in the tension face (Point 
1 in Figure 5). Flexural cracks in the inner span of the 
beam grow in number and size with continued loading. 
Further loading produces diagonal cracks at the mid- 
height of the beam. This stage in the load deflection re- 
sponse is denoted as Point 2 in Figure 5. At this load 
level, debonding of the steel begins; with additional load, 
the bond capacity deteriorates, reflecting added nonlinear 
behavior that causes deflections to increase more rapidly. 
Also, some flexural cracks that develop in the shear span  

In the case of NSC and HSC beams without stirrup re- 
inforcement analyzed at an a/d ratio of 1.5 (Beams 
ANW11 and AHW11 in Table 3), multiple diagonal ten- 
sion cracks in each shear span (as shown in Figure 7, to 
be discussed later) were observed at incipient failure. A  
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−7153.00    −7348.00 

 

(a) 

 

(b) 

−1668.00     −1668.00 

 

(c) 

 

(d) 

Figure 4. Final cracking pattern: (a) ANW21 numerical model; (b) ANW21 experiment; (c) BNW21 numerical model; (d) 
BNW21 experiment. 
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Figure 5. Left and right load displacement responses, respectively, for ANW21. 
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Figure 6. Left and right load displacement responses, respectively, for AHW22. 
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Figure 7. Final cracking pattern: (a) AHW11 numerical model; (b) AHW11 experiment; (c) BHW11 numerical model; (d) 
BHW11 experiment. 
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combination of ultimate diagonal tension failure and 
shear compression failures resulted from the catastrophic 
growth of these diagonal cracks. Shear compression fail- 
ure occurred when diagonal cracks penetrated the com- 
pression region and compressive strength was reached 
(Figure 7). Reinforcement yielding began prior to the 
ultimate failure (Figures 8 and 9, Point 1). 

The load displacement responses for Size B are shown 
in Figures 10 and 11. For these beams, analyzed with an 
a/d ratio of 1.5 and 2.5, a diagonal compression and a 
diagonal shear failure similar to the one discussed for the 

Size A beam were observed. However, a fewer number 
of cracks were observed prior to failure. 

General observations on the crack patterns. Fig- 
ures 4 and 7 include numerical and experimental crack- 
ing patterns of the two different beam sizes without stir- 
rup reinforcement for NSC beams with an a/d ratio of 2.5 
and HSC beams with an a/d ratio of 1.5. NSC beams 
with an a/d ratio of 1.5 and HSC beams with an a/d ratio 
of 2.5 were observed to have a somewhat similar crack- 
ing pattern in contrast to the beams with similar a/d ra- 
tios. 
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Figure 8. Left and right load displacement responses, respectively, for ANW11. 
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Figure 9. Left and right load displacement responses, respectively, for AHW11. 
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Figure 10. Load displacement responses for BNW21 and BHW21. 
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Figure 11. Load displacement responses for BNW11 and BHW11. 
 

Figure 7 shows a unique type of failure; shear com- 
pression after yielding of longitudinal steel (AHW11). 
For the a/d ratio used (1.5) and the material parameters 
chosen for HSC (Table 2), the shear capacity and flex- 
ural capacity are nearly comparable. The diagonal crack 
penetrated the compression region, and compressive 
strength was reached. Failure in NSC beams without lat- 
eral reinforcement was observed to be often accompanied 
by debonding of the longitudinal reinforcement (Figure 
4). For both the NSC and HSC beams, general inclination 
of diagonal cracks was influenced by a/d ratios used. For 
an a/d ratio of 1.5, main diagonal cracks appeared to 
span from the support to the load point in each shear span 
(Figure 7). For an a/d ratio of 2.5, the diagonal cracks 
were generally z-shaped, often connected with debonding 
of the longitudinal reinforcement (Figure 4). Debonding 
started when the first flexural crack crossed the longitu- 
dinal reinforcement and ended at catastrophic diagonal 
tension shear failure. The general crack and failure pat- 
terns obtained from the numerical analysis in each case 
correlated well with those obtained from the experi- 
ments. 

Crack patterns and failure modes in the smaller size 
(Size B) of NSC and HSC beams without stirrup rein- 
forcement for a/d ratios of 1.5 and 2.5 are similar to 
those for Size A beams analyzed at the same a/d ratios. 
Generally, the numerical model predicted fewer cracks, 
which is similar to experimental observations for smaller 
beams (Size B) [20]. 

Influence of specimen size. Brittle fractures [3,6,28] 
are responsible for size effects observed in concrete struc- 
tures. Shear failures in reinforced concrete beams with- 
out shear reinforcement have been observed to be more 
sensitive to beam size. Since many factors such as mate- 
rial property, reinforcement content, and loading geome- 
try affect brittleness of shear failure, it is expected that 
these parameters will likely influence the size effect as 
well. While the understanding of size effect in the failure 
of plain concrete is good, only limited conclusive data 
are available on how reinforcement affects size effect. It 

is generally believed that if the reinforcement remains 
elastic and bonded to concrete, size effect similar to that 
observed for plain concrete will also be observed for re- 
inforced concrete; however, if reinforcement yields or 
slips, the size effect is expected to become milder or 
stronger, respectively. Also, the presence of lateral rein- 
forcement is expected to make size effect insensitive. 
Even though voluminous data on shear failure of rein- 
forced concrete beams are available in the literature, only 
a limited number of these investigations provide all the 
information needed for systematic fracture analysis. It is 
hoped that the data obtained from the numerical model- 
ing in this investigation would be a modest beginning in 
providing additional answers to questions on size effect 
in failure of reinforced concrete. 

Diagonal crack initiation has been reported to be less 
size dependent than ultimate failure in shear failure [29]. 
This observation is also valid based on the analysis com- 
pleted for this investigation; however, the differences are 
less significant in magnitude. A closer examination of the 
numerical models and the experimental results showed 
that size effect at diagonal crack initiation was only mar- 
ginally less size dependent than that at ultimate failure 
for very deep beams without stirrup reinforcement. A 42 
percent reduction in strength at diagonal crack initiation 
for an increase in effective depth from 0.2 to 0.8 m (8 to 
32 in.) compared to an approximately 47 percent drop in 
the ultimate capacity for a corresponding increase in 
specimen depth (strut and tie action in the post-diagonal 
cracking regime reported for these specimens). It should 
be noted that conclusions on the extent of size effect at 
ultimate capacity are strongly dependent on the failure 
mode. 

Size effect is milder for an a/d ratio of 1.5 than for one 
of 2.5 for both the NSC and HSC beams. Strength reduc- 
tion caused by shear failure as a function of a/d ratios can 
be treated as a geometry or structural-configuration-re- 
lated brittleness. If brittleness and size effect are implic- 
itly related as implied in fracture mechanics analysis, it is 
not surprising that an a/d ratio of 2.5 would exhibit a 
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stronger size effect. Ultimate shear strength presents a 
marginally milder size effect than that observed for di- 
agonal cracking. It should be pointed out that these ob- 
servations are from failures where yielding of longitudi- 
nal steel preceded ultimate failure in shear, implying that 
shear capacity may be comparable to the flexural capac- 
ity. Ultimate shear strength for HSC also exhibits only a 
mild size effect in spite of the fact that most failures are 
shear failures that occur prior to yielding of the longitu- 
dinal steel. Size effect is not significantly different from 
that observed at diagonal crack initiation. This is some- 
what similar to the deep beam test reported by [29]. Cau- 
tion should be exercised in making generalizations re- 
garding the influence of size effect on the ultimate ca- 
pacity of reinforced concrete beams, particularly when 
comparing failure types that are not exactly identical.  

Influence of concrete strength. The stress at flexural 
cracking, diagonal crack initiation, and ultimate capacity 
are all larger for the HSC beams than for NSC beams. It 
was expected that the size effect for HSC would be 
stronger than for the NSC beams. No conclusive obser- 
vations could be made concerning size effect either in 
diagonal crack initiation or at ultimate capacity. The size 
effect with regard to diagonal crack initiation was ob- 
served to be comparable in the two concrete materials. 
The size effect at ultimate capacity even with the slightly 
different failure modes (for beams without stirrup rein- 
forcement) was again comparable. One possible explana- 
tion for the lack of distinct difference in size effect be- 
tween the two concrete materials is that even though the 
compressive strength ratio is 1.7, the tensile strength ra- 
tio is approximately 1.3. Perhaps if the compressive 
strengths differed by a greater amount, one could have 
possibly seen stronger size effect for the HSC material. 

9. Numerical Solution with Shear  
Reinforcement 

Numerical analyses of the Size A beams with shear rein- 
forcement were conducted. The spacing and shear rein-  

forcement content followed that was specified in [20]. 
Because of the confinement introduced by the shear re- 
inforcement, a plane strain assumption was utilized in the 
analysis. Beam geometry is shown in Figure 1 and Ta- 
ble 1, and material properties for Size A beams are 
shown in Tables 2 and 3. 

Typical load deflection response. Results from the 
numerical analysis of an NSC beam with lateral rein- 
forcement (Beam ANS22) and a shear-span-to-depth ratio 
of 2.5 indicated a flexural failure after yielding of the 
longitudinal steel reinforcement. One of the factors of 
this ductile type of failure is the confinement pressure 
provided by the shear reinforcement, which reduces the 
initiation and growth of tension shear cracks. Further- 
more, the confinement pressure provides additional bond- 
ing capacity, limiting the debonding of the tensile rein- 
forcement. Load displacement curves for Size A beams 
with shear reinforcement are shown in Figures 12-15. 
The capacity of this beam increased by 10 percent com- 
pared with that of the beam without shear reinforcement; 
however, the main contribution was that the failure mode 
changed from a brittle to a ductile failure. 

In the case of NSC and HSC beams with stirrup rein- 
forcement analyzed at an a/d ratio of 1.5, flexure failure 
occurred after yielding of the tensile reinforcement prior 
to crushing of the concrete. Once again, the confinement 
pressure provided by shear reinforcement delayed the 
initiation and catastrophic propagation of the diagonal 
tension cracks in each shear span (Figures 14 and 15). 

In general, numerical results show that the presence of 
confinement pressure equivalent to the shear reinforce- 
ment does not make a significant difference in the per- 
formance of the Size A beams until the initiation of the 
diagonal cracks. Furthermore, the amount of confinement 
pressure equivalent to the stirrup spacing will greatly alter 
the failure mode in reinforced concrete beams. The gen- 
eral load deflection curves obtained from the numerical 
analysis in each case are comparable with those obtained 
from the experiments. 

 

0

10

20

30

40

50

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
CENTER DEFLECTION (IN.)

LO
A

D
 (

K
IP

S
)

0

50

100

150

200

0 5 10 15 20

PLEFT

CENTER DEFLECTION (MM) 

LO
A

D
 (

K
N

)

Experimental
FMARCB

    

a

   

0

10

20

30

40

50

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

CENTER DEFLECTION (IN.)

LO
A

D
 (

K
IP

S
)

0

50

100

150

200

0 5 10 15 20

 PRIGHT

CENTER DEFLECTION (MM)

LO
A

D
 (

K
N

)

Experimental
FMARCB

 

b

 

Figure 12. Left and right load displacement responses, respectively, for ANS22. 
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Figure 13. Left and right load displacement responses, respectively, for AHS22. 
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Figure 14. Left and right load displacement responses, respectively, for ANS11. 
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Figure 15. Left and right load displacement responses, respectively, for AHS11. 
 

General observations on the crack patterns. Figure 
16 includes numerical cracking patterns of Size A beams 
with stirrup reinforcement (confined pressure) for NSC 
and HSC beams with a/d ratios of 2.5 and 1.5, respec- 
tively. 

All Size A beams with shear reinforcement failed in 
flexure. For the a/d ratio of 2.5 and the material parame- 
ters chosen for NSC and HSC (Table 1), a reduction of 
the amount of debonding was observed in addition to a 
delay in the formation of the flexure shear cracks. For 
both the NSC and HSC beams, general inclination of 

diagonal cracks was influenced by a/d ratios used; how- 
ever, diagonal cracks did not propagate in an unstable 
manner, allowing the tensile reinforcement to yield prior 
to the crushing of the concrete. For an a/d ratio of 1.5, 
main diagonal cracks appeared to span from the support 
to the load point in each shear span (Figure 16). For an 
a/d ratio of 2.5, the diagonal cracks were generally z- 
shaped, often connected with reduced amount of debond- 
ing of the longitudinal reinforcement (Figure 16). Debond- 
ing started when the first flexural crack crossed the lon- 
gitudinal reinforcement; however, the bonding capacity  
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                         −7581.00    −7422.00                     ANS22  
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                          −15271.00  −13733.00                   ANS22 

 

(b) 

                −12598.00                      −13416.00         ANS11  

 

(c) 

                −22864.00                     −23645.00           ANS11  

 

(d) 

Figure 16. Final numerical cracking pattern for beams with shear reinforcement. 
 

was larger because of the confinement pressure provided 
by the shear reinforcement, which allows a ductile type 
of failure. 

10. Conclusions 

Size effect in strength and deformation capacity. 
Brittle shear failure in NSC and HSC beams without stir- 
rup reinforcement, exhibited effects of size on ultimate 
strength as well as corresponding deflections for effec- 
tive beam depths of 0.2 and 0.8 m (8 and 32 in.). Stress at 
diagonal crack initiation was observed to be less size 
dependent. In this investigation, size effect at the ulti- 
mate shear capacity was only marginally more size-de- 
pendent than that observed for diagonal crack initiation. 
Size effect on the deflection capacity at diagonal crack 
initiation observed in the numerical analysis may be of  

practical relevance in design. Although direct compari- 
son of size effect in the deflection value at the ultimate 
capacity was not made because of the differences in fail- 
ure mechanisms, size effect similar to that at diagonal 
crack initiation was observed at this loading. 

Shear-span-to-depth ratio and geometry-related brit- 
tleness. For the two shear-span-to-depth ratios investi- 
gated (a/d of 1.5 and 2.5), the failure in beams without 
stirrup reinforcement was due predominantly to diagonal 
tension and shear compression. Reduction in shear ca- 
pacity compared to the flexural capacity in all cases in- 
vestigated was more severe for the a/d ratio of 2.5. This 
is in line with Kani’s [30] shear valley concept. Distinct 
changes in crack patterns and resultant mode of failure 
also accompanied changes in the a/d ratio. Size effect 
was greater at an a/d ratio of 2.5. This observation can be 
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treated as geometry-related brittleness in analytical mod- 
els. 

Concrete compressive strength. The shear strength 
of HSC beams (compressive strength of 70 MPa (10,000 
psi)) was markedly higher than that of NSC beams (com- 
pressive strength 43 MPa (6250 psi)) at diagonal crack 
initiation and at the ultimate capacity. Even while the 
HSC was more brittle than the NSC, no noticeable dif- 
ferences in the size effect on failure loads were observed. 

Nonlinear fracture mechanics-based model. The 
nonlinear fracture mechanics-based numerical model 
described herein has unique features including automated 
crack initiation and propagation, automated remeshing, 
and solution of several nonlinear phenomena (concrete 
softening in tension and compression, bond slip, and 
yielding of reinforcement). 

The numerical model developed to study the shear be- 
havior of reinforced concrete deep beams has been vali- 
dated with eight beams of two different sizes with dif- 
ferent material properties and loading geometries. The 
model successfully predicted the ultimate capacity of the 
beams described herein. The model shows good correla- 
tion between the predicted cracking pattern and the ex- 
perimental cracking pattern. It also predicted the load 
displacement response successfully. Bond-slip character- 
istics exert significant influence on load deflection char- 
acteristics of the reinforced concrete deep beams and 
should be implicitly incorporated into any numerical 
fracture model for the flexural behavior of reinforced 
concrete beams. The model also shows no need to use the 
shear capacity for the tension softening. 

11. Acknowledgements 

The development of the numerical model was funded by 
the Computer-Aided Structural Engineering (CASE) Pro- 
ject of the US Army Corps of Engineers and the Infor- 
mation Technology Laboratory (ITL) of the US Army 
Engineer Research and Development Center (ERDC). Mr. 
Amos Chase, Scientific Applications International Cor- 
poration, and Mr. Barry White, ITL, made significant 
contributions to writing the computer code. Permission 
was granted by the Chief of Engineers to publish this 
information. 

REFERENCES 
[1] ACI Committee 318, “Building Code Requirements for 

Structural Concrete and Commentary (ACI 318-95 and 
318R-95),” American Concrete Institute, Detroit, 2008. 

[2] A. Hillerborg, M. Modeer and P. E. Peterson, “Analysis 
of Crack Formation and Crack Growth in Concrete by 
Means of Fracture Mechanics and Finite Element,” Ce- 
ment and Concrete Research, Vol. 6, No. 6, 1976, pp. 
773-782.  
http://dx.doi.org/10.1016/0008-8846(76)90007-7 

[3] ACI Committee 446, “Fracture Mechanics of Concrete: 
Concepts, Models and Determination of Material Proper- 
ties,” ACI 446.1R-91, Reported by ACI Committee 446, 
Detroit, 1991. 

[4] American Concrete Institute (ACI), “Finite Element Ana- 
lysis of Fracture in Concrete Structures: State-of-the- 
Art,” ACI 446.3R-97, Reported by ACI Committee 446, 
Detroit, 1997.  

[5] T. L. Anderson, “Fracture Mechanics, Fundamentals and 
Applications,” 2nd Edition, CRC Press, Washington DC, 
1994. 

[6] Z. P. Bažant and J. Planas, “Fracture and Size Effects in 
Concrete and Other Quasibrittle Materials,” CRC Press, 
Washington DC, 1997. 

[7] ACI Committee 446, “Fracture Mechanics Applications 
to Concrete Structures and Implications with Regard to 
the Code,” American Concrete Institute, Detroit, 1992. 

[8] Y. R. Rashid. “Analysis of Pre-Stressed Concrete Pres- 
sure Vessels,” Nuclear Engineering and Design, Vol. 7, 
No. 4, 1968, pp. 334-355.  
http://dx.doi.org/10.1016/0029-5493(68)90066-6 

[9] Z. P. Bažant, “Comment on Hillerborg’s Comparison of 
Size Effect Law with Fictitious Crack Model,” Dei Poli 
Anniversary Volume, Politecnico di Milano, 1985, pp. 
335-338. 

[10] ASCE Committee 447, “State of the Art Report on Finite 
Element Analysis of Reinforced Concrete,” American 
Society of Civil Engineers, New York, 1982, p. 545. 

[11] ASCE Committee 447, “State of the Art Report on Finite 
Element Analysis of Reinforced Concrete,” American 
Society of Civil Engineers, New York, 1994, p. 545.  

[12] Comite Euro-International du Beton (CEB) and the Fe- 
deration Internationale de la Precontrainte (FIP), “CEB- 
FIP Model Code 1990,” CEB Bulletin D’Information No. 
213/214, Lausanne, 1993. 

[13] D. Coronelli and G. Mulas, “Modeling of Shear Behavior 
in Reinforced Concrete Beams,” ACI Structural Journal, 
Vol. 103, No. 3, 2006, pp. 372-382. 

[14] A. Hillerborg, “Analysis of One Single Crack,” In: F. H. 
Wittmann, Ed., Fracture Mechanics on Concrete, Devel- 
opment in Civil Engineering, Elsevier Science Publishers, 
Amsterdam, 1983, pp. 223-249. 

[15] Z. P. Bažant and V. S. Gopalaratnam, “Fracture Mechan- 
ics of Concrete: An Apercu of Basic Concepts and Mod- 
els,” Proceedings of the First International Conference 
on Fracture Mechanics of Concrete Structures, Brecken- 
ridge, Colorado, 1-5 June 1992, pp. 145-154. 

[16] S. P. Shah, A. Fafitis and R. Arnold, “Cyclic Loading of 
Spirally Reinforced Concrete.” Journal of the Structural 
Division, Vol. 109, No. ST7, 1983, pp. 1695-1710.  
http://dx.doi.org/10.1061/(ASCE)0733-9445(1983)109:7(
1695) 

[17] S. Hayashi and S. Kokusho, “Bond Behavior in the 
Neighborhood of the Crack,” Finite Element Analysis of 
Reinforced Concrete Structures; Proceedings of the Semi- 
nar Sponsored by the Japan Society for the Promotion of 
Science and the US National Science Foundation, Tokyo, 
21-24 May 1985, pp. 364-373. 

Open Access                                                                                             AM 

http://dx.doi.org/10.1016/0008-8846(76)90007-7
http://dx.doi.org/10.1016/0029-5493(68)90066-6
http://dx.doi.org/10.1061/(ASCE)0733-9445(1983)109:7(1695)
http://dx.doi.org/10.1061/(ASCE)0733-9445(1983)109:7(1695)


G. A. RIVEROS, V. GOPALARATNAM 

Open Access                                                                                             AM 

1582 

[18] J. Ruppert, “A Delaunay Refinement Algorithm for Qual- 
ity 2-Dimensional Mesh Generation,” Journal of Algo- 
rithms, Vol. 18, No. 3, 1995, pp. 548-585. 
http://dx.doi.org/10.1006/jagm.1995.1021 

[19] S. J. Owen, M. L. Staten, S. A. Canann and S. Saigal. “Q- 
Morph: An Indirect Approach to Advancing Front Quad 
Meshing,” International Journal for Numerical Methods 
in Engineering, Vol. 9, No. 44, 1999, pp. 1317-1340.  
http://dx.doi.org/10.1002/(SICI)1097-0207(19990330)44:
9<1317::AID-NME532>3.0.CO;2-N 

[20] M. G. Khorasgany, “Size Effect in Shear Failure of Nor- 
mal and High Strength RC Beams,” Ph.D. Dissertation, 
University of Missouri, Columbia, 1994. 

[21] M. G. Khorasgany and V. S. Gopalaratnam, “Shear Strength 
of Concrete—Size and Other Influences,” Size Effect in 
Concrete Structures: Proceedings of the Japan Concrete 
Institute International Workshop, Sendai, 31 October-2 
November 1993, pp. 67-78. 

[22] V. S. Gopalaratman and S. P. Shah, “Softening Response 
of Plain Concrete in Direct Tension,” ACI Journal, Vol. 
82, No. 3, 1985, pp. 310-323. 

[23] G. A. Riveros, V. S. Gopalaratnam and A. Chase, “User’s 
Guide: Fracture Mechanics Analysis of Reinforced Con- 
crete Beams (FMARCB),” ERDC/ITL TR-08-1, US Army, 
Engineer Research and Development Center, Vicksburg, 
2008.  

[24] P. E. Petterson, “Crack Growth and Development of 
Fracture Zone in Plane Concrete and Similar Materials,” 

Report No. TVBM-1006, Division of Building Materials, 
Lund Institute of Technology, Lund, 1981. 

[25] W. H. Gestle and M. Xie, “FEM Modeling of Fictitious 
Crack Propagation in Concrete,” Journal of Engineering 
Mechanics, Vol. 118, No. 2, 1992, pp. 416-434. 
http://dx.doi.org/10.1061/(ASCE)0733-9399(1992)118:2(
416) 

[26] M. Keuser and G. Mehlborn, “Finite Element Models for 
Bond Problems,” Journal of Structural Engineering, Vol. 
113, No. 10, 1987, pp. 2160-2173. 
http://dx.doi.org/10.1061/(ASCE)0733-9445(1987)113:10
(2160) 

[27] A. C. Scordelis and D. Ngo, “Finite Element Analysis of 
Reinforced Concrete Beams,” ACI Journal, Vol. 64, No. 
3, 1967, pp. 152-163. 

[28] A. Carpinteri, “Size Effect in Fracture Toughness Testing: 
A Dimensional Analysis Approach,” Proceedings of an 
International Conference on Analytical and Experimental 
Fracture Mechanics, Rome, 23-27 June 1980, pp. 785- 
797. 

[29] J. C. Walreven. “Scale Effects in Beams without Rein- 
forced Webs, Loaded in Shear,” Progress in Concrete 
Research, Annual Report, Vol. 1, No. 99, 1990, pp. 101- 
112. 

[30] G. N. J. Kani, “How Safe Are Our Large Reinforced Con- 
crete Beams?” Proceedings of ACI Structural Journal, 
Vol. 64, No. 3, 1967, pp. 128-141. 

 
 
 
 
 
Notation Gf = fracture energy 

H = beam height 
The following symbols are used in this paper: 

k = constant that was statistically evaluated from ex- 
perimental data of unconfined and confined concrete 
subjected to monotonically increasing loading 

A = constant that was statistically evaluated from ex-
perimental data of unconfined and confined concrete 
subjected to monotonically increasing loading 

L = beam length 
As = tension steel reinforcement area 

S = distance between beam supports 
sA  = compression steel reinforcement area 

s = spacing between stirrups on beam geometry defini- 
tion 

Av = area of the lateral (shear) reinforcement 
a/d = shear-span-to-depth ratio 

 = slip on bond-slip curve definition 
b = width of beam 

t = thickness 
d = effective depth 

uc, us = displacement of concrete and steel, respec- 
tively 

dc = concrete core diameter 
ds = bar diameter  

wc = critical crack opening displacement value 
E = modulus of elasticity 

x = distance from the crack-rebar intersection center 
line to the desirable location 

Ec = secant modulus of elasticity 
Es = module of elasticity of the reinforcement  = reduction factor 
f = concrete stress at a predefined strain 

ε = predefined concrete strain 
c

fr = confinement pressure 
f   = compressive strength 

ε0 = peak strain 
ν = Poisson’s ratio 

ft = tensile strength 
τmax, τmin = maximum and minimum bonding strengths, 

respectively
fy = yield strength of the reinforcement 
f 0 = peak stress  
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