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ABSTRACT 

A kind of direct numerical simulation method suitable for supercritical carbon dioxide jet flow has been discussed in 
this paper. The form of dimensionless nonconservative compressible Navier-Stokes equations in a two-dimensional 
cartesian coordinate system is derived in detail. High accurate finite difference compact schemes based on non-uniform 
grid system are introduced to solve the equations. The simulation results of the three vortex pairing phenomenon of 
plane mixing layer and a compressible axisymmetric jet flow field show that the discussed numerical simulation method 
is feasible to calculate the supercritical carbon dioxide jet fluid. And it is found that the difficulties of splitting the con-
vective terms in conservation Navier-Stokes equations, which are brought by the supercritical carbon dioxide fluid pres-
sure state equation, can be avoided by solving the nonconservative compressible Navier-Stokes equations. 
 
Keywords: Direct Numerical Simulation; Supercritical Carbon Dioxide Jet Flow; Nonconservative Compressible  

Navier-Stokes Equations 

1. Introduction 

Supercritical carbon dioxide fluid refers to carbon di- 
oxide fluid at more than the critical temperature 

 and critical pressure . Its 
density is close to liquid, its diffusivity and viscosity is 
close to gas, and it has strong solvency. In recent years, 
much attention has been paid to the application of super-
critical CO2 jet fluid technology in the petroleum engi-
neering [1]. Supercritical CO2 jet fluid is a kind of high 
pressure fluid jet to break rock. In the numerical simula-
tion research for this kind of high pressure fluid jet to 
break rock problem [1], the jet flow field should be simu-
lated starting from initial and boundary conditions, and 
the fluid forces on the surface of rock should be calculate, 
which is used as a part of the boundary conditions to 
calculate the rock mechanics. Visiblely, presenting and 
even predicting the detail structure form of supercritical 
CO2 jet flow is very necessary. At present, the mecha-
nism studies of supercritical CO2 jet to break rock have 
been carried out by some researchers. Some questions 
have been met as the supercritical carbon dioxide fluid 
flow field is calculated using Fluent software, such as: 

the flow field calculation accuracy is not enough, the 
flow of the large scale structure are vague, and it is more 
difficult to capture the flow of small scale structure. It is 
difficult to understand structure properties of supercriti-
cal carbon dioxide fluid only relying on commercial 
software. Therefore, it is necessary to extract a jet flow 
problem closely related to fluid mechanics from super-
critical CO2 jet drilling in the engineering, and to do 
some thorough theoretical study using numerical simula-
tion method of computational fluid dynamics. 

 c 31.1T  ℃  c 7.4 MPap 

So far, there are two kinds of numerical simulation 
methods for supercritical CO2 flow both at home and 
abroad. One is direct numerical simulation method, the 
other is turbulence model numerical simulation method. 
Direct numerical simulation is to solve directly the Na-
vier-Stokes equations without introducing any closed 
models in the scales of turbulence grid size. At present, 
there are seldom research results on the supercritical CO2 
flow direct numerical simulation results, in which the 
representative results are as following. In 2006 Ri Shin-
ryo et al. [2], and in 2008 Xinliang Li et al. [3], carried 
out direct numerical simulation of supercritical carbon 
dioxide channel flow on the background of water cooled 
reactor. In reference [3], the full compressible Na-
vier-Stokes equations and Peng-Robison state equation 
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were calculated numerically; according to the application 
background, the incoming flow temperature values were 
43˚C and 41˚C, the incoming flow pressure were 8 Mpa, 
the Mach number was 0.2, and the calculated Reynolds 
number was 2800; this paper gives a detailed quantitative 
turbulent statistical results; this paper points out that, 
however, due to the Mach number is low, the strict time 
step restricted conditions affected the computing effi-
ciency of direct numerical simulation. Relatively, the 
researchers usually study supercritical carbon dioxide 
fluid using turbulence model numerical simulation 
method. Such as in 2003 DANG C et al. [4] simulated 
supercritical CO2 cooling heat transfer process using 
several turbulence models; in 2002 S. M. Liao et al. [5] 
simulated laminar convective heat transfer of supercriti-
cal carbon dioxide in a small vertical tube. 

Based on the above content, a kind of direct numerical 
simulation method suitable for supercritical carbon diox-
ide jet flow is discussed in this paper. Supercritical car-
bon dioxide jet flow belongs to compressible flow prob-
lems. Navier-Stokes equations for compressible fluid 
flow can be expressed into two forms: conservation and 
nonconservation. In the general theory of fluid mechan-
ics, it is same in nature to use the conservation form or 
the nonconservation form of Navier-Stokes equations, 
because it can be derived from one form to another form 
through simple derivation. However, which form of Na-
vier-Stokes equations would be used is very important in 
computational fluid mechanics [6]. 

The conservative compressible Naver-Stokes equa-
tions are usually used to simulate compressible flows for 
a perfect gas. Because experience shows that the calcu-
lated flow field is generally smooth and stable using the 
conservative equations. In some literatures [7,8], a class 
of effective numerical simulation methods are proposed 
for conservative compressible Navier-Stokes equations. 
For example, In literature [8], a finite difference discrete 
method is used for the conservative compressible Navier- 
Stokes equations: the convective terms are splitted firstly 
using Stegger-Warming method and discreted secondly 
using the fifth order upwind difference scheme; the vis-
cous terms are discreted using the sixth order central dif-
ference scheme; the time terms are discreted using the 
third order Runge-Kutta method. The conservative com-
pressible Naver-Stokes equations can also be used to 
simulate compressible flows for some real gas. For ex-
ample, In literature [9], a numerical calculation method 
for real gas flow was given when the pressure state equa-
tion is discribed as  ,p f e  , where p, ρ and e de-
note the pressure, density and internal energy, respec-
tively. For high resolution numerical formats, character-
istics of Jacobian matrix of the convection item are usu-
ally needed to be analyzed. In literature [9], the charac-
teristics of Jacobian matrix was analyzed for the real gas 
with the pressure state equation as  ,p f e  . On 

the basis of analyzing the characteristics of Jacobian ma-
trix, suitable numerical scheme can be selected to solve 
the discreted conservative compressible Navier-Stokes 
equations. In these methods such as in literature [8] or [9], 
it is not easy for solving diagonalization characteristic 
value of the Jacobian matrix and diagonalizing the Jaco-
bian matrix, because the Jacobian matrix defined in con-
servation variables is usually extremely complex. 

It is usually difficult to obtain a pressure state equation 
just as  ,p f e   described in literature [9] for non 
perfect gas, especially for supercritical carbon dioxide 
fluid. However, the eigenvalue and the diagonalization of 
the jacobian matrix has an important role in numerical 
simulation of conservative compressible Navier-Stokes 
equations. A numerical simulation method using high 
accurate finite difference schemes for solving noncon-
servative compressible Navier-Stokes equations is per-
formed in this paper, in order to avoid the difficulties of 
splitting the convective terms in conservation Navier- 
Stokes equations, which is brought by the supercritical 
carbon dioxide fluid pressure state equation. 

2. Nonconservative Form of Dimensionless  
Compressible Navier-Stokes Equations 

For convenience, the form of dimensionless nonconser-
vative compressible Navier-Stokes equations in a two- 
dimensional cartesian coordinate system is only present- 
ed in this paper. 

The detail derivation process of nonconservative com-
pressible Navier - Stokes equations has been showed in 
literature [6]. Firstly, the dimensional nonconservative 
compressible Navier - Stokes equations in a two-dimen-
sional cartesian coordinate system can be obtained as 
following: 
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  (1) 

In Equations (1), u and v, respectively, is correspond-
ing to the speed in x and y directional coordinate. ρ and T, 
respectively, is corresponding to the density and the 
temperature. t is corresponding to the time. The pressure 
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p is determined by the pressure state equation. The heat 
transfer coefficient  is defined as  

Pr
pC

  . 

μ is viscosity, Cp is specific heat at constant pressure, Pr 
is a dimensionless number named as Prandtl number. In 
Equations (1), there is  

21

2
E e V  , . 2 2 V u v2

e  is internal energy. In Equations (1), xx , xy , yx  
and yy , respectively, is the weight of the viscous stress 
tensor, which is expressed as following:  

4 2
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. 

In the thermal equilibrium state system, the internal 
energy has the general form as . It is known 
that the pharmaceutical units of Cp is  

 ,e e T p 

     
   2

J/ kg K  N m kg K

 kg m/s m  kg K

   

     
, 

and the pharmaceutical units of T is K. So the pharma-
ceutical units of p  is m2/s2 just as similar as that of 

. According to the homogeneity principle of 
dimension, internal energy e can be defined as 

C T
2 2 V u v2

e CpT . 
So another form of Equations (1) can be obtained as fol-
lowing: 
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(2) 

Equations (2) should be changed into dimensionless 
form in order to be used to simulate some flow fields. 
The dimensionless system is chosen here as follow-

ing: 
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Here the physical quantities with a subscript “0” are 
corresponding characteristic quantities; and the physical 
quantities with a subscript “*” are corresponding dimen-
sionless quantities. Thus the Equations (2) can be written 
as following: 

* * * * *
* * * *

* * * * *

* * *
* * *

* * *

***
0 0 0 0

* * *
0 0 0 0 0 0

* * *
* * *

* * *

**
0 0 0 0

*
0 0 0 0 0 0

0

yxxx

xy

u v
u v

t x y x y

u u u
u v

t x y

p t tp

L u L ux x y

v v v
u v

t x y

p t tp

L u L uy

    



 
 




 

    
    

    

   
     

 
          

   
     


    



*

* *

* * *
* * * *

* * *

* *
* *0 0 0

* * * *
0 0 0 0 0

* *
* *0 0 0 0 0

* *
0 0 0 0 0

* *
* *0

* *
0 0 0

yy

p

p

p

xx yx x
p

x y

T T T
C u v

t x y

T t T T

L L C T x x y y

p u t uu v
p p

L C T Lx y

t u u

C T x y






 






  


 
    

   
     

      
  


       
     
  

      

 
  

 

* *
* *

* *y yy

v v

x y






























   

     

 (3) 

In Equations (3), the characteristics of time  can be 
instead of  
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, 

and the characteristics of viscous stress 0  can be in-
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0 0
0

0


 

u

L
. 

So the following equations can be obtained as follow-
ing: 
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In Equations (4), the Reynolds number is defined as  
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Based on the above analysis, the form of dimen-
sionless nonconservative compressible Navier-Stokes 
equations in a two-dimensional cartesian coordinate sys-
tem can be presented as following: 
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  
      
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





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In Equations (5), there are some expressions as follow- 
ing: 

0 0 0

0
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

 ; 0
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u
M

c
; 20 0 0
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u u
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0

0 0 0


p

p
Sa

C T
; 0 0

0

Pr




Cp

; 
Pr

Cp
 

  ; 

* *
*

* *

4 2

3 3xx

u v

x y
    

    
;  

* *
*

* *xy yx

u v

y x
      

     
;  

* *

* *

4 2

3 3yy

v u

y x
     

    
. 
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3. Finite Difference Discrete Method of  
Nonconservative Compressible  
Navier-Stokes Equations 

In order to obtain better numerical simulation results, 
high accurate compact finite difference schemes can be 
used to discrete Equations (5). Because non-uniform 
grids ussually need to be used for numerical simulation 
of complex flow field, a kind of high accuracy difference 
scheme based on non-uniform grid system can be used 

[8]. If the discrete grid points in x direction are noted by 
 1, ,i x i   n , the definition of 1i i ih x x    and 

1i i ih h   can be obtained.  

3.1. The 5th Order Upwind Compact Difference  
Scheme Based on Non-Uniform Grid System 

The one order spatial derivatives on the left of Equations 
(5), such as  

*
*

*

u
u

x




, 

have the nature of the hyperbolic equation. So the basic 
characteristics of the disturbance wave propagation 
should be considered to using the upwind difference 
scheme to discrete the one order spatial derivatives on 
the left of Equations (5). For example, the frozen coeffi-
cient method can be used to deal with the term of  

*
*

*

u
u

x




, i.e.  

* * * ** *
*

* *2 2

u u u uu u
u

*

*

u

x x x

  
 

 



. 

Because the coefficient  
* *

0
2

u u
 , 

the 5th order upwind compact backward difference sche- 
me based on non-uniform grid system can be used to dis- 
crete the term  

* * *

*2

u u u

x

 


, i.e. 

 

   
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

 


2

i i

     (6) 

Using Taylor series expansion, the coefficients as i , 

i , i , i  and i  in Equation (6) can be solved 
through the algebraic Equations, i.e. 
a b c d

   
   
   

   

1 1
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4 44
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1 0
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      

(5) 

Because the coefficient  
* *

0
2

u u
 , 

the 5th order upwind compact forward difference scheme 
based on non-uniform grid system can be used to discrete 
the term 

* * *

*2

u u u

x

 


, i.e. 
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 (8) 

Using Taylor series expansion, the coefficients as i , 

i , i , i  and id  in Equation (8) can be solved th- 
rough the algebraic equations, i.e. 
a b c
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     (9) 

3.2. The 6th Order Symmetric Compact  
Difference Scheme Based on Non-Uniform  
Grid System 

The 6th order symmetric compact difference scheme 
based on non-uniform grid system can be used to discrete 
the spatial derivative terms on the right in the Equations 
(5). For example, the term of  

*

*

p

x




 

can be dealed with as following: 
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 (10) 

Using Taylor series expansion, the coefficients as i , 

i , i , i , i  and id  in Equation (10) can be solved 
through the algebraic equations, i.e. 
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  (11) 

3.3. The 3th Order Accurate Rungge-Kutta  
Method 

The 3th order accurate Rungge-Kutta method can be 
used to discrete the time terms on the left in the Equa- 
tions (5) [8]. 

4. The Numerical Simulation Experiments 

In order to verify the above numerical simulation method 
for the non conservative compressible Navier-Stokes 
equations, two numerical simulation experiments are 
analyzed in this paper. 

4.1 Numerical Simulation of Plane Mixing Layer 

The three vortex pairing phenomenon of plane mixing 
layer under the condition of flow Maher number 

 and Reynolds number  was simu-
lated numerically using the above method.  

0.2M  Re 700

The initial flow field is the mean flow field adding the 
turbulence flow field as f f f   , here , , ,f u v p T . 
The mean flow field is give as:  ytanhu b , 0v  ,  

21p M  , 
   2 21

1 1
2

T M u





   . 

The turbulence flow field is given as [10]: 

   1 11
1 1 1 1

ˆ ˆRe e Re e n ni xi x
n nf a f a f

       (12) 

Here, 1  means the most unstable wave number which 
is obtained from the linear theory; ; the character-
istic functions as 1

3n 
f̂  and 1̂ nf  are obtained from nu-

merical linear stability analysis; the turbulence amplitude 
is given as 1 1 0.05na a  ; 1 3 1 3  ; the phase dif-
ference π 3 . 1 3

The periodic boundary is used in the x direction, and 
the no reflection boundary is used in the y direction. The 
computational domain is given as  0,9π 0.86x  and 

 15,15y  . The uniform grid is used in the x direction. 
The nonuniform grid is used in the y direction, and the 
grid is densed near 0y  . The grid numbers are 

 257 221 x y  . 
Figure 1 shows the evolutionary process for three 

vortex pairing of plane mixing layer, which is from flow 
stability to vortex formation, until to three vortex pairing. 

4.2. Numerical Simulation of Plane Jet Flow 

A compressible axisymmetric jet flow field was simu-
lated numerically using the above method to slove the 
compressible nonconservative two-dimensional Navier - 
Stokes equations in the column coordinates, as the in-
coming flow Mach number is  and the Rey-
nolds number is 

0.4M 
Re 2500 . The initial conditions are 

given as:  

 1 tanh 20 r 1u      , ,  0.197 

0v  , 1  , . 1T 

The no reflection boundary condition is used on the up-
per and export boundary of the flow field. According to 
physical characteristics of the flow, symmetrical condi-
tion is adopted for u, ρ and T, and the antisymmetric 
condition is adopted for v on the jet symmetric axis 
 0r  . The computational domain is given as 

 0,6x 0 ,  0,8.2r . Uniform grids are adopted in 
the x direction, and non-uniform grid is adopted in the r 
direction with local mesh encryption near the axis of 
symmetry. The grid number is  451 101 x r  . 

Figure 2 shows the vorticity sequence diagrams of jet 
near field region. It can be seen that vortex pair appears, 
and later, the distance between two adjacent vortex in-
crease. That is similar to the results in the literature [11]. 

5. Conclusions 

A kind of direct numerical simulation method suitable 
for supercritical carbon dioxide jet flow has been dis-
cussed in this paper. Firstly, the form of dimensionless 
nonconservative compressible Navier-Stokes equations 
in a two-dimensional cartesian coordinate system is de- 
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Figure 1. The three vortex pairing phenomenon of plane 
mixing layer. 
 
rived in detail. High accurate finite difference compact 
schemes based on non-uniform grid system are intro-
duced to solve the equations. Then, three vortex pairing 
phenomenon of plane mixing layer and a compressible 
axisymmetric jet flow field are simulated using the nu-
merical method proposed in this paper. The relevant re-
sults show that the above numerical simulation method 
of solving dimensionless nonconservative compressible 
Navier-Stokes equations is feasible to calculate the su-
percritical carbon dioxide jet flow. And it is found that  

 

Figure 2. Vorticity evolution process of axisymmetric jet 
flow. 
 
the difficulties of splitting the convective terms in con-
servation Navier-Stokes equations, which is brought by 
the supercritical carbon dioxide fluid pressure state equa-
tion, can be avoided by solving the nonconservative com- 
pressible Navier-Stokes equations. 

The preliminary discussion about a direct numerical 
simulation method for supercritical carbon dioxide jet 
flow only has been performed in this paper. In the later 
research, the supercritical CO2 jet flow structure would 
be presented in detail. 
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