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ABSTRACT 

This paper develops an efficient pseudo-random number generator for validation of digital communication channels 
and secure disc. Drives. Simulation results validates the effectiveness of the random number generator. 
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1. Introduction 

Digital data while transmission over communication chan-
nels becomes corrupted because of Inter Symbol Inter-
ference (ISI), Co-Channel Interference (CCI), multi-
path-fading etc. All the parameters that make a data cor-
rupted are known as noise. Extraction of transmitted data 
mitigating this noise is known as equalization. Details 
about the algorithms used in the channel equalization 
filters can be found in [1,2]. However in order to validate 
an equalizer, the same need to be tested in presence of a 
noise or random number generator. 

The noise sources and levels have been extensively 
studied in [3,4], their effects on the signal in the read 
channel have also been investigated in [5-8]. The result-
ing inherent randomness in the channel filter coefficients 
has been proposed for use for random number generators 
in [9], but the included randomness extraction algorithm 
is very inefficient. 

Generators for Cryptographic random number are em-
ployed in many systems, like in self-encrypting disk 
drives, such as the Seagate Momentus Full Disk Encryp-
tion (FDE) drives. The random numbers so generated can 
be used for encryption keys, facilitating secure commu-
nication (via nonces), performing self-tests, and so forth. 
Previous data of the random number generator are diffi-
cult to store securely, because an attacker could read, and 
in some point in the future restore earlier states (together 
with any possible local authentication tags) with the help 
of specialized tools (spin stand), and so force the genera-
tion of the same random sequence as earlier. This may 
cause repeated nonces, of which recurring use of the same 

encryption keys, and so forth, that is, loss of security. 
Physical entropy sources are used to initialize genera-

tors for cryptographic random number at every power up, 
and at special requests, like at reinitializing the firmware, 
or before generating long used cryptographic keys. Seed-
ing with physical values that can not be predicted makes 
a cryptographic random number generator to supply 
pseudorandom sequences, with negligible probability of 
repetition. Correspondingly generated secure random se-
quences this way needs no secure protected storage for 
keys or for the internal state of the generator, therefore it 
reduces costs and improves security. 

In next sections, we discuss how an available digital 
signal with random components, the coefficients of the 
adaptive channel filter, is used in seeding a cryptographic 
random number generator in self-encrypting disk drives. 
The available physical entropy estimation is discussed, 
resulting in an efficient seeding process. These will pro-
vide confidence in the generated random numbers for 
their users, and tools for developers of embedded random 
number generators in testing and evaluation of designs. 

2. System Overview 

2.1. The Architecture 

The read and write transducers are embeded on the head 
which is separated from the rotating disk by an air bear-
ing that keeps the read/write transducers at a distance of 
about 10 nm from the disk surface [10]. The head is em-
bedded on an arm, which is connected to an actuator. In 
a usual 3.5"  disk drives this arm of 5 cm long and prone 
to mechanical vibrations, affected by air damping while 
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the drive is in operation. The vibration in vertical direc-
tion affects the amplitude of the read signal, while the 
radial vibration affects the noise pattern from the granu-
lar structure of the magnetic particles and cross talk from 
neighbor tracks, because of the small spacing between 
tracks (in the range of 10-100 nm). 

To have the head to be on track, servo patterns are 
written on the disk. These servo patterns are arranged in 
radial spokes, which are traversed by the head about 200 
times per revolution (at a rotational speed of 5400 rpm, 
18000 times per second). After the head covers these 
servo patterns, a controller used to evaluate the read sig-
nal and corrects the radial position accordingly. It also 
makes the channel equalizer filter for optimum signal 
shaping. The tracking correction is based on the present 
radial position, velocity, and acceleration of the head. 
These values are random, strongly affected by turbulent 
air damping and mechanical vibrations. This is still to be 
explored with a useful model of the disk drive physics. In 
[3] some mathematical formulations are presented, but still 
lacks a reasonably accurate picture of disk drive internals. 

2.2. Entropy Requirements 

In this paper, we show that disk drives can provide physi-
cal randomness for seeding generators for cryptographic 
random number, but they are targets to specific attacks, 
exploiting their use and special characteristics, leading to 
specific entropy requirements of the disk. The general-
ized “birthday bound” speaks that after taking 2n/2 sam-
ples there is a 50% chance of a uniformly distributed 
n-bit random variable to attain the same value more than 
once. In a data center an virus could observe thousands 
of disk drives rebooting thousands of times, so 107 ≈ 223 
samples from different random number sequence are 
easily taken. When a network shares these results, one 
could build a database from over 232 initial sets of values 
of the random number generator, to search for a collision. 
It gives rise to a requirement of at least 64-bit entropy of 
the seed. Of course, a 50% chance of a successful attack 
is too high. A commonly accepted allowable collision 
probability is 10−8 (half of the chance of hitting the 
jackpot in a 5-out-of-90), which adds 27 bits to the en-
tropy requirements for the seed, so for unlikely repeated 
sequences the entropy of the seed has to be more than 90 
bits. To serve for HW differences, environment changes, 
and so forth, at least 128-bit entropy is desired for the 
seed of a cryptographic random number generator. 

The smallest AES cipher needs 128-bit fully random 
encryption keys, also posing the requirement of at least 
128-bit seed entropy. (High entropy public keys and 
longer symmetric keys must be generated with several 
calls to a reseeded generator for cryptographic random 
number). 

3. Entropy Sources in Rotating Disc Drives 

There are many random physical processes, noise sources 
in disk drives. Cost constraints compel using electronic 
signals, which are available in digital form in standard 
unmodified disk drives, and which contain strong ran-
dom components. At the time of booting, or at a special 
request they provide the entropy sources to seed an 
SW-based generator for cryptographic random number of 
self-encrypting disk drives, ensuring the uniqueness of 
the generated (pseudo) random sequences with very high 
probability. 

In disk drives currently available in the market several 
such sources are used. Combinations of their data give a 
better quality; the speed of the random number genera-
tion, and the safety against potential attacks influencing 
the entropy sources. 

3.1. Timing Variations 

In the disk drive literature there are internal high-speed 
counters available. Least significant bits of these disk 
drives are sufficiently random when sampled during the 
disk boot up process, or in general, after actions involv-
ing a lot of mechanical activities of timing uncertainties, 
such as at spin-up and rotation of the motor and platters, 
and at arm movements in seek operations. These random 
bits can be collected into an entropy pool, and consumed 
on requirement. The entropy of the timing data can be 
found in [11]. 

Such random number generators have been presented, 
the slow [3], implemented externally in the host com-
puter, where synchronous communication masks off 
most of the original timing variations. 

3.2. Tracking Error 

Another type of randomness source was investigated in 
[12], with the tracking error of the magnetic read head 
trying to remain in the middle of the path of the recorded 
data. Consecutive samples are strongly correlated, which 
limits the entropy that can be used. Results in this paper 
in the newest generation of disk drives showed much less 
achievable speed or entropy/s than claimed in [12], but 
the position error of the read/write head certainly repre-
sents another alternative source of randomness 

3.3. Channel Filter-Coefficients 

The drive firmware can access the coefficients of an adap-
tive channel-equalizer, via a diagnostic interface between 
the main control ASIC and the channel signal processor, 
which also does the coding/decoding of the head signal 
[13]. Resistor values of an analog filter represented by 
the coefficients, continuously tuned by the control 
mechanism of the read/write channel chip to make the 
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peaks of the output signal close to equally high. The filter 
coefficients affected by the amplified head signal, con-
taining many random components, including head noise; 
electronic noise; the effects of motor speed variations; 
internal air turbulence; the vibration of the head arm; the 
amplitude uncertainty due to the flight height variations 
of the read head; the actual path of the head over the 
track, influenced by the tracking errors and their correc-
tions. 

FDE drives there are 12 such coefficients accessible, 
each 8 bit long in the Momentus. Asymmetry compensa-
tion tap is fixed coefficient of 11, set for each head and 
zone in the manufacturing process. The other coefficients 
are constantly adapted to the distorted noisy signal of the 
servo patterns. 

When the generator for random number is reseeded, 
seek operations are executed followed by a read from a 
fixed location. At least a full track worth of data affect 
the adaptive filter with involvement of significant me-
chanical arm movements. These translate to hundreds of 
changes in the adaptive channel filter, strongly influenced 
by affecting noise; therefore, there will be very little 
correlation between consecutive acquired values of the 
same coefficients. A very high noise is experienced in 
the read-back signal in modern disk drives. In a disk 
drive under investigation the read-back signal was cap-
tured with a digital storage oscilloscope and shown in 
Figure 1. 

We can see wildly varying signal peaks. The adaptive 
equalization filter makes a more uniform height of these 
peaks, as shown in Figure 2. 
 

 

Figure 1. Noisy read-back signal. 
 

 
Figure 2. Signal after equalization. 

4. Entropy Esimation 

We experimented on 22 data sets, 100 M coefficient 
bytes in each. Those data were collected in continuous 
sessions (performing two seek operations and reading the 
full track before data acquisition), from Seagate Mo-
mentus FDE disk drives of different capacities from dif-
ferent manufacturing sites, under varying environmental 
conditions (temperature 0˚C, 20˚C, 60˚C; supply voltage 
4.75 V, 5 V, 5.25 V). The sets were captured over a diag 
nostic port and recorded in another PC, not to influence 
the data collection. 

There have been some non-random properties ob-
served in the channel filter coefficient data, which have 
to be considered when the available entropy is estimated. 
In the sequel one will estimate the entropy as 16 bits in 
each block of coefficients (96 raw bits), which can be 
acquired in every 10 milliseconds. The result is 1.6 K 
very high quality random bits per second. 

We could not found any significant differences in the 
randomness between datasets, that is, the manufacturing 
process and environmental conditions do not considera-
bly influence the available entropy. An attacker gains no 
exploitable information by examining a disk drive, over 
generally available data (collected from other drives), or 
affecting its working environment. 

4.1. Data Dependencies 

The plot of the 12 filter coefficients is of relatively stable 
shape in time. Figure 3 gives the curves of 10 consecu-
tive captured sets of filter coefficients from the same 
drive, plotted on top of each other. The abscissa is the 
index of the filter coefficients (1-12), the ordinate is the 
value of the corresponding coefficient byte (P1-P12). A 
curve plotted in one color shows the 12 filter coefficient 
values of one example set, connected by straight lines. 
 

 

Figure 3. Coefficient changes in time. 
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One can observe that at some points (i.e., between x = 
4 and 5) these segments are almost parallel. This means 
if P4 increases, P5 does, too; therefore, they are posi-
tively correlated. At other segments, like the ones be-
tween x = 7 and x = 8, cross each other at roughly the 
same point half way in between. This means that if P7 
decreases, P8 increases by roughly the same amount. 
This is an indication of negative correlation between P7 
and P8, therefore, the entropy of coefficient P7 and P8 
together is not much larger than that of P7 alone, or the 
entropy of P4 and P5 together is close to the entropy of 
P5 alone. This indicates to a potential issue: the available 
entropy could be less than the estimates the coefficient 
samples provide in isolation.  

4.2. Coefficient Distribution 

By plotting the histograms of each filter coefficient from 
contiguous measurement sequences of a disk drive (Fig-
ure 4) we will observe that each individual coefficient 
attains only a few distinct values, and almost all their 
variability is preserved in their few least significant bits 
(bits [1,2]—bits [1-4]). 

The widths of the bars help visually comparing the 
histograms. Interestingly, the coefficients are not uni-
formly or normally distributed, but can be well approxi-
mated by the superposition of two normal distribution 
(bell) curves, but it is irrelevant to scope of our discus-
sions. 

4.2.1. Autocorrelation of Sequences of Individual 
Coefficients 

This paper uses the discrete Fourier transform of the 
same individual coefficient sequences described above 
to compute many autocorrelation values at once: 

    1 TF F x F x  , where  F x denotes the discrete 
Fourier transform of the sequence x .  TF x , its trans-
posed complex conjugate and  1F X  is its inverse. 
The autocorrelation values are plotted for each of the 12 
coefficient sequences in Figure 5, lags = 1-50. No value 
of the autocorrelation exceeds 21%, with an average 
around 13%. The small residual (large lag) autocorrela-
tion values are the artifacts of the very non-uniform dis-
tributions. The uneven distributions and short-term auto-
correlation makes overall entropy loss (which only causes 
a loss of a handful bits entropy). The process described in 
next subsection “hashing” will eliminate both problems. 

4.3. Entropy of Coefficients 

Usually, the filter coefficients carry about 3 bits of Shan-
non entropy: 

 logi iH p p   

There are some exceptions as: coefficient 1 carries 1.5 

bit, coefficient 2 does 3.5 bits, and coefficient 4 does 2.4 
bits. If all of these coefficients were independent, the 
overall entropy of the 12 channel filter coefficient bytes 
could be 32 bits. Statistical tests next subsection shows 
less actual randomness (16-24 bit), because of the corre-
lation among them, and because of their internal auto-
correlation. 

4.3.1. Min Entropy 
The min-entropy is better for estimating the security: 

  2log max iM p  . 
A distribution of a min-entropy of at least b bits if no 

state has a probability greater than 2−b. It determines the 
complexity of such attack strategies, when the attacker 
seeds his generator for cryptographic random number 
(identical to the one in the disk drive) with the most 
likely coefficient values. If it finds a match, he guessed 
the seed right. If it does not, he reboots and checks the 
random numbers generated by the disk drive again, until 
the most likely filter coefficients appear to be the actual 
seed. The attack is slow; it needs tens of seconds for each 
reboot. (Working on many identical disk drives, costing 
$ 50-100 each, could speed up the process proportionally, 
but with a very large investment.) If instead a virus feeds 
various possible values of the filter coefficients to a copy 
of the generator for cryptographic random number, he 
can try millions of seed values in the time of one reboot. 
This means, the Shannon entropy measures better the 
security of physical randomness sources seeding a cryp-
tographic random number generator in disk drives, but 
we have to make sure that the min-entropy is also rea-
sonable, that is, no seed occurs at exploitable frequency 
(1 second trial/30 year: for 910ip  ). 

4.3.2. Mix-Truncate (Hash) Entropy Estimation 
The entropy estimation process is as follows: hash the 
bits of each channel filter coefficient dataset (12 × 8 = 96 
bits) to k  bit output. k  Decreases from 32 (the upper 
bound of the entropy from Figure 6) until the concate-
nated output blocks pass all commonly used randomness 
tests. Perfect hashing results in a more uniform distribu-
tion and reduces the autocorrelations in the costs of de-
creasing the number of random bits. (We make use of the 
SHA1 hash on zero-padded input and keeping the least 
significant k  bits of its 160 digest bits. SHA1 has no 
known exploitable weakness in this mode: an virus with 
reasonable resources cannot distinguish it from a perfect 
hash.) 

There are some other methods in use to shrink data to 
improve randomness. The first of such method was the 
Neumann corrector to remove bias [14], but more recent 
entropy amplification techniques are all related to hash-
ing [15-17]. (A hash function maps arbitrary data to a fix 
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range of integers, not preserving those simple structures 
of the input sequences.) The used randomness tests are 
very sensitive to non-uniform distribution of k -bit blocks, 
but many other nonrandom properties are checked, too. If 
all the tests pass with a particular choice of k , we know 
that each possible k  bit block in the sequence of the 
hashed coefficient sets occurs at roughly the same num-

ber of times: each hashed filter coefficient set appears 
independently, at about 2 k  frequency. Consequently, no 
filter coefficient set occurs with probability much larger 
than 2 k  that is the min-entropy of one coefficient set is 
about k . When n such independent blocks are used to 
seed the random number generator, an virus has a search 
space of at least 2kn  elements when trying different 

 

 

Figure 4. Histograms of the filter coefficients. 
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Figure 5. Autocorrelation of the filter coefficients. 
 
seeds in a copy of the RNG to guess the seed of the disk 
drive (e.g., n = k = 16 gives about 2256 > 1077 seeds to try). 

4.3.3. Justification of the Mix-Truncate Entropy 
Estimation 

The use of physical randomness in this paper justifies 
this hashing-then statistical testing process, although 
proving true randomness is impossible from any finite 
number of input bits, for example, the bit sequence could 
be periodic with a period longer than the observed data, 
or all unseen bits could be 0. These are not be ruled out 
by the observed data. One can only state that no evidence 
for non-randomness was found. 

Common statistical tests accept many cryptographi-
cally hashed non-random sequences as perfectly random, 
termed pseudo-random, if the size of the hash output is 
large enough (greater than the binary logarithm of the 
length of the sequence). E.g., if we hash the members of 
the sequence 90,1,2, ,10  to more than 30 bits each, the 
result will pass all the standard statistical randomness 
tests, although the original sequence is clearly not random, 
and this non-randomness is apparent in the finite input 
data. Arbitrarilymany similar pseudorandom sequences 
can easily be constructed, which fool the statistical ran-
domness tests, even if we make certain assumptions 



An Efficient Noise Generator for Validation of Channels Equalizers 

Copyright © 2011 SciRes.                                                                                 JSIP 

7

 

Figure 6. Autocorrelation of a 96-16 bit hashed coefficient 
sequence. 
 
about the data, like lack of autocorrelation. But, physical 
considerations established that our sample blocks are in-
dependent to a great degree (which invalidates the pseu-
dorandom counter examples above). Autocorrelation 
tests did not argue this claim. To be remembered that the 
independence has physical reasons, not mathematically 
proven. 

The proposed hashing process of this paper changes 
data blocks independently from each other, and so it does 
not introduce pseudorandomness, which would make the 
statistical test suites to accept hashed regular sequences. 
Hashing changes individual distributions and dependen-
cies within data blocks. Even correlations between groups 
of coefficients are avoided. 

Statistical randomness tests verifies long-term non- 
randomness, like that the hashed blocks do not repeat 
more often than true random blocks would, and there are 
no exploitable ways to guess the next block, having ob-
served an arbitrary number of hashed blocks. These are 
sufficient enough for the security of seeding generators 
for cryptographic pseudorandom number with the hashed 
data blocks, originated from sets of channel filter coeffi-
cients, separated by largely unpredictable mechanical 
events. 

4.3.4. Security of Hashed Seeding of Pseudorandom 
Number Generator 

When the analyzed sequence is used for seeding genera-
tors for (cryptographic) pseudorandom number, one don’t 
need uniform randomness of the seed blocks: but large 
variability (no one should occur with large probability), 
and independence (seed blocks at any distance vary a lot). 
The second implies the former: if a block repeated often, 
autocorrelation would be large. This independence pro-
vides protection against an attacker, who records several 
generated random numbers and tries to derive seeds for 

an identical random number generator, to find a match. 
Here, in this paper, sets of seed blocks take a huge num-
ber of different values, and so an actual one cannot be 
guessed with a significant chance of success; identical 
sequences occur very rarely. 

Lower value of autocorrelation assures that no seed 
blocks occur frequently nor are some blocks correlated. 
Else, otherwise an attacker could find frequent blocks in 
another drive, or could modify spied out earlier seed blocks 
according to the property, which caused large autocorre-
lation. This will increase the chance of a successful guess 
of a seed, revealing all newly generated random numbers 
until a fresh seed is applied. 

4.3.5. Hash Functions for Data Whitening 
Physical random numbers almost always have to be whi-
tened, because their distribution could be non-uniform 
and changing in time and affected by environmental con-
ditions. Hence, even for non-cryptographic applications 
the physical randomness source is usually hashed (cor-
responding to seeding generators for pseudorandom 
number), although for lower security requirements there 
are much faster hash algorithms (e.g., the ones in [18]) 
than the secure hash functions used in cryptography (e.g., 
SHA1/2). 

5. Randomness Tests 

There are many randomness tests presented in [19-23]. A 
survey can be found in [24]. 

Diehard Test Suite. 15 different groups of statistical 
randomness tests can be found in [20,21]. This set of 
tests is probably the most widely used in literature. Many 
different properties are tested and the list of the results is 
17 pages long. The randomness measures are of 250 P- 
values. The usual way for accepting a single p-value is to 
check if it is in a certain interval, like [0.01, 0.99]. The 
difficulty with the convention of the Diehard test is to 
establish an overall acceptance criterion, because related 
tests are applied to the same set of data and so the results 
of the individual tests are correlated. A common proce-
dure used in [25,26] for testing the random number gen-
erator implemented in the Intel Pentium III chip works as 
follows. To come down from a 95% confidence interval 
for each of the 250 test results the 5% confidence level is 
divided by 250, resulting in 0.02%. The Diehard test was 
considered to pass if all 250 P-values are in the corre-
sponding interval [0.0001, 0.9999]. This paper adopted 
this acceptance criterion, with an additional check de-
scribed in [12]: count the number of near-fails among the 
250 P-values returned by the Diehard tests (those P- val-
ues which are not in [0.025, 0.975]). Because asymptoti-
cally the relative number of fails for the given interval 
is 5%, there must be about 12 near-fails among the 250 
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values. This near fails are expected, as the Diehard test 
suite states in the test protocol: “Such p’s happen among 
the hundreds that DIEHARD produces, even with good 
RNG’s. So keep in mind that “p happens”. 

The Diehard (or the NIST) tests are not accurate 
enough to autocorrelations, which occur at other than in-
teger multiples of 8 bit offsets. (Some of data sets, which 
pass the Diehard tests at k = 28, but failed with k = 24 
reduction.) Hence, only the tests of hashed filter coeffi-
cient set to k = 24, 16, and 8 bits can be fully trusted. 
Some of data sets proved to be sufficiently random with 
k = 24, but a few did not, while all of the Diehard tests 
passed on our every hashed channel filter coefficient sets 
at k = 16 or less. 

NIST 800-22 Randomness Tests: While the Diehard 
tests and Maurer’s test passed on our hashed data, the 
NIST tests also accepted the input as random [23]. Ad-
vantages of the NIST test suite is that it works on data of 
size other than 10 MB, needed for Diehard, but our 
hashed files were large enough for Diehard. Each of the 
NIST tests provides a P-value, and depending on the 
length of the sequence an acceptance threshold is pro-
vided. The ratio of accepted P values for each test must 
be above a certain given level. For the tests to clear the 
collected P-values are assessed in the end, to verify their 
uniform distribution between 0 and 1, which is similar to 
the overall acceptance of Diehard. 

Maurer’s Universal Randomness Test. Presented in 
[22], and further investigated in [27], analyzes the statis-
tics of gaps between the closest occurrences of the same 
bit blocks. A test for each block size 1-16 is to be per-
formed. Larger test blocks require huge datasets for high 
confidence in the test results. e.g., the necessary size of 
the data sets for 16-bit test blocks is 1000 · 216 · 12 ≈ 800 
MB. All of the Maurer tests with block sizes b = 1-16 
passed, when the data was hashed to k = 16. In this case 
virtually no memory is present, because of the many 
seek-induced filter coefficient updates between data ac-
quisitions.) 

Autocorrelation. This paper used the MATLAB 
tstool/ autocorrelation tool, and the results (one in Figure 
7) were compared to high quality pseudorandom data. 
Each of hashed channel filter coefficient dataset with k = 
24 or less provided autocorrelation curves indistinguish-
able from that of uniform, true random data (we got 
roughly the same maximum, average, and standard de-
viation). 

Transform-Tests. An FFT-test is may be included 
among the NIST tests. After computation the correlation 
of the hashed coefficient sequences to periodic signals 
(sine waves) the FFT test finds periodic components in 
the hashed data. The physical model and the observed level 
of autocorrelation in the individual coefficient sequences 

 

Figure 7. More uniformdistribution via hashing of 1, 256 
and 4096 samples together, respectively. 
 
expect no periodic signal components, which was con-
firmed by these tests on every hashed channel filter coef-
ficient dataset with k = 24 and 16. 

Walsh Transform-Test. Here, we find other type of 
structured (pseudo-periodic) components in the data. The 
actual physical model and the observed level of autocor-
relation in the individual coefficient sequences predict no 
significant signal components of this type, either, which 
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was confirmed by the Walsh transform tests on every 
hashed channel filter coefficient dataset with k = 24 and 
16 (showing little deviation from the expected values). 

The Cryptographic Pseudorandom Number Gen-
erator. With the techniques described above we found 
that one channel filter coefficient datasets provides at 
least 16bit entropy, therefore eight datasets are enough 
for our desired 128-bit entropy. Here, in this section the 
algorithm is described, how the available physical ran-
domness is converted to cryptographically secure random 
numbers. 

Channel filter coefficients are collected to start with. 8 
datasets need all together about 80 ms (1.6 Kb/s), allow-
ing 12 reseedings a second, which would only rarely be 
needed. By hybridizing in samples of a free running 
counter, additional randomness is gained and the safety 
improves against HW-based attacks trying to influence 
the channel filter coefficients. 4 LS bits of each 8 sets of 
11 channel filter coefficients, together with the counters, 
give 384 raw seed bits, used in two halves as XSEED 
values, in two iterations of the FIPS-186-2 generator. 
The generator for cryptographic random number speci-
fied in the FIPS-186-2 document [28] was used with 
SHA1 as hash function and 24-byte (192 bit) internal 
state. While x is a desired (160-bit) pseudorandom num-
ber (may be cut and the pieces combined for the re-
quested number of bits), the following FIPS-186 algo-
rithm generates m random values of x. 

Step 1. Choose a new key value for the seed key, 
1920 2XKEY  . 

Step 2. In hexadecimal notation let 

t  = 67452301 EFCDAB89 98BADCFE 10325476 
C3D2E1F0                              (1) 

This is the usual initial value for 0 1 2 3 4H H H H H  
in the SHA1 hash function. (“  ” is concatenation.) 

Step 3. For j = 0 to 1m   do 

jXSEED = Optional user input 

  192mod 2jXVAL XKEY XSEED   

jx  = SHA1  ,t XVAL  

  1921 mod 2jXKEY XKEY x   . 

5.1. Accumulated Entropy 

The initial entropy of XKEY  (the internal state of the 
cryptographic pseudorandom number generator) is 0 
while booting up. After the step 3(d), regardless of the 
entropy of XSEED , the entropy in XKEY  cannot in-
crease to more than 160 bits (the length of the added x), 
stored in the LS (least significant) 160 bits of XKEY . 
During the next iterations only this LS 160 bits are fur-
ther modified (disregarding a possible carry bit), there 
fore the accumulated entropy stored in XKEY  increases 

very slowly beyond 160 bits. During initialization 
(Step 1) one can choose a new secret value for XKEY . 
This can be anything (cannot be specified), so we can use 
the current XKEY  value after a few iterations of the 
random number generation, shifted up to fill its most sig-
nificant (MS) bits. Next round calls of the RNG affect 
the LS bits of XKEY , keeping the initial entropy stored 
in the MS bits intact. Hence, the seeding process can be 
performed in two phases. The 1st phase starts with an all 
0 XKEY  and uses half of the total number of seeding 
rounds to mix in the HW entropy. During the second 
phase we shift the LS 160 bits of the current XKEY  to 
its MS bits and then perform the remaining rounds to mix 
in the rest of the HW entropy. While in these steps the 
generated random numbers ( jx ) are discarded, only the 
internal state ( XKEY ) is kept updated. 

For accumulating more than 320 bit internal entropy 
(when XKEY  is chosen longer than 40 bytes) we can 
execute more phases like the above. SHA1 limits the 
number of usable bits to 512, but if required, it can be 
replaced by hash functions operating on larger (or on 
multiple) blocks. 

5.2. Compression of the HW Seed 

The format and content of the seeding data is not speci-
fied in the original FIPS-186-2 document, therefore pre-
processing is followed with, and desirable. Having fewer 
LS bits of the filter coefficients (as many as necessary to 
preserve the entropy) each channel filter coefficient data 
set can be compressed to 40 bits, without significant 
computational work. Then, the LS bits of free running 
counters are attached. Several of compressed blocks like 
these can be used concatenated in Step 3(a), speeding up 
the seeding process proportionally, by trading slow 
SHA1 hash operations for fast data compression steps. 
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