
Journal of Signal and Information Processing, 2011, 2, 1-10
doi:10.4236/jsip.2011.21001 Published Online February 2011 (http://www.SciRP.org/journal/jsip)

Copyright © 2011 SciRes. JSIP

1

An Efficient Noise Generator for Validation of
Channels Equalizers

Nihar Panda1, Siba P. Panigrahi1, Sasmita Kumari Padhy2

1Electrical Engineering, Konark Institute of Science & Technology, Bhubaneswar, Orissa, India; 2ITER, SOA University, Bhu-
baneswar, India
Email: siba_panigrahy15@rediffmail.com

Received December 10th, 2010; revised January 11th, 2011; accepted February 18th, 2011

ABSTRACT

This paper develops an efficient pseudo-random number generator for validation of digital communication channels
and secure disc. Drives. Simulation results validates the effectiveness of the random number generator.

Keywords: Digital Communication, Channel Equalization

1. Introduction

Digital data while transmission over communication chan-
nels becomes corrupted because of Inter Symbol Inter-
ference (ISI), Co-Channel Interference (CCI), multi-
path-fading etc. All the parameters that make a data cor-
rupted are known as noise. Extraction of transmitted data
mitigating this noise is known as equalization. Details
about the algorithms used in the channel equalization
filters can be found in [1,2]. However in order to validate
an equalizer, the same need to be tested in presence of a
noise or random number generator.

The noise sources and levels have been extensively
studied in [3,4], their effects on the signal in the read
channel have also been investigated in [5-8]. The result-
ing inherent randomness in the channel filter coefficients
has been proposed for use for random number generators
in [9], but the included randomness extraction algorithm
is very inefficient.

Generators for Cryptographic random number are em-
ployed in many systems, like in self-encrypting disk
drives, such as the Seagate Momentus Full Disk Encryp-
tion (FDE) drives. The random numbers so generated can
be used for encryption keys, facilitating secure commu-
nication (via nonces), performing self-tests, and so forth.
Previous data of the random number generator are diffi-
cult to store securely, because an attacker could read, and
in some point in the future restore earlier states (together
with any possible local authentication tags) with the help
of specialized tools (spin stand), and so force the genera-
tion of the same random sequence as earlier. This may
cause repeated nonces, of which recurring use of the same

encryption keys, and so forth, that is, loss of security.
Physical entropy sources are used to initialize genera-

tors for cryptographic random number at every power up,
and at special requests, like at reinitializing the firmware,
or before generating long used cryptographic keys. Seed-
ing with physical values that can not be predicted makes
a cryptographic random number generator to supply
pseudorandom sequences, with negligible probability of
repetition. Correspondingly generated secure random se-
quences this way needs no secure protected storage for
keys or for the internal state of the generator, therefore it
reduces costs and improves security.

In next sections, we discuss how an available digital
signal with random components, the coefficients of the
adaptive channel filter, is used in seeding a cryptographic
random number generator in self-encrypting disk drives.
The available physical entropy estimation is discussed,
resulting in an efficient seeding process. These will pro-
vide confidence in the generated random numbers for
their users, and tools for developers of embedded random
number generators in testing and evaluation of designs.

2. System Overview

2.1. The Architecture

The read and write transducers are embeded on the head
which is separated from the rotating disk by an air bear-
ing that keeps the read/write transducers at a distance of
about 10 nm from the disk surface [10]. The head is em-
bedded on an arm, which is connected to an actuator. In
a usual 3.5" disk drives this arm of 5 cm long and prone
to mechanical vibrations, affected by air damping while

An Efficient Noise Generator for Validation of Channels Equalizers

Copyright © 2011 SciRes. JSIP

2

the drive is in operation. The vibration in vertical direc-
tion affects the amplitude of the read signal, while the
radial vibration affects the noise pattern from the granu-
lar structure of the magnetic particles and cross talk from
neighbor tracks, because of the small spacing between
tracks (in the range of 10-100 nm).

To have the head to be on track, servo patterns are
written on the disk. These servo patterns are arranged in
radial spokes, which are traversed by the head about 200
times per revolution (at a rotational speed of 5400 rpm,
18000 times per second). After the head covers these
servo patterns, a controller used to evaluate the read sig-
nal and corrects the radial position accordingly. It also
makes the channel equalizer filter for optimum signal
shaping. The tracking correction is based on the present
radial position, velocity, and acceleration of the head.
These values are random, strongly affected by turbulent
air damping and mechanical vibrations. This is still to be
explored with a useful model of the disk drive physics. In
[3] some mathematical formulations are presented, but still
lacks a reasonably accurate picture of disk drive internals.

2.2. Entropy Requirements

In this paper, we show that disk drives can provide physi-
cal randomness for seeding generators for cryptographic
random number, but they are targets to specific attacks,
exploiting their use and special characteristics, leading to
specific entropy requirements of the disk. The general-
ized “birthday bound” speaks that after taking 2n/2 sam-
ples there is a 50% chance of a uniformly distributed
n-bit random variable to attain the same value more than
once. In a data center an virus could observe thousands
of disk drives rebooting thousands of times, so 107 ≈ 223
samples from different random number sequence are
easily taken. When a network shares these results, one
could build a database from over 232 initial sets of values
of the random number generator, to search for a collision.
It gives rise to a requirement of at least 64-bit entropy of
the seed. Of course, a 50% chance of a successful attack
is too high. A commonly accepted allowable collision
probability is 10−8 (half of the chance of hitting the
jackpot in a 5-out-of-90), which adds 27 bits to the en-
tropy requirements for the seed, so for unlikely repeated
sequences the entropy of the seed has to be more than 90
bits. To serve for HW differences, environment changes,
and so forth, at least 128-bit entropy is desired for the
seed of a cryptographic random number generator.

The smallest AES cipher needs 128-bit fully random
encryption keys, also posing the requirement of at least
128-bit seed entropy. (High entropy public keys and
longer symmetric keys must be generated with several
calls to a reseeded generator for cryptographic random
number).

3. Entropy Sources in Rotating Disc Drives

There are many random physical processes, noise sources
in disk drives. Cost constraints compel using electronic
signals, which are available in digital form in standard
unmodified disk drives, and which contain strong ran-
dom components. At the time of booting, or at a special
request they provide the entropy sources to seed an
SW-based generator for cryptographic random number of
self-encrypting disk drives, ensuring the uniqueness of
the generated (pseudo) random sequences with very high
probability.

In disk drives currently available in the market several
such sources are used. Combinations of their data give a
better quality; the speed of the random number genera-
tion, and the safety against potential attacks influencing
the entropy sources.

3.1. Timing Variations

In the disk drive literature there are internal high-speed
counters available. Least significant bits of these disk
drives are sufficiently random when sampled during the
disk boot up process, or in general, after actions involv-
ing a lot of mechanical activities of timing uncertainties,
such as at spin-up and rotation of the motor and platters,
and at arm movements in seek operations. These random
bits can be collected into an entropy pool, and consumed
on requirement. The entropy of the timing data can be
found in [11].

Such random number generators have been presented,
the slow [3], implemented externally in the host com-
puter, where synchronous communication masks off
most of the original timing variations.

3.2. Tracking Error

Another type of randomness source was investigated in
[12], with the tracking error of the magnetic read head
trying to remain in the middle of the path of the recorded
data. Consecutive samples are strongly correlated, which
limits the entropy that can be used. Results in this paper
in the newest generation of disk drives showed much less
achievable speed or entropy/s than claimed in [12], but
the position error of the read/write head certainly repre-
sents another alternative source of randomness

3.3. Channel Filter-Coefficients

The drive firmware can access the coefficients of an adap-
tive channel-equalizer, via a diagnostic interface between
the main control ASIC and the channel signal processor,
which also does the coding/decoding of the head signal
[13]. Resistor values of an analog filter represented by
the coefficients, continuously tuned by the control
mechanism of the read/write channel chip to make the

An Efficient Noise Generator for Validation of Channels Equalizers

Copyright © 2011 SciRes. JSIP

3

peaks of the output signal close to equally high. The filter
coefficients affected by the amplified head signal, con-
taining many random components, including head noise;
electronic noise; the effects of motor speed variations;
internal air turbulence; the vibration of the head arm; the
amplitude uncertainty due to the flight height variations
of the read head; the actual path of the head over the
track, influenced by the tracking errors and their correc-
tions.

FDE drives there are 12 such coefficients accessible,
each 8 bit long in the Momentus. Asymmetry compensa-
tion tap is fixed coefficient of 11, set for each head and
zone in the manufacturing process. The other coefficients
are constantly adapted to the distorted noisy signal of the
servo patterns.

When the generator for random number is reseeded,
seek operations are executed followed by a read from a
fixed location. At least a full track worth of data affect
the adaptive filter with involvement of significant me-
chanical arm movements. These translate to hundreds of
changes in the adaptive channel filter, strongly influenced
by affecting noise; therefore, there will be very little
correlation between consecutive acquired values of the
same coefficients. A very high noise is experienced in
the read-back signal in modern disk drives. In a disk
drive under investigation the read-back signal was cap-
tured with a digital storage oscilloscope and shown in
Figure 1.

We can see wildly varying signal peaks. The adaptive
equalization filter makes a more uniform height of these
peaks, as shown in Figure 2.

Figure 1. Noisy read-back signal.

Figure 2. Signal after equalization.

4. Entropy Esimation

We experimented on 22 data sets, 100 M coefficient
bytes in each. Those data were collected in continuous
sessions (performing two seek operations and reading the
full track before data acquisition), from Seagate Mo-
mentus FDE disk drives of different capacities from dif-
ferent manufacturing sites, under varying environmental
conditions (temperature 0˚C, 20˚C, 60˚C; supply voltage
4.75 V, 5 V, 5.25 V). The sets were captured over a diag
nostic port and recorded in another PC, not to influence
the data collection.

There have been some non-random properties ob-
served in the channel filter coefficient data, which have
to be considered when the available entropy is estimated.
In the sequel one will estimate the entropy as 16 bits in
each block of coefficients (96 raw bits), which can be
acquired in every 10 milliseconds. The result is 1.6 K
very high quality random bits per second.

We could not found any significant differences in the
randomness between datasets, that is, the manufacturing
process and environmental conditions do not considera-
bly influence the available entropy. An attacker gains no
exploitable information by examining a disk drive, over
generally available data (collected from other drives), or
affecting its working environment.

4.1. Data Dependencies

The plot of the 12 filter coefficients is of relatively stable
shape in time. Figure 3 gives the curves of 10 consecu-
tive captured sets of filter coefficients from the same
drive, plotted on top of each other. The abscissa is the
index of the filter coefficients (1-12), the ordinate is the
value of the corresponding coefficient byte (P1-P12). A
curve plotted in one color shows the 12 filter coefficient
values of one example set, connected by straight lines.

Figure 3. Coefficient changes in time.

An Efficient Noise Generator for Validation of Channels Equalizers

Copyright © 2011 SciRes. JSIP

4

One can observe that at some points (i.e., between x =
4 and 5) these segments are almost parallel. This means
if P4 increases, P5 does, too; therefore, they are posi-
tively correlated. At other segments, like the ones be-
tween x = 7 and x = 8, cross each other at roughly the
same point half way in between. This means that if P7
decreases, P8 increases by roughly the same amount.
This is an indication of negative correlation between P7
and P8, therefore, the entropy of coefficient P7 and P8
together is not much larger than that of P7 alone, or the
entropy of P4 and P5 together is close to the entropy of
P5 alone. This indicates to a potential issue: the available
entropy could be less than the estimates the coefficient
samples provide in isolation.

4.2. Coefficient Distribution

By plotting the histograms of each filter coefficient from
contiguous measurement sequences of a disk drive (Fig-
ure 4) we will observe that each individual coefficient
attains only a few distinct values, and almost all their
variability is preserved in their few least significant bits
(bits [1,2]—bits [1-4]).

The widths of the bars help visually comparing the
histograms. Interestingly, the coefficients are not uni-
formly or normally distributed, but can be well approxi-
mated by the superposition of two normal distribution
(bell) curves, but it is irrelevant to scope of our discus-
sions.

4.2.1. Autocorrelation of Sequences of Individual
Coefficients

This paper uses the discrete Fourier transform of the
same individual coefficient sequences described above
to compute many autocorrelation values at once:

    1 TF F x F x  , where  F x denotes the discrete
Fourier transform of the sequence x .  TF x , its trans-
posed complex conjugate and  1F X is its inverse.
The autocorrelation values are plotted for each of the 12
coefficient sequences in Figure 5, lags = 1-50. No value
of the autocorrelation exceeds 21%, with an average
around 13%. The small residual (large lag) autocorrela-
tion values are the artifacts of the very non-uniform dis-
tributions. The uneven distributions and short-term auto-
correlation makes overall entropy loss (which only causes
a loss of a handful bits entropy). The process described in
next subsection “hashing” will eliminate both problems.

4.3. Entropy of Coefficients

Usually, the filter coefficients carry about 3 bits of Shan-
non entropy:

 logi iH p p 

There are some exceptions as: coefficient 1 carries 1.5

bit, coefficient 2 does 3.5 bits, and coefficient 4 does 2.4
bits. If all of these coefficients were independent, the
overall entropy of the 12 channel filter coefficient bytes
could be 32 bits. Statistical tests next subsection shows
less actual randomness (16-24 bit), because of the corre-
lation among them, and because of their internal auto-
correlation.

4.3.1. Min Entropy
The min-entropy is better for estimating the security:

  2log max iM p  .
A distribution of a min-entropy of at least b bits if no

state has a probability greater than 2−b. It determines the
complexity of such attack strategies, when the attacker
seeds his generator for cryptographic random number
(identical to the one in the disk drive) with the most
likely coefficient values. If it finds a match, he guessed
the seed right. If it does not, he reboots and checks the
random numbers generated by the disk drive again, until
the most likely filter coefficients appear to be the actual
seed. The attack is slow; it needs tens of seconds for each
reboot. (Working on many identical disk drives, costing
$ 50-100 each, could speed up the process proportionally,
but with a very large investment.) If instead a virus feeds
various possible values of the filter coefficients to a copy
of the generator for cryptographic random number, he
can try millions of seed values in the time of one reboot.
This means, the Shannon entropy measures better the
security of physical randomness sources seeding a cryp-
tographic random number generator in disk drives, but
we have to make sure that the min-entropy is also rea-
sonable, that is, no seed occurs at exploitable frequency
(1 second trial/30 year: for 910ip ).

4.3.2. Mix-Truncate (Hash) Entropy Estimation
The entropy estimation process is as follows: hash the
bits of each channel filter coefficient dataset (12 × 8 = 96
bits) to k bit output. k Decreases from 32 (the upper
bound of the entropy from Figure 6) until the concate-
nated output blocks pass all commonly used randomness
tests. Perfect hashing results in a more uniform distribu-
tion and reduces the autocorrelations in the costs of de-
creasing the number of random bits. (We make use of the
SHA1 hash on zero-padded input and keeping the least
significant k bits of its 160 digest bits. SHA1 has no
known exploitable weakness in this mode: an virus with
reasonable resources cannot distinguish it from a perfect
hash.)

There are some other methods in use to shrink data to
improve randomness. The first of such method was the
Neumann corrector to remove bias [14], but more recent
entropy amplification techniques are all related to hash-
ing [15-17]. (A hash function maps arbitrary data to a fix

An Efficient Noise Generator for Validation of Channels Equalizers

Copyright © 2011 SciRes. JSIP

5

range of integers, not preserving those simple structures
of the input sequences.) The used randomness tests are
very sensitive to non-uniform distribution of k -bit blocks,
but many other nonrandom properties are checked, too. If
all the tests pass with a particular choice of k , we know
that each possible k bit block in the sequence of the
hashed coefficient sets occurs at roughly the same num-

ber of times: each hashed filter coefficient set appears
independently, at about 2 k frequency. Consequently, no
filter coefficient set occurs with probability much larger
than 2 k that is the min-entropy of one coefficient set is
about k . When n such independent blocks are used to
seed the random number generator, an virus has a search
space of at least 2kn elements when trying different

Figure 4. Histograms of the filter coefficients.

An Efficient Noise Generator for Validation of Channels Equalizers

Copyright © 2011 SciRes. JSIP

6

Figure 5. Autocorrelation of the filter coefficients.

seeds in a copy of the RNG to guess the seed of the disk
drive (e.g., n = k = 16 gives about 2256 > 1077 seeds to try).

4.3.3. Justification of the Mix-Truncate Entropy
Estimation

The use of physical randomness in this paper justifies
this hashing-then statistical testing process, although
proving true randomness is impossible from any finite
number of input bits, for example, the bit sequence could
be periodic with a period longer than the observed data,
or all unseen bits could be 0. These are not be ruled out
by the observed data. One can only state that no evidence
for non-randomness was found.

Common statistical tests accept many cryptographi-
cally hashed non-random sequences as perfectly random,
termed pseudo-random, if the size of the hash output is
large enough (greater than the binary logarithm of the
length of the sequence). E.g., if we hash the members of
the sequence 90,1,2, ,10 to more than 30 bits each, the
result will pass all the standard statistical randomness
tests, although the original sequence is clearly not random,
and this non-randomness is apparent in the finite input
data. Arbitrarilymany similar pseudorandom sequences
can easily be constructed, which fool the statistical ran-
domness tests, even if we make certain assumptions

An Efficient Noise Generator for Validation of Channels Equalizers

Copyright © 2011 SciRes. JSIP

7

Figure 6. Autocorrelation of a 96-16 bit hashed coefficient
sequence.

about the data, like lack of autocorrelation. But, physical
considerations established that our sample blocks are in-
dependent to a great degree (which invalidates the pseu-
dorandom counter examples above). Autocorrelation
tests did not argue this claim. To be remembered that the
independence has physical reasons, not mathematically
proven.

The proposed hashing process of this paper changes
data blocks independently from each other, and so it does
not introduce pseudorandomness, which would make the
statistical test suites to accept hashed regular sequences.
Hashing changes individual distributions and dependen-
cies within data blocks. Even correlations between groups
of coefficients are avoided.

Statistical randomness tests verifies long-term non-
randomness, like that the hashed blocks do not repeat
more often than true random blocks would, and there are
no exploitable ways to guess the next block, having ob-
served an arbitrary number of hashed blocks. These are
sufficient enough for the security of seeding generators
for cryptographic pseudorandom number with the hashed
data blocks, originated from sets of channel filter coeffi-
cients, separated by largely unpredictable mechanical
events.

4.3.4. Security of Hashed Seeding of Pseudorandom
Number Generator

When the analyzed sequence is used for seeding genera-
tors for (cryptographic) pseudorandom number, one don’t
need uniform randomness of the seed blocks: but large
variability (no one should occur with large probability),
and independence (seed blocks at any distance vary a lot).
The second implies the former: if a block repeated often,
autocorrelation would be large. This independence pro-
vides protection against an attacker, who records several
generated random numbers and tries to derive seeds for

an identical random number generator, to find a match.
Here, in this paper, sets of seed blocks take a huge num-
ber of different values, and so an actual one cannot be
guessed with a significant chance of success; identical
sequences occur very rarely.

Lower value of autocorrelation assures that no seed
blocks occur frequently nor are some blocks correlated.
Else, otherwise an attacker could find frequent blocks in
another drive, or could modify spied out earlier seed blocks
according to the property, which caused large autocorre-
lation. This will increase the chance of a successful guess
of a seed, revealing all newly generated random numbers
until a fresh seed is applied.

4.3.5. Hash Functions for Data Whitening
Physical random numbers almost always have to be whi-
tened, because their distribution could be non-uniform
and changing in time and affected by environmental con-
ditions. Hence, even for non-cryptographic applications
the physical randomness source is usually hashed (cor-
responding to seeding generators for pseudorandom
number), although for lower security requirements there
are much faster hash algorithms (e.g., the ones in [18])
than the secure hash functions used in cryptography (e.g.,
SHA1/2).

5. Randomness Tests

There are many randomness tests presented in [19-23]. A
survey can be found in [24].

Diehard Test Suite. 15 different groups of statistical
randomness tests can be found in [20,21]. This set of
tests is probably the most widely used in literature. Many
different properties are tested and the list of the results is
17 pages long. The randomness measures are of 250 P-
values. The usual way for accepting a single p-value is to
check if it is in a certain interval, like [0.01, 0.99]. The
difficulty with the convention of the Diehard test is to
establish an overall acceptance criterion, because related
tests are applied to the same set of data and so the results
of the individual tests are correlated. A common proce-
dure used in [25,26] for testing the random number gen-
erator implemented in the Intel Pentium III chip works as
follows. To come down from a 95% confidence interval
for each of the 250 test results the 5% confidence level is
divided by 250, resulting in 0.02%. The Diehard test was
considered to pass if all 250 P-values are in the corre-
sponding interval [0.0001, 0.9999]. This paper adopted
this acceptance criterion, with an additional check de-
scribed in [12]: count the number of near-fails among the
250 P-values returned by the Diehard tests (those P- val-
ues which are not in [0.025, 0.975]). Because asymptoti-
cally the relative number of fails for the given interval
is 5%, there must be about 12 near-fails among the 250

An Efficient Noise Generator for Validation of Channels Equalizers

Copyright © 2011 SciRes. JSIP

8

values. This near fails are expected, as the Diehard test
suite states in the test protocol: “Such p’s happen among
the hundreds that DIEHARD produces, even with good
RNG’s. So keep in mind that “p happens”.

The Diehard (or the NIST) tests are not accurate
enough to autocorrelations, which occur at other than in-
teger multiples of 8 bit offsets. (Some of data sets, which
pass the Diehard tests at k = 28, but failed with k = 24
reduction.) Hence, only the tests of hashed filter coeffi-
cient set to k = 24, 16, and 8 bits can be fully trusted.
Some of data sets proved to be sufficiently random with
k = 24, but a few did not, while all of the Diehard tests
passed on our every hashed channel filter coefficient sets
at k = 16 or less.

NIST 800-22 Randomness Tests: While the Diehard
tests and Maurer’s test passed on our hashed data, the
NIST tests also accepted the input as random [23]. Ad-
vantages of the NIST test suite is that it works on data of
size other than 10 MB, needed for Diehard, but our
hashed files were large enough for Diehard. Each of the
NIST tests provides a P-value, and depending on the
length of the sequence an acceptance threshold is pro-
vided. The ratio of accepted P values for each test must
be above a certain given level. For the tests to clear the
collected P-values are assessed in the end, to verify their
uniform distribution between 0 and 1, which is similar to
the overall acceptance of Diehard.

Maurer’s Universal Randomness Test. Presented in
[22], and further investigated in [27], analyzes the statis-
tics of gaps between the closest occurrences of the same
bit blocks. A test for each block size 1-16 is to be per-
formed. Larger test blocks require huge datasets for high
confidence in the test results. e.g., the necessary size of
the data sets for 16-bit test blocks is 1000 · 216 · 12 ≈ 800
MB. All of the Maurer tests with block sizes b = 1-16
passed, when the data was hashed to k = 16. In this case
virtually no memory is present, because of the many
seek-induced filter coefficient updates between data ac-
quisitions.)

Autocorrelation. This paper used the MATLAB
tstool/ autocorrelation tool, and the results (one in Figure
7) were compared to high quality pseudorandom data.
Each of hashed channel filter coefficient dataset with k =
24 or less provided autocorrelation curves indistinguish-
able from that of uniform, true random data (we got
roughly the same maximum, average, and standard de-
viation).

Transform-Tests. An FFT-test is may be included
among the NIST tests. After computation the correlation
of the hashed coefficient sequences to periodic signals
(sine waves) the FFT test finds periodic components in
the hashed data. The physical model and the observed level
of autocorrelation in the individual coefficient sequences

Figure 7. More uniformdistribution via hashing of 1, 256
and 4096 samples together, respectively.

expect no periodic signal components, which was con-
firmed by these tests on every hashed channel filter coef-
ficient dataset with k = 24 and 16.

Walsh Transform-Test. Here, we find other type of
structured (pseudo-periodic) components in the data. The
actual physical model and the observed level of autocor-
relation in the individual coefficient sequences predict no
significant signal components of this type, either, which

An Efficient Noise Generator for Validation of Channels Equalizers

Copyright © 2011 SciRes. JSIP

9

was confirmed by the Walsh transform tests on every
hashed channel filter coefficient dataset with k = 24 and
16 (showing little deviation from the expected values).

The Cryptographic Pseudorandom Number Gen-
erator. With the techniques described above we found
that one channel filter coefficient datasets provides at
least 16bit entropy, therefore eight datasets are enough
for our desired 128-bit entropy. Here, in this section the
algorithm is described, how the available physical ran-
domness is converted to cryptographically secure random
numbers.

Channel filter coefficients are collected to start with. 8
datasets need all together about 80 ms (1.6 Kb/s), allow-
ing 12 reseedings a second, which would only rarely be
needed. By hybridizing in samples of a free running
counter, additional randomness is gained and the safety
improves against HW-based attacks trying to influence
the channel filter coefficients. 4 LS bits of each 8 sets of
11 channel filter coefficients, together with the counters,
give 384 raw seed bits, used in two halves as XSEED
values, in two iterations of the FIPS-186-2 generator.
The generator for cryptographic random number speci-
fied in the FIPS-186-2 document [28] was used with
SHA1 as hash function and 24-byte (192 bit) internal
state. While x is a desired (160-bit) pseudorandom num-
ber (may be cut and the pieces combined for the re-
quested number of bits), the following FIPS-186 algo-
rithm generates m random values of x.

Step 1. Choose a new key value for the seed key,
1920 2XKEY  .

Step 2. In hexadecimal notation let

t = 67452301 EFCDAB89 98BADCFE 10325476
C3D2E1F0 (1)

This is the usual initial value for 0 1 2 3 4H H H H H
in the SHA1 hash function. (“  ” is concatenation.)

Step 3. For j = 0 to 1m  do

jXSEED = Optional user input

  192mod 2jXVAL XKEY XSEED 

jx = SHA1  ,t XVAL

  1921 mod 2jXKEY XKEY x   .

5.1. Accumulated Entropy

The initial entropy of XKEY (the internal state of the
cryptographic pseudorandom number generator) is 0
while booting up. After the step 3(d), regardless of the
entropy of XSEED , the entropy in XKEY cannot in-
crease to more than 160 bits (the length of the added x),
stored in the LS (least significant) 160 bits of XKEY .
During the next iterations only this LS 160 bits are fur-
ther modified (disregarding a possible carry bit), there
fore the accumulated entropy stored in XKEY increases

very slowly beyond 160 bits. During initialization
(Step 1) one can choose a new secret value for XKEY .
This can be anything (cannot be specified), so we can use
the current XKEY value after a few iterations of the
random number generation, shifted up to fill its most sig-
nificant (MS) bits. Next round calls of the RNG affect
the LS bits of XKEY , keeping the initial entropy stored
in the MS bits intact. Hence, the seeding process can be
performed in two phases. The 1st phase starts with an all
0 XKEY and uses half of the total number of seeding
rounds to mix in the HW entropy. During the second
phase we shift the LS 160 bits of the current XKEY to
its MS bits and then perform the remaining rounds to mix
in the rest of the HW entropy. While in these steps the
generated random numbers (jx) are discarded, only the
internal state (XKEY) is kept updated.

For accumulating more than 320 bit internal entropy
(when XKEY is chosen longer than 40 bytes) we can
execute more phases like the above. SHA1 limits the
number of usable bits to 512, but if required, it can be
replaced by hash functions operating on larger (or on
multiple) blocks.

5.2. Compression of the HW Seed

The format and content of the seeding data is not speci-
fied in the original FIPS-186-2 document, therefore pre-
processing is followed with, and desirable. Having fewer
LS bits of the filter coefficients (as many as necessary to
preserve the entropy) each channel filter coefficient data
set can be compressed to 40 bits, without significant
computational work. Then, the LS bits of free running
counters are attached. Several of compressed blocks like
these can be used concatenated in Step 3(a), speeding up
the seeding process proportionally, by trading slow
SHA1 hash operations for fast data compression steps.

REFERENCES

[1] B. Vasic, et al., “Coding and Signal Processing for Mag-
netic Recording Systems,” CRC Press, Boca Raton, 2005.

[2] C.-H. Wei and A. Chung, “Adaptive Signal Processing,”
http://cwww.ee.nctu.edu.tw/course/asp

[3] D. Davis, R. Ihaka and P. R. Fernstermacher, “Crypto-
graphic Randomness from Air Turbulence in Disk
Drives,” Proceedings of the 14th Annual International
Crytology Conference, Santa Barbara, 21-25 August 1994,
pp. 114-120.

[4] R. S. Indeck, et al., “Effect of Trackwidth and Linear
Spacing on Stability and Noise in Longitudinal and Per-
pendicular Recording,” Journal of the Magnetics Society
of Japan, Vol. 21, No. 3, 1997, pp. 213-219.

[5] R. Behrens and A. Armstrong, “An Advanced Read/Write
Channel for Magnetic Disk Storage,” Proceedings of the
26th IEEE Asilomar Conference on Signals, Systems &

An Efficient Noise Generator for Validation of Channels Equalizers

Copyright © 2011 SciRes. JSIP

10

Computers, 26-28 October 1992, pp. 956-960.

[6] H. K. Thapar and A. M. Patel, “A Class of Partial Re-
sponse Systems for Increasing Storage Density in Mag-
netic Recording,” IEEE Transactions on Magnetics, Vol.
23, No. 5, 1987, pp. 3666-3668. doi:10.1109/TMAG.
1987.1065230

[7] W. L. Abbott, J. M. Cioffi and H. K. Thapar, “Channel
Equalization Methods for Magnetic Storage,” Proceedings
of the IEEE International Conference on Communications,
Helsinki, 11-14 June 1989, pp. 1618-1622.

[8] W. L. Abbott, J. M. Cioffi and H. K. Thapar, “Performance
of Digital Magnetic Recording with Equalization and
Offtrack Interference,” IEEE Transactions on Magnetics,
Vol. 27, No. 1, 1991, pp. 705-716. doi:10.1109/20.101120

[9] W. W. L. Ng, E. H. Lim and W. Xie, “Method and Appa-
ratus for Generating Random Numbers Based on Filter
Coefficients of an Adaptive Filter,” US Patent No.
6931425.

[10] Hard Disk Drives, 2002, http://www.storagereview.com
/guide 2000/ref/hdd/index.html

[11] E. Schreck and W. Ertel, “Disk Drive Generates High
Speed Real Random Numbers,” MicrosystemTechnologies,
Vol. 11, No. 8-10, 2005, pp. 616-622. doi:10.1007/s00542
-005-0532-6

[12] R. D. Cideciyan, F. Dolivo, R. Hermann, W. Hirt, and W.
Schott, “A PRML System for Digital Magnetic Re-
cording,” IEEE Journal on Selected Areas in Communi-
cations, Vol. 10, No. 1, 1992, pp. 38-56. doi:10.1109/49.
124468

[13] J. von Neumann, “Various Techniques Used in Connec-
tion with Random Digits,” von Neumann’s Collected
Works, Vol. 5, Pergamon Press, Oxford, 1963.

[14] L. Hars, “Randomness of Timing Variations in Disk
Drives,” Manuscript, 2007.

[15] M. Blum, “Independent Unbiased Coin Flips from a Cor-
related Biased Source: A Finite StateMarkov Chain,”
Proceedings of the 25th Annual Symposium on Founda-
tions of Computer Science, Singer Island, 26 October 1984,
pp. 425-433.

[16] M. Blum and S. Micali, “How to Generate Cryptographi-
cally Strong Sequences of Pseudo-Random Bits,” SIAM
Journal on Computing, Vol. 13, No. 4, 1984, pp. 850-864.
doi:10.1137/0213053

[17] B. Chor and O. Goldreich, “Unbiased Bits Fromsource of
Weak Randomness and Probabilistic Communication
ComPlexity,” Proceedings of the 26th Annual Symposium
on Foundations of Computer Science, Washing DC, 21-23
October 1985, pp. 429-442.

[18] L. Hars and G. Petruska, “Pseudorandom Recursions:
Small and Fast Pseudorandom Number Generators for
Embedded Applications,” EURASIP Journal of Embedded
Systems, No. 1, 2007.

[19] D. E. Knuth, “Seminumerical Algorithms, the Art of
Computer Programming,” Addison-Wessley, Boston,
1997.

[20] G. Marsaglia, “A Current View of Random Number Gen-
erators,” Computer Science and Statistics: The Interface,
Elsevier Science, Amsterdam, 1985, pp. 3-10.

[21] G. Marsaglia and A. Zaman, “Monkey Tests for Random
number Generators,” Computers and Mathematics with
Applications, Vol. 26, No. 9, 1993, pp. 1-10. doi:10.1016
/0898-1221(93)90001-C

[22] U. M. Maurer, “A Universal Statistical Test for Random
Bit Generators,” Journal of Cryptology, Vol. 5, No. 2,
1992, pp. 89-105. doi:10.1007/BF00193563

[23] NIST Special Publication 800-22, “A Statistical Test Suite
for Random and Pseudorandom Number Generators for
Cryptographic Applications,” August 2008. http://csrc.nist.
gov/publications/nistpubs/800-22-rev1/SP800-22rev1.pdf

[24] T. Ritter, “Randomness Tests: A Literature Survey,” 1996.
http://www.ciphersbyritter.com/RES/RANDTEST.HTM

[25] Intel Platform Security Division, the Intel Random Num-
ber Generator, 1999.

[26] B. Jun and P. Kocher, The Intel Random Number Gen-
erator (White Paper), 1999. http://www.securitytechnet.
com/rsource/crypto/algorithm/random/criwp.pdf

[27] J. S. Coron and D. Naccache, “An Accurate Evaluation of
Maurer’s Universal Test,” Proceedings of the ACM Sym-
posium on Applied Computing (SAC’98), Atlanta, 27 Feb-
ruary-1 March 1998.

[28] Digital Signature Standard (DSS), FIPS PUB 186-2, Fed-
eral Information Processing Standards Publication, U. S.
Department of Commerce/National Institute of Standards
and Technology, January 2000.

http://dx.doi.org/10.1109/TMAG.1987.1065230�
http://dx.doi.org/10.1109/TMAG.1987.1065230�
http://dx.doi.org/10.1109/20.101120�
http://www.storagereview.com/�
http://dx.doi.org/10.1007/s00542-005-0532-6�
http://dx.doi.org/10.1007/s00542-005-0532-6�
http://dx.doi.org/10.1109/49.124468�
http://dx.doi.org/10.1109/49.124468�
http://dx.doi.org/10.1137/0213053�
http://dx.doi.org/10.1016/0898-1221(93)90001-C�
http://dx.doi.org/10.1016/0898-1221(93)90001-C�
http://dx.doi.org/10.1007/BF00193563�
http://www.securitytechnet/�

