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ABSTRACT

Gravier et al. established bounds on the size of a minimal totally dominant subset for graphs RB,CJP, . This paper offers
an alternative calculation, based on the following lemma: Let k,re N so k>3 and r>2. Let H be an r-
regular finite graph, and put G=PR.OH . 1) If a perfect totally dominant subset exists for G, then it is minimal; 2) If
r >2 and a perfect totally dominant subset exists for G, then every minimal totally dominant subset of G must be
perfect. Perfect dominant subsets exist for B,CJC, when k and n satisfy specific modular conditions. Bounds for

% (F’k DPm) , forall k,m follow easily from this lemma. Note: The analogue to this result, in which we replace “totally

dominant” by simply “dominant”, is also true.
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1. Introduction

Let G :(V(G), E(G)) be a graph. In this paper, each
edge of a graph must have two different endpoints; also,
two vertices may be linked by at most one edge. A subset
Z of vertices is said to totally dominate G if every vertex
of G has a neighbor in Z. We say Z perfectly totally
dominates if every vertex has exactly one neighbor in Z.
Next, suppose that G is finite. In this case, we say a
totally dominant subset Z is minimal if |Z| is the
smallest size possible among all dominant subsets. This
minimal size is denoted by 7, (G).

For r e N, we say that a graph G is r-regular if every
vertex is the endpoint of exactly r edges. Suppose G is
regular. A subset Z which perfectly totally dominates is
clearly minimal. If a perfect dominant set does not exist,
we can search for minimality among dominant subsets Z
by counting “overlaps”. That is, for each veV(G), let
ol,(v,G,Z) be the number of neighbors of v which lie
in Z, minus 1. If Z, and Z, are two totally dominant
subsets, then |Z1| < |Zz| happens if and only if the sum
of Z -overlaps is strictly less than the sum of Z,-
overlaps.

These elementary links between minimality, perfection
and overlaps may fail if G is not regular. For arbitrary
graphs, all sorts of behavior is possible. For graph
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theorists, a challenge is to specific assertions that apply
to a broad family of graphs.

The following conventions will be used here.

(la) For keN, k>2, let R, the k-path be the
graph whose vertices are the numbers 1,2,---,k , and
whose edges are links fromito i+1 foreach 1<i<Kk.
There is an infinite member of this family: Interpret 7Z
as a graph in which edges consist of links from i to
i+1 forall i.

(1b) Let k>2. The graph consisting of R, plus an
edge between 1 and k called the k-cycle. It is denoted
by C,.

(lIc) For G and H graphs, the product graph
GOH is defined as follows. The set of vertices
V(GOH) is V(G)xV(H). Two vertices (X,¥)
and (X,,Y,) are linked by an edge if and only if
o cither X, =X, and Yy, isanedgeof H ,or
e XX isanedgeof G and Yy, =Y,.

For example, for k,neN, ROP, is the familiar
kxn grid map. A product of a list of paths and circuits
by O is called a grid graph.

A product of n copies of Z corresponds to the set
Z" with the “Manhatten metric” notion of the edge: two
tuples (x,---,%,) and (y,---,y,) are linked if and
only if there is an index i such that |>g —yi|:1 and
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X;=y; forall j=i.

Tiling is the route that Gravier [1] takes in computing
7, for grid graphs. The program begins with the work
by herself, Molland and Payan [2] on the tiling question.
The solution generates perfectly dominant subsets on
Z". Now, finite grid graphs can be interpreted as rec-
tangular subsets, or (for products with C, factors) as
such subsets with some “opposed” sides identified. Do-
mination becomes a problem of refining the patterns at
the edges.

Our current work exploits the abundance of perfect
dominations on graphs G =RB0C,. A calculation with
matrices leads to a lower bound on 7, (G) that can only
be attained by a perfectly totally dominant subset. Once
we classify which indices k,n admit perfect domi-
nations, an elementary trick provides upper and lower
bounds for all graphs B,C, . The bounds here do not
improve on the earlier work, but are almost as narrow.

Suppose H is a finite r-regular graph for some natural
number r, and put G=ROH for k>3 . Then the
majority of vertices of G have a degree r+2. The
vertices of the degree r+1 form two connected sub-
graphs. A crude bound for a minimal totally dominant
subset of G is k|H | / (r+2). However, this bound is too
low by a positive number times |H]|.

We find a subtler minimal bound using matrices. The
computation also shows that

(2a) A perfect totally dominant subset is minimal, and
assumes the bound;

(2b) A minimal subset cannot have fewer members
than a perfect subset; and

(2c) Unless r=2 and n is odd, if a perfect totally
dominant subset exists, then every minimal subset is
perfect.

The conclusions follow from a formula which, for Z a
totally dominant subset, determines |Z| is a sum over
veV(G) of ol (v,Z,G)-w,, where each w, is a
non-zero weight associated torow | of v.

Remark. A variation on total domination is (simple)
domination. A subset dominates (non-totally) if each
vertex V either has a neighbor in Z or belongs to Z. A
dominant subset Z is perfect (non-totally) if for each
vertex V, either

(3a) veZ and Vv has no neighbors in Z, or

(3b) v¢ Z and Vv has exactly one neighbor in Z.

Our theory implies that, in this context, if a perfect
dominant subset exists, it is minimal and every minimal
dominant subset is perfect.

1.1. Sample Perfect Behavior

A proof of minimality has two parts: first, exhibit a sub-

set; then prove no smaller totally dominant subset can

exist. The examples here are drawn from Gravier [1].
Assume N is even. In this case, RIC, is bipartite.
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Identify C, with Z/nZ in the standard way. We can
“color” the vertices: we say (i,j) (where | is read
mod(n)) is black if i+ is even and white if i+ j
is odd. Then every edge links a black vertex with a white
one. If Z dominates B,JC,, then the set of black
members of Z dominates all white vertices, and the white
vertices of Z dominate all the black. Consequently, a
minimal dominant subset is a disjoint union of two
minimal “color” dominant subsets; each a subset of one
color vertices that dominates all vertices of the other
color. Furthermore, the “shift by 1” automorphism of
R OC, identifies the sets of different colored vertices.

Figure 1 shows a pattern of vertices of one color.
Provided that k is odd, this pattern will totally domi-
nate all vertices of the opposite color.

If k is even, this pattern does not quite work. Instead,
as illustrated in Figure 2 for k=8, one can build a
pattern by taking triangular wedges of the first pattern,
and pairing them with a skew reflection. The latter
pattern can be repeated throughout PB,.CIC, provided
that 2(k+1) divides n.

The contribution of this paper is an alternate con-
struction of a lower bound. The bound is met for these
perfect subsets. Next, using these subsets, one can estab-
lish a general upper bound for B.OP, forall m.

1.2. A Tiewith Perfection

Gravier [1] proves that the set Z consisting of the
middle row of RBOP,, for any n, is a minimal totally
dominant subset. Obviously, this choice of minimal

Figure 1. One color dominance, k odd.

*—
>

Figure 2. One color dominance, k = 8.
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subset produces many overlaps. By rotating 3x3 blocks,
we can produce other minimal dominant sets with fewer
overlaps, as in Figure 3. Furthermore, if n is a multiple
of 4, there is a variation which is a perfect total
domination of B,[JC,, as in Figure 4. The flexibility in
the number of vertices which are dominated by more
than one member of Z reflects the presence of vertices
of two degrees, namely 3 and 4.

In this example, the size of a minimal, imperfect
totally dominant subset “ties” the size of a perfect totally
dominant set. Can a minimal subset be smaller than a
perfect one? We prove that a tie is rare, and that beating
is impossible.

1.3. Weights

We have two sets of theorems based on series.

Definition 1 Let r be a real number. Let Z[r]| be
the set of infinite sequences of real numbers {a,.};”:o
such that

Vi>1, a=ra_—-a_,.

Clearly, Z[r] is a real vector space, and the
function iai}:; > (a,,a ) isalinear isomorphismfrom
itonto R”.

For r real, let i+> A(r,i) bethe unique member of
E[r] such that A(r,0)=0 and A(r,1)=1. Observe
that A(r,2)=r.

In the opening section, we defined the overlap function
ol,(v,G,Z) for totally dominant subsets Z of a graph G.
In addition, for G a graph and Z a dominant (but possibly
not totally) subset, and veV(G), let ol (v,G,Z) be
o, (v,G,Z) if veZ and ol (v,G,Z)+1 if veZ.
For k>3, G=ROH for some graph H and
veV(G), define row(v) the row of v to be the first
coordinate of V.

Lemma 2 Let r,keN suchthat r>2 and k>3.

Figure 3. Two waysto totally dominate P,OIP, .

Figure 4. Perfect dominationin PR,0C,, .
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For eachinteger 1< j <k, put
, = 2(r,k+1)+(=1)" 2(r,k+1-j)
+(=D) " a(r, ).

Foreach 1< <k,

(42) w;>0,and

(4b) @; =0 ifand only if r=2, k isodd and j
iseven.

We refer to w,,---, @, as the weight system for para-
meters r,k.

Definition 3 Let r,keN such that r>2 and
k>3. Let @,--,@ be the weight system for r,k.
Also, let v,,---,v, be the weight system for parameters
r+1,k. Define

k+1

(rk+2k+2)A(r,k+1)+24(r,k)+(-1)" 2
(r+2)° A(r,k+1) '

u(r.k)=

Suppose H isan r-regular graph, and put n=|H]|
and G=RH . Definetwo functionson Z cV(G):

score, (Z)= D, 0l (v,Z,G) @

VEV(G) row(V)

score(Z)= D ol (v,Z,G)-,

VGV(G) I'OW(V)

Theorem 4 Assume the hypothesis and construction of
Lemma 2 and Definition 3. Let H be a finite graph,
andput n=|H| and G=R[OH.

(A)If ZcV(G) istotally dominant, then

score, (Z)
(r+2)A(r.k+1)
(B)If Z<V(G) isdominant, then

score(Z)
(r+3)A(r+1,k+1)’

|Z| = nu(r.k)+

|Z| = np(r +1,k)+

A trivial consequence of this theorem and the pre-
ceding lemma is:

Corollary 5 Assume the hypothesis of Theorem 4.

(A) Suppose r>3. If Z,Z, are totally dominant
subsetsof G, then

|Z,| <|Z,| < score, (Z,) <score, (Z,).
B)If Z,,Z, aredominant subsetsof G, then
|Z,| <|Z,| & score(Z,) <score(Z,).

2. Modeled with Matrices

Our results are based on a simple linear algebra model.
For convenience,

(5)For keN,let Ind(k)={1,---,k}.

Notation 6. Let ke N . We identify the real vector
space R* with length k column vectors. We use trans-
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pose notation to write these horizontally:
Zl
(Z.+,2)" for
A

For each 1<i<k,let z; be the projection function
from each vector (z,--,z) to its i-coordinate Z .
Also define a linear functional R* — R

k
sum(z) =Y m (2).
i=1
We denote the zero vector by 0.
In what follows, let k,r e N, and let H be a finite,
r -regular graph. Put G=R[H .
For Z =V (G), define the row count vector z for Z to

be (z,-,z) inwhich Z is the number of members

of Zin the i -th row. Obviously, sum(z)=|Z|.

Now suppose Z <V (G) totally dominates, and let
z=(z,,z) be its row count vector. Let 1<i<k.
The sum of ol (v,Z,G) over all v in the i-th row, plus
|H|, equals

rz +z, for i=1,
zZ+rz,, +z,, for 1<i<k-land ©6)
Z_, +rz, for i=k

In particular,

(7a) If Z totally dominates, then each of these ex-
pressions must be > |H , and

(7b) If Z perfectly totally dominates, then each of these
expressions must equal |H| .

If we replace totally domination with simple domi-
nation, the analogous assertions hold after the r terms
in (6) are changed to r+1.

These remarks motivate our next definition.

Definition 7 Let r beareal number and let k bea
natural number >1. Define L[r,k] to be the kxk
matrix such that

it Q=]

Vi, j e Ind(k), L[r,k] . = if Q-]

L islor—1,

r

1

0 otherwise.
Note that L[r,k] is symmetric.

Also, for these parameters, define M [r,k] to be the
kxk matrix such that

Vi, j € Ind(k),
W[k < ACPDACK ) i,
S A(=r ) A(-r k=) i <
Note that the case i =] is covered in both parts of

this conditional definition.
As we shall see, the matrix M[r,k] is essentially
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L[r,k]fl.

3. Relevant Sequences

There is a discrete analogy to convexity for functions of a
single real variable. We recall some basics.

Definition 8 Let {a}" be a sequence of real num-
bers, starting at index 0. We say that the sequence is
convex if

vieN,a,-a=a-a,.
We say the sequenceis strictly convex if
a,—-a>a-a_, foreach i.
Lemma 9 Let {a}  be a convex sequence. For
uveN,

+vzau+av_a()'

Moreover, a,,, =a,+a,—a, ifandonlyifthereisa
number t such that

Vielnd(u+v), a =t+a_, .

Proof. We may interchange U and v without loss of
generality. Hence, assume u>Vv. For each ieN, put
b=a-a_,. Then {h}" is a weakly increasing se-
quence. Then

2.~ —(a,-a)-(a,-3)

(820 - (2e)

@au+v—au—av+%=(_2vjbu+iJ—(Zvlhj (8)

8,8 -8+ = i(bu+v+l_i —h)]

Observe that
U+v+l—-i>i < (u-v)+2(v—-i)+1>0.

For each index i in the last sum, the term has the
format b, —b, where p>(q. Therefore

&y~ —8, +8 20.

Now suppose a,,, —8, —a, +@, = 0. Then every term
in the final sum of (8) must be 0. When i=1, we get
b.,—b =0. Since b is an increasing sequence, it
follows that b =b for every index i<u+v. o

We focus on the sequences A(r,i) of Definition 1.
The first remark is that the sign can be separated from the
magnitude.

Lemma 10 Let r be areal number. Then

VieN, (1) a(r,i)= A(-r,i).

Proof. Trivial. ]
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Many of the positive sequences A(r,i) are convex.

Lemma 11 Each member of Z[2] is a linear se-
quence.

Proof. Trivial. m|

Lemma 12 Let r>2, and let {h}eZE[r] such that
b=k >0.1If b>0, then {h} is increasing and
strictly convex. Furthermore, b =b_, can occur only if
i=1.

Proof. For i>2 , we can rewrite the relation
b=rb,-b, as

(%9a) b =(r-2)b,+h_+(_-h_,),and

(9b) (h _Q—l):(r _2)h71 +(h71 _hfz) :

Use the two identities to induct on the double hy-
pothesis that both

h>q*1>0 and (bu_h—l)>(b|—1_b|72)>0- o

Corollary 13 Let reR and keN such that
[r[>2.Then A(r,k)=0.

Proof. This is an easy consequence of this lemma and
Lemma 10. m]
The next two propositions play roles in our analysis.

Lemma 14 Let r be a real number other than 2.
For k>1,
k — —
Zﬂ(r,i):l(r’kﬂr) ;l(r,k) 1. (10)

i=1

Proof. In what follows, a sum from any integer m to
m-—1 is defined to be 0. For this proof, we abbreviate
A(k) for A(r,k).

For each k e NU{0}, define

k
Sc =2 A(r.0).
i=0
Then for k>2,

s, =/1(0)+/1(1)+§k2:[r/1(i 1)-A(i-2)]
:1+r-[§/1(j)]— > 4())

. =0

=l+r-5,-5.,.

1
Define a new sequence by t =5 +—2. Replace
r —

into the previous relation to get

§=t-

VK22t =t —t,.
Hence, {t} belongsto Z[r].

Now
t =5+ 1
I
1 r—1
t=S+——=——.
I R S

Copyright © 2013 SciRes.

In the vector space R”,

I r-1 1 1
, = Lr)———(0,1).
(r—z r—zj r—2( r) r—2( )

The sequences t; and

> 2 (i41) - A1)

both belong to Z[r], and agree on the first two indices.
Hence, they are the same sequence. This gives the
equality of (10). |

Lemmal5Let r beareal number,andlet j,keN
suchthat k> j . Then

A(rk+1)=A(r, ) A(r.k+2- )
=A(r, j-1)A(r,k+1-1j).

Proof. We write A(i) for A(r,i) in this argument.
If k=j,then A(k+2-j)=4(2)=r,
A(k+1-j)=A(1)=1, and the result follows from the
recursive definition.

The remaining cases follow from a proof is by in-
duction on | . The inductive hypothesis is

vk > j,

Ak+1) = 2())A(k+2— )= 2(j 1) A(k+1- ).

For j=1, this follows from the fact that A(1)=1
and 1(0)=0.

Assume | €N for which the inductive hypothesis is
true. Let keN so k> j+1. Then

A(J+)A(k+2-(j+1))=2(j)A(k+1-(j+1))
=[r2(1)=2(i=D)]A(k+1-1)=2(1) Ak~ ])
—ra(j)A(k+1=1)=2(])A(k-])
—A(j-1)A(k+1-])
A(P[ra(k+1=j)=A(k=])]-2(i-1)A(k+1-])
A()Ak+2=1)=A(j=1)A(k+1-])

A(k+1).

4. Thelnverse Matrices

We can now prove

Lemma 16 Let keN and r e R. The matric pro-
duct L[r,k]-M[r,k] is —A(-r,k+1) times the iden-
tity matrix.

Proof. For this argument, let L = L[r, k] and
M=M [r,k] and, for each i€ NU{O} , let
A(i)=A(-r.i).Let u,velnd(k).We prove the lemma
by comparing the u,v entry of L-M and —A(k+l)
times the u,v entry of the identity matrix. There are a
lot of cases.

Case u=1.Forany velnd(k),
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(L'M)Lv:le,v"’Mz,v
Suppose v=1.Recall that A(1)=1. Therefore
My, + M, =ra(k)+A(k-1)=-2(k+1).
Suppose V1. Recall that 1(2)=
and
M, +M,, =rA(k+1-v)+(-r)A(k+1-v)=0.
Case u=k.Forany velnd(k),
(L~M)k’v:|\/|k_1,v+l’|\/|k,v.
If v=Kk, thisis
A(k=1)A(1)+ra(k)A(1)
=A(k=1)+ra(k)=-a(k+1).
Now suppose V#k.Then v<k-1,and
(L-M),, =2(V)A(2)+12(v)A(1)
=A(v)(-r+r)=0.
Case 1<u<k.Forany velnd(k),
(L'M)u,v:Mu—l,v+er,v+M

r+lLv *

There are three subcases here. First, suppose v<u-1.

Then
(L-M),,
=A(V)A(k+1=(u=1))+ri(v)A(k+1-u)
+A(V)A (k+1—(u+1))
=2(v)(A(k+2-u)+ri(k+1-u)+A(k-u))
The recursive definition states that
A(k+2-u)=-rA(k+1-u)—A(k—u). Hence, the ex-

pression equals 0.
Next, suppose V>U+1. Then

(L-M),,
=A(u-1)A(k+1-v)+ri(u)i(k+1-v)
+A(u+1)A(k+1-v)

= A(k+1-v)(A(u=1)+ra(u)+A(u+1)).

Again, the recursive definition implies that this ex-
pression is 0.
There remains only the subcase u=v.

(L-M),,
=A(u- 1) (k+1-u)+ra(u)A(k+1-u)
+A(u)A(k-u)

=A(u-1)A(k+1-u)
+A(U)[rA(k+1-u)+A(k-u)]
=A(u-1)A(k+1-u)=2A(u)A(k+2-u).

Copyright © 2013 SciRes.

—r . Then v>2,

P. FEIT

By Lemma 15, this equals —A(k+1). O
Lemma 17 Let keN, reR and jelnd(k) .
Assume 1 =-2. Then

gm [r.K], :gm [r.K],

equals
A(=r k+1=])+A(-r,j)-
r+2
Proof. Put M =M[r,k] and, for each index i,

A(-r.k+1)

A(i)=A(-r,i). Split the sum from i=1 to k of
Mij atindex j:
k
ZM 2/1() (k+1=j)+ D A(i)A(k+1-i)

i=j+1
k

~ (1= 1) S0 4(1) 3 Alke1-1)

i=j+1

In the previous line, the first sum is determined by
Lemma 14. Recall the parameter is —r , not r

iy A(KFT=] i )
A(k+1-7) ﬁ(l)z%(l(j+l)—i(1)—l)
i e
A(k+1-j), :
=——2(A(j)=-2 1)+1
(A1) =2(i+1)+1)
In the second sum, change index to p=Kk+1-i. One

can use the same Lemma.

A(5) S A(k+1-i)

i= j+1

()p A(p)
()( A(k=])=A(k+1=])+1).
Add the two terms to get
:%(z(kﬂ—j)z@) A(k+1-])A(j+1)

+A(k+1-])+A(j)A(k—=1])
“A(1)A(k+1-)+A(]))

! A(k+1-1)A(j+1))

=——(A(1)A(k=1)-

r+2
+A(k+1-])+A(j)

By Lemma 15, this is the stated formula. o

At last, we introduce weights. Define @; as in the
statement of Lemma 2.

Corollary 18 Let ke N, reR.Assume r>2, and
let {a;} betheweight systemfor r k.
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(A) If r=2 and k is odd and j
®; =0.

(B)If r=2 andeither k isevenor j isodd, then
®; >0.

(C)If r>2,then o; >0.

(D) Let xeR". Expand L[r.k]-x as (b..b,)".
Then

is even, then

sum(x):mg (11)

Proof. We start with Part (D), as that is our motivation.

Given
x=(,--,X,) and b=L[r,k]-x

it follows that

:(bp"',bk)a

=L[r.k] 'b.
By Lemma 16, for each 1<i<k,

e rk+1)Zk:M[r <l

j=1

)ﬁ:

From Lemma 17,

sum( x)

/1( rk+1)Z [rk]

K A(-r k+1)=A(-r,k+1=j)=A(-1,])
-2 (r+2)A(-r.k+1) B

Now replace each A(-r,i) by (- 1)|+1 (r,i). The
b, -coefficient becomes a)/ (r+2)A(r, k+1))

Recall Lemma 12. Then { }I is a non-negative

and convex sequence, and A(r, 0)=O. Convexity im-
plies that

A(rk+1)+ (=) 2(r k1= )+ (=1 A(r, )

is positive unless

(12a) j+1 and k+ ] are both odd, and

(12b) {/l(r, i )} is not strictly convex.

This remark establishes all our conclusions except in
the case when r =2, kis odd and | is even. Assume
these parameters, and we know A(2,i)=i for all i,
and (A) follows. |

This corollary proves Lemma 2.

Corollary 19 Let keN, reR.Assume r>2, and
let {e,} be the overlap weights for (k,r). Let 1 be
the vector in which every entry is 1, that is (1,1,---,1).
Then

sum(L[r,k]_' -i) =u(r.k),

where (r,k) isdefinedin Definition 3.

Copyright © 2013 SciRes.

Proof. The easiest way is to get this formula is

(13a) Start with the formulas in Lemma 17;

(13b) Sum the terms over j using Lemma 14; and

(13¢) Convertall A(-r,i) to (-1)" A(r,i). O

The observation of (6) completes the proof of all the
propositions in Section 1.3.

5.Whenr=2

The numerical calculations allow us to add some secon-
dary comments on the examples of Sections and 1.1 and
1.2. Fix r=2, and put L=L[2,k]. Then A(2,i)=i
for all indices i. If Z is a perfect totally dominant
subset of ROC, and z is its row-count vector, then
L-z=ni.

If k isodd,

L' (nl) = (/2,0,/2,0,-+-,1/2).

Consequently, a perfect totally dominant subset cannot
exist if n is odd. However, since w; = 0 for | even,
there may be totally dominant subsets whose size “ties”
the estimate for a perfect subset. In the case k=3, the
set consisting of the middle row has row-count (0,n,0) .
Its image under L is (n,3n,n). )

If k iseven,the i-th coordiante of L™ -(nl) is

n . k+1-i if i is odd,
———— times 1, L
2(k+1) i if i is even.

The entries are integral if and only if k+1 divides n
Unlike the case when k is odd, Sum( L’l(ni)) cannot

be matched by the size of an imperfect dominant subset.

Near Perfect
Now
2
H if K is even,
+
#2k)= K+1
T+ if Kk is odd.

Proposition 20 For k,n>4,
1(2,k)n<y (ROR,) < u(2,k)(n+2).

Proof. Thereis deN and Z ¢ BOC, such that

(14a) n+2 divides d,

(14b) Z is a totally dominant subset of B,[IC,,

(14c) |Z|=p(2,k)d.

Partition P, EIC into subsets Y,,--,Y,, where each
Y, consists of n+2 successive columns. For at least
one index i, [¥NZ|<u(2,k)(n+2). Choose such an
index. Identify ROP, with Y', the subgraph of
columns 2 through n+1 of Y. Let Z, =ZY'. Any
member of Y’ which is not dominated by Z, is domi-
nated by exactly one member of Z in either the Ist or
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N+2 column; furthermore, each member of either col-
umn dominates just one member of Y’. Consequently,
we can expand Z, to a totally dominant Z, for Y’ of
size < |YI N Z| . m

6. Extended Functigraphs

Our lower bound uses only a few aspects of the graphs
R.OH . Consequently, the calculation applies to a
slightly larger family of graphs.

Fix k,r,neN with nk,r>2.Let H,--,H, bea
list of r -regular graphs, each with n vertices. For each
1<i<k, let h:V(H)->V(H,,) be a bijection.
Define the extended functigraph on this data to be G in
which

(152) V (G) is the (disjoint) union U:‘:IV ( H; ) , and

Copyright © 2013 SciRes.

(15b) E(G) isunionof U, E(H,) with
{Vh(v):1£i<k/\VGV(Hi)}.

Then the assertions of Theorem 4, and its Corollary,
applyto G.
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