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Abstract: Stochastic quantum space theory is a new version of unified field theory. It starts with three 

postulations: 1, Gaussian probability assigned to every discrete point separated by Planck length
PL in 

the space; 2, prime numbers is intrinsically correlated to elementary particles and cosmology; 3, 

vacuon is defined as movable geometry point in space. A framework is built with dozens of theoretical 

results agreed with experimental data and 25 predictions for experimental verification. Then three 

versions of basic equations are established based on Einstein field equations without the original 

stress-energy tensor and the redefined gauge tensor multiplied with Gaussian probability. The first 

version for gravity with the merit of no singularity has the same form of Einstein field equations with 

the stress-energy tensor automatically regenerated from derivatives of Gaussian probability multiplied 

to the redefined gauge tensor. The second version is for electromagnetic force. Comparison of these 

two versions naturally explains the tremendous strength difference between electrostatic force and 

gravitational force in macroscopic scale and the equality of these two forces at
PL71 . The third version 

as primary basic equations for the new version of unified field theory provides solutions for all 

elementary particles and interactional forces including gravity and things on upper levels.   

Keywords:  Unified field theory, space structure, elementary particles, Gaussian Probability, prime 

numbers, sporadic groups, GUT, dark matter, dark energy, cosmos inflation, multiverse, anthropic 

principle, general relativity, primary basic equations.  

 

Section 1: Introduction 

 

This paper is the continuation and extension of the author’s 

previous paper [1], which was published in Chinese. For 

people not familiar with Chinese language, a brief review of 

the previous paper is included in this paper.  

Stochastic Quantum Space (SQS) theory initially was 

intended to be a theory of space. It turns out as a unified field 

theory including particle physics and cosmology. 

In essence, SQS theory is a mathematic theory. Its results are 

interpreted into physics quantities by using three basic physics 

constants, , ,  or equivalently , , . In 

principle no other physics inputs are needed.  

SQS theory is based on three fundamental postulations, 

Gaussian Probability Postulation, Prime Numbers Postulation, 

Vacuon Postulation, which serve as the first principle of SQS 

theory.   

Based on three fundamental postulations, SQS theory built a 

framework. 

Based on Einstein’s general relativity equations for vacuum 

and redefined gauge tensors attached to probability, SQS theory 

established the basic equations including two parts. The 

microscopic part is the primary basic equations for elementary 

particles, interactions and things on upper levels. The 

macroscopic part as the averaged version includes two sets of 

basic equations, one set for gravity and the other set for 

electromagnetic force.  

SQS theory provides twenty five predictions for 

verifications. 

The basic ideas of SQS theory are summarized as the 

following: 

1. Vacuum  is the ultimate unified field. Particles are 

exitantions and interactions are ripples in the vacuum. 

2. Space is a stochastic continuum with Gaussain 

probability distribution function assigned at discrete 

points separated by Planck length. The basic equations 

for unified field theory is to assign Gaussian 

probalbility to  garge tansors of the Einstein field 

equations for vacuum. 

3. Cosmology and particle physics are intrinsically 

correlated with mathematics, in which prime numbers 

play the central role.  

SQS theory laid down the foundations and built a 

framework. There are many open areas for physicists and 

mathematicians to explore and contribute.   

 

Section 2: Gaussian Probability Assignment 

 

According to Stochastic Quantum Space (SQS) theory, 

space is stochastic and continuous with grainy structure in 

Planck scale.  

The Planck length is: 

m.                          (2.1a)                                      

Based on , Planck time , Planck energy  and Planck 

mass  are defined as: 

.               (2.1b)                               

.              (2.1c)                          
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.             (2.1d) 

In which , c and G are Planck constant, speed of light in 

vacuum and Newtonian constant of gravitation, respectively.  

Postulation 2.1A: Gaussian Probability Postulation. The 

relation between different points in space is stochastic in 

nature. Gaussian probability distribution function is 

assigned to each discrete point  separated by Planck 

length. In 1-dimensional case, the Gaussian probability 

at point  is: 

; ;

.                                  (2.2) 

The distance between adjacent discrete points is 

normalized to .  

Explanation: The Gaussian Probability Postulation serves as 

the first fundamental postulation of SQS theory. It 

represents the stochastic nature of space and also 

represents the quantum nature of space without 

sacrificing space as a continuum. The  serves as 

the value at point  from the Gaussian probability 

distribution function centered at discrete point . 

Postulation 2.1 is for 1-dimensional case as the 

foundation for 3-dimensional case.  

The Standard Deviation (SD)  of Gaussian probability is 

selected to let the numerical factor in front of exponential 

term in (2.2) equal to 1: 

014333989422804.0
2

1





.                    (2.3)                                          

The reason of selecting such specific value for  will be 

explained later. 

Substituting (2.3) into (2.2) yields: 

; ;

 
.                                           (2.4) 

Postulation 2.1B: In the 3-dimensional space, (2.2) is 

extended as:  

 ;     

; . (2.5)              

The values of  are determined by the roots of the following 

equation: 

  
.                                    (2.6)                                                              

Equation (2.6) has three roots: 

,  , .          (2.7)                                       

Substituting  into (2.5) yields: 

; 

; .    (2.8)          

In (2.8), only the real root of  is used. The 

meaning of all three roots will be discussed later.  

Definition 2.1: The Gaussian sphere centered at discrete 

point  is defined as its surface represented by 

the following equation: 

.             (2.9a)                                          

The radius of Gaussian sphere is defined as:  

.                    (2.9b)                                             

Explanation: The 3-dimensional Gaussian probability 

distribution of (2.8) has spherical symmetry like a sphere 

with blurred boundary. The Gaussian sphere is defined 

with a definitive boundary. It plays an important role for 

the structure of space as shown in Section 21.  

For the 1-dimensional case, according to (2.4), the unitarity 

of probability distribution function  with respect to 

continuous variable  is satisfied for any discrete point : 

.           (2.10)                                     

In general, the unitarity of probability  with respect to 

discrete variable  is not satisfied.  

Definition 2.2: S-Function. Define the summation of  

with respect to  as the -function: 

.            (2.11)                                             

Theorem 2.1: S-function  satisfies periodic condition:  

.                                           (2.12)                                      

Proof: According to (2.11): 

.         

QED 

The values of  in the region  are listed in 

Table 2.1 and shown in Fig. 2.1.  
 

Table 2.1: The Values of  in Region  

  

In the region , except two points at  and 

, in general  defined by (2.11) does not satisfy 

unitarity requirement, which has important implications. 

Theorem 2.2:  satisfies the following symmetrical 

condition: 
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, .                      (2.13)                                                    

Proof: According to (2.11): 

.    QED    

 
 Fig.2.1   curve in region  

 

Definition 2.3: -Function. Define the -function as: 

.                                       (2.14)                                  

Numerical calculation found that  satisfies the 

following approximately anti-symmetrical condition:  

, .         (2.15)                                                  

The symmetry of  with respect to  in region 

 given by (2.13) is exact. The anti-symmetry of  

with respect to  in region  given by (2.15) is 

approximate with a deviation less than . The deviation is 

tiny, but its impact is significant. It plays a pivotal role for 

SQS theory, which will be shown later. 

Numerical calculation found that at the center  of 

the region :   

.         (2.16)                                    

(2.16) indicates that,  has a deviation of  

from 1 required by the unitarity. Numerical calculation found 

a point in region [0, 0.5] satisfying unitarity: 

,                                                         (2.17)                        
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On the x-axis, is located at the left side of . It 

extends the region of  and shrinks the region of 

. The special point  has a profound effect on 

elementary particles and unifications of interactions, which 

will be given in later sections. 

Definition 2.4: Based on , three other special points ,

,  are defined: 

,   (2.20)                                                      

, 

,         (2.21) 

,  

.                            (2.22) 

The physics meaning of four special points, , , , , 

will be given later. 

In 3-dimensional case, according to (2.8), the unitarity of 

 with respect to continuous variables x, y, z 

is satisfied for any discrete point   :  

  

   (2.23) 

In general, the unitarity of probability  

with respect to discrete variables  is not satisfied.   

Definition 2.5: Define the summation of the probability 

 with respect to  as: 

.  

 (2.24) 

Theorem 2.3:  can be factorized into three factors: 

   

(2.25)                  

Proof: The three-fold summation in (2.25) includes terms for 

all possible combinations of  , , . 

The three multiplications in (2.25) include the same 

terms. They are only different in processing, the results 

are the same.                                                      QED            

By its definition and (2.12), (2.25),  satisfies the 

following periodic conditions: 

,                 (2.26a)                                     

,                   (2.26b)                                    

.                (2.26c)                                    

Definition 2.6: Planck cube is defined as a cube with edge 

lengths  and with discrete point  at its 

center or its corner.   

The values of  at 125 points in a Planck cube 

with discrete points at its corner are calculated from (2.24) 

and listed in Table 2.2.  
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Table 2.2：  Values at 125 Points in a Planck Cube 

(
kji zyx ,,  truncated at +1000) 

 
 

Theorem 2.4: Probability Conservation Theorem. The 

average value of  over a Planck cube equals to 

unity:  

 .        (2.27) 

Proof: Substitute (2.24) into left side of (2.27): 

      

(2.28)                          

 
Change variables as: 

.             (2.29)                                                                              

Substituting (2.29) into (2.28) and changing integrations’ 

upper and lower limits accordingly yield: 

  

 QED   

Probability Conservation Theorem is important. It proved 

that, even though in general  does not satisfy unitarity 

requirement, but it does satisfy unitarity requirement in terms 

of average over a Planck cube. The conservation of 

probability means that, the event carriers of probability are 

moving around but they cannot be created or annihilated.                                                                                      

Lemma 2.4.1: The average value of  over region  

[0, 1] equals to unity: 

 .                                           (2.30)                                               

Proof: Substitute (2.11) into the left side of (2.30): 

  .  (2.31)                             

Change variables as: 

              
                                                 

(2.32)                                                                                          

Substituting (2.32) into (2.31) and changing 

integration’s upper and lower limits accordingly yield: 

.       QED         

Lemma 2.4.2: Planck cube with volume  (length 

normalized to ) is divided into two parts  and 

 : 

,                                      (2.33a)                                             

         (2.33b)                                                  

Theorem 2.4 leads to the following equation: 

.      (2.34)                                       

Proof: According to (2.27) and (2.33): 

.

 

 

Moving the terms on left and right sides yields (2.34).                                                            

QED 

 

Section 3: Unitarity 

 

Unitarity is a basic requirement of probability. As shown 

in Section 2, the unitarity with respect to discrete variables 

and continuous variables for Gaussian probability are 

contradictory. In this section, three schemes are presented to 

solve the unitarity problem.  

Scheme-1: To treat all points in space equally.   
For Scheme-1, Gaussian probabilities are not only 

assigned to discrete points but to every point in the 

continuous space. As a result, (2.4) becomes: 
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In Appendix 1, A Fourier transform is applied to 

probability  of (3.1) to convert it into k-space. According 

to (A1.2), the corresponding Gaussian probability function 

 in k-space is:  

 .                                         (3.3)                                                                       

The standard deviation of  is  Multiplying 

(A1.6) with  yields: 

.                            (3.4)                                                                        

In (3.4),  and 
 
are 1-dimensional displacement and 

momentum difference, respectively. The  on right side is 

two times greater than the minimum value  from 

Heisenberg uncertainty principle. The increased uncertainty 

is due to the asymmetry of  and . 

The wave function corresponding to )';( xkP of (A1.1) is: 

'8

2

2

1
)';()()';( ikx

k

eexkQkPxk 






 ;    

;  ,,0,,'x .                      (3.5) 

Notice that, the wave function (3.5) has following features:   

1. The relation between )';( xkP  and )';( xk  is consistent 

with quantum mechanics: 

)';()';(*)';( xkxkxkP  .                          (3.6)                                                             

2. )';( xk  is not an eigenstate of . The magnitude  

of )';( xk  serves as distribution function for .   

Before explore other schemes, a discussion for the essence 

of probability unitarity is necessary. Probability is associated 

with events. In Section 2, Table 2.2 data show that, in the 

vicinity of Planck cube’s center , the 

sum of probabilities . Because the set of events at 

these points are incomplete; some events are missing. These 

missing evens cause the sum of local probabilities less than 

one. In the vicinity of the Planck cube corners  , 

, because the set of events over there includes 

some events belong to other places. These excessive evens 

cause the sum of local probabilities greater than one. In other 

words, events associated with their probabilities move around 

inside Planck cube causing the unitarity problem. To move 

these events back to where they belong will solve the discrete 

unitarity problem. But it distorts the Gaussian probability 

distribution and jeopardizes the unitarity with respect to 

continuous variables based on Gaussian probability 

distribution.  

To solve the problem requires some new concept. 

Traditionally, unitarity is local, which requires the sum of 

probability equals to unity at each point in space. 

 is caused by events moving around. The 

foundation for local unitarity no longer exists. A generalized 

unitarity is proposed:  

1. Recognize the fact that events associated with probabilities 

move around;  

2. Follow the moving events for probability unitarity. 

According to Theorem 2.4, the Probability Conservation 

Theorem, generalized unitarity is not contradictory to the 

traditional unitarity for the Planck cube as a whole entity. 

But it does change the rules inside the Planck cube. For the 

microscopic scales, as the events inside Planck cube are 

concerned, generalized unitarity is necessary. For the 

macroscopic scale including many Planck cubes, the local 

unitarity is still valid in the average sense. 

The following two schemes are based on generalized 

unitarity. 

Scheme-2:  Unitarity via probability transportation on 

complex planes  

The complex planes are inherited from the 3-dimensional 

Gaussian probability. Consider a Planck cube centered at a 

discrete point  as shown in Fig. 3.1. 

According to (2.5), the 3-dimensional Gaussian probability is:  

.                    (3.7)                                                     

Normalize the three values of the standard deviations 
0' , , 

 of (2.7) as:  

,  , .                               

    (3.8) 

In which two of them  and  are complex numbers. To keep 

the probabilities as real numbers related to  and , it is 

necessary to extend the x-axis, y-axis, z-axis into three complex 

plans -plane, -plane, - plane, respectively. 
  

 

 
Fig. 3.1 The Planck cube with center at a discrete point 

.  

 

Definition 3.1: Define three complex planes associated with 

x-axis, y-axis, z-axis:  
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,              (3.9a)                             

,  (3.9b)                                    

.            (3.9c)                                    

.                                          (3.9d)                            

In which  and  are real parameters. 
 

Explanation: In (3.9a),  represents two straight lines on 

complex -plane intercepting to the real x-axis at 

 with angles of . Continuously 

change the value of ,   and  sweep across x-axis 

to construct the complex -plane. Every point on the 

complex -plane is the intersection of two straight lines 

defined by (3.9a). The
 

 -plane and -plane associated 

with y-axis and z-axis are constructed in the same way.   

On the complex -plane, three straight lines ,  and x-

axis intercept at  with 3-fold rotational symmetry as 

shown in Fig. 3.2. The 3-fold rotational symmetry has its 

physics significance, which will be discussed later. 
 

 
Fig.3.2 Three straight lines with 3-fold rotational symmetry 

on complex -plane.  
 

Rule 3.1: In order to keep the values of , 

 and , 
 
as real numbers, 

in the Gaussian probability exponential part, spatial 

variables 
 
in the numerator choice their path 

according to (3.9) matching the  value in denominator 

to keep these values always equal to real numbers.  

Explanation: The validity of Rule 3.1 to , 

 is obvious. Its validity for , 

 needs explanation. According to the definition 

of : 

.         (2.11)                                           

All terms of   except  have their “tail” 

in region , which are equivalent to the “tails” of 

 in regions of  and : 

.    (3.10) 

 in region [-0.5, 0.5] can be viewed as a single 

probability distribution function  with “multi-

reflections” at the two boundaries of region [-0.5, 0.5]. Fig. 

3.3 shows an example for the  term along with two 

adjacent terms  and  with their “tails” in region 

[-0.5, 0.5]. In essence, probability transportation via complex 

plane for  is also valid for . According to 

Theorem 2.3, , the same argument 

is valid for  as well. 
 

 
Fig. 3.3 Three adjacent Gaussian probability distribution 

functions show the “tails”. 
 

For double check, let’s look it the other way, consider the 

 term in : 

.                                (3.11)                               

In which  is a real number and  is a complex number. 

As long as the point corresponding to  is on the lines 

defined by (3.9a),  is a real number, and so is
 .

 

In the Planck cube centered at discrete point

 as shown in Fig.3.1, a closed surface  

is defined by , which divides Planck cube in 

two parts  and . In the inner region , ; 

in the outer region  , . By means of 

probability transportation, the excessive events associated with 

probabilities in the inner region  transport to the outer region 

. According to Theorem 2.4 and lemma 2.4.2,  

satisfies generalized unitarity. 

Since  and , ,  

have the same type of exponential expression, exploring one, 

, is sufficient. (2.13) shows that, in region [0, 1],  is 

symmetry with respect to , to explore  in the half 

region [0, 0.5] is sufficient. In region [0, 0.5], (2.15) shows 
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that   1)(  xSxS  is approximately anti-symmetry with 

respect to . In the meantime, let’s treat it as exactly 

anti-symmetry and consider the difference later. 

In Scheme-2, probabilities along with events transport 

back and forth to satisfy the discrete and continuous unitarity 

requirements alternatively.  

Fermions and bosons are essentially different particles 

with different properties. Their probability transportations are 

different. It turns out that, bosons without mass take the 

straight real path along the real axis; while Dirac type 

fermions take the zigzagging path on the complex plane.  

The following rules of probability transportation are for 

Dirac type fermions. 

Rule 3.2: The probability transportation rules for fermions 

are as follows.  

1. Consider two points , 
12 5.0 xx   

)5.025.0( 2  x  along the real x-axis, as shown in Fig. 

3.4. The excessive probability  at  

transports along a set of complex lines  and  to 

 where probability having deficient . The 

path length is:  

 122 xxl                                    (3.12)                                                       

The factor 2 in (3.12) comes from: 

.  (3.13)                                   

The probability transportation makes  and 

 to satisfy unitarity with respect to discrete 

variable . But it distorts the Gaussian probability 

with respect to continuous variable .   
 

 
 

Fig 3.4 Transporting paths with the same loop lengths 

and different routs on complex plane. 
 

2. To reinstall the Gaussian probability distribution, it 

transports back from  to  along another set of 

complex lines  and  via another path with the 

same path length  122 xxl    as shown in Fig. 3.4. 

The two paths form a closed loop with loop length:  

.                            (3.14)                       

The probability following its event goes back and 

forth between  and  around closed loops. 

3. The path length of (3.12) and the loop length of (3.14) 

are valid for all zigzagging paths shown in Fig.3.4. 

The multi-path nature has its physics significance, 

which will be discussed in later sections 

The repetitive probability transportations along closed 

loops cause oscillating between two points  and . In this 

way, the two types of local unitarity are satisfied alternatively, 

and the generalized unitarity is always satisfied. It provides a 

kinematic scenario for the oscillation. The dynamic 

mechanism and driving force of the oscillation will be 

discussed in Scheme-3.  

As mentioned in Section 2, the anti-symmetry of 

 is only an approximation. In general, 

the unitarity by probability transportation is not exact. The 

tiny difference between  and  provides a 

slight chance for probability transportation path to go off loop. 

The off loop path goes to other places with different values of 

 and  corresponding to other particles, which provide 

the mechanism for interactions between particles and 

transformation of particles.  

This is the scenario of probability transportation on the 

complex -plan associated with  x-axis. The same is for the 

complex -plane and -plane associated with y-axis and z-

axis.  

For Scheme-2, the three real axes in 3-dimensional real 

space are extended to three complex planes with 6 

independent variables instead of 3. The extended space with 

three complex planes is an abstract space. For SQS theory, 

the real space is 3-dimensional. The essence of complex 

plane is to add the phase angle to real spatial parameters. The 

physics meaning of the phase angle will be discussed later.   

Scheme-3: Unitarity in curved 3-dimensional space. 

According to general relativity, in 3-dimensional curved 

space, the distance between point  and discrete point 

 is the geodesic length: 

                          (3.15)                                             

According to (A2.2) in Appendix 2, geodesic length 

 is determined by following differential equation: 

           (3.16)                                                

In which,  is Christoffel symbol of second type. Taking 

 to replace  in (2.24) 

yields:  

.       (3.17)                                  

As mentioned previously, at point  in  

shown in Fig. 3.1, there are excessive events associated with 
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 ; at point  in , there are 

deficient events associated with . For scheme-

3, the probability transportation from  to  takes its 

geodesic path: 

     .     (3.18)                             

To adjust gauge tensor  along the path  

in curved space, the unitarity of probability  

at  and  at  are satisfied. But the 

Gaussian probability is distorted. Then the gained probability 

at  transports back to  takes the geodesic path: 

 .       (3.19)                           

It goes back to  to reinstall Gaussian probability. The 

transportations via  and  finish one cycle 

of oscillation. The process goes on and on. In this way, the 

local unitarity requirement with respect to discrete variables 

and continuous variables of Gaussian probability are satisfied 

alternatively, and the generalized unitarity is always satisfied. 

This is the scenario of probability oscillation in 3-dimesional 

curved space. 

Hypothesis 3.1: To adjust the gauge tensor  

properly makes geodesic paths  such that 

 and  are satisfied. To 

adjust the gauge tensor  properly makes 

geodesic paths  such that the Gaussian 

probability is reinstalled. The adjusted  

determines the space curvature inside the Planck cube.  

Explanation: According to Hypothesis 3.1, the alternative 

unitarity of Gaussian probability with respect to discrete 

variables and continuous variables is not only the 

driving force for probability oscillation, but also serves 

as the driving force to build the curved space inside 

Planck cube. This is the expectation from SQS theory. 

Let’ go back to the 1-dimension case. 

Definition 3.2: S-Equation. Define the S-equation along the 

x-axis as: 

.                    (3.20)                                          

Explanation: S-equation is the origin of a set of secondary S-

equations serving as the backbone of SQS theory. It 

plays a central role to determine particles parameters on 

their models, which will be discussed in later sections.   

Theorem 3.1: Along the x-axis, the 1-dimensional unitarity 

requires: 

 for all .     (3.21)                                  

The only way to satisfy  for all  is that 

)(x  is a function of  as a running constant. 

Proof:  In Section 2, (2.17) show that, 

. For all other points 

in region [1, 0.5], . In order to satisfy 

 for all x, something in the  must be 

adjustable. There are only two constants  and  in 

. In which  as a mathematical constant does not 

depend on geometry, while  does. Therefore, the only 

way to satisfy unitarity of  for all x is that )(x  

is a function of as a running constant.           QED                                                                                                   

Explanation: For SQS theory, Theorem 3.1 plays a central 

role for the models and parameters of elementary 

particles, which will be demonstrated in later sections. 

In the 1-dimensional case, what does  mean? The 

answer is:  carrying  information in curved 3-

dimensional space around point ,  indicates space 

having positive curvature corresponding to attraction force; 

 indicates space having negative curvature 

corresponding to repulsive force. The real examples will be 

given later.   

In Table 3.1, the values of  calculated from (3.21) 

are listed along with the types of space curvatures and 

corresponding forces.  
 

Table 3.1:   as A Function of  Calculated from (3.21) (

truncated at ) 

 
Notes: * The precision of values for  is limited by 16-digid 

numerical calculation. The lower limits are listed.  
   

The attraction force is the ordinary gravitational force. 

The repulsive force means that, in the vicinity of discrete 

point gravity reverses its direction. This is one of predictions 

provided by SQS theory, which is important in many senses.  

For one, the repulsive force prevents forming singularity, 

which solves a serious problem for general relativity. For 

another, without repulsive force to balance the attraction 

force, space cannot be stable. The others will be given later.  

Theorem 3.2: At discrete points , the unitarity equation 

of (3.20) requires: 

, for .     (3.22)                                
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Proof: Consider the opposite. If  is not infinity, When 

the summation index ix ,  














i

i

i

iii

x

x

x

xxx

i eexS
0)())(( 2

)(
 . 

equation (3.20) cannot be satisfied. The opposite, i.e. 

 must be true.                      QED                                                            

Theorem 3.2 is a mathematic theorem with physics 

significance, which will be presented later.  

For Scheme-2, probability oscillation is to satisfy 

alternative unitarity, which does not provide the dynamic 

mechanism and the driving force. For scheme-3, the repulsive 

and attraction forces provide the dynamic mechanism and the 

driving force for oscillation. At  where , the 

repulsive force pushes the event associated with its 

probability towards . When it arrived  where 

, the attractive force pulls it back to . In this way, 

the oscillation continues. The dynamic scenario provides the 

mechanism of oscillation, which is originated from space 

curvature.  

As mentioned in Scheme-2, the approximation of anti-

symmetry of (2.15) provides a slight chance for 

transportation off loop representing interactions, which is 

also valid for Scheme-3. 

For Scheme-3, the curvature patterns make the Planck 

scale grainy structure.  

As a summary, Table 3.2 shows a brief comparison of 

three schemes.   
 

Table 3.2: Summary of the Features for Three Schemes 

 
 

The three schemes are three manifestos of the vacuum 

state. Scheme-1 corresponds to the quantum mechanics 

vacuum state. Schemes-2 and Scheme-3 are SQS vacuum 

states at a level deeper than quantum mechanics.    

The probability oscillation in Scheme-2 is the same as in 

Scheme-3. It implies that Scheme-2 is equivalent to Scheme-

3. Moreover, in Scheme-2, three complex planes have 6 

independent real variables; in Scheme-3, the symmetrical 

 gauge matrix of  spatial part also has 6 independent 

components. The correlation indicates that, the complex 

planes of Scheme-2 are closely linked to curved space of 

Scheme-3. It confirms that, the three complex planes 

associated with three real axes are some type of abstract 

expression of the curved 3-dimensional real space. For SQS 

theory, there is no additional dimension or dimensions 

beyond the real 3-dimensional space in existence.  

In reference [2], Penrose demonstrated the correlation 

between Riemann surface and the topological manifold—

torus. According to Penrose, , ,  of (3.8) are three 

branch points of the complex function  on the 

Riemann surface:  

, ,  . (3.23) 

As shown in Fig 3.5(a), The Riemann surface for  

has branch points of order 2 at 1, ,  and another one at 

. Penrose showed that, for Riemann surface’s two sheets 

each with two slits, one from 1 to  and the other from  

to , these are two topological cylindrical surfaces glued 

correspondingly giving a torus as shown in Fig. 3.5(b). On 

the torus surface, there are four tiny holes , , ,  

representing 1, , ,  on the Riemann surface, 

respectively. The four tiny holes on torus have important 

physics significance, which well be discussed in later sections. 
 

 
 

 
 

Fig. 3.5 (a) Four branch points and two glued cuts on two sheets of 

Riemann surface; (b) Four tiny holes on torus surface. 
 

For SQS theory, the correspondence of Riemann surface 

and torus is very important. It plays a pivotal rule for 

constructing the topological models for quarks, leptons, and 

bosons with mass and much more, which will be discussed in 

later sections. 

 

Section 4: Random Walk Theorem and Converting Rules 

 

Random walk process is based on stochastic nature of 

space. It plays an important role for SQS theory. In this 

section, the Random Walk Theorem is proved and converting 

rules are introduced serving as the key to solve many 

hierarchy problems. 

Definition 4.1: Short Path and Long Path. In 3-

dimensional space, there are two types of paths between 

two discrete points. The “short path”  from point 
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 to point  is defined as the straight 

distance between them.    

 . (4.1a)                                     

The “long path”  from point  to point 

 is defined as step-by-step zigzagging path in 

lattice space with Planck length  as step length .  

, .                     (4.1b)                                                  

The random walk from point  to point 

 takes , ,  steps along , ,  

directions, respectively.   

Theorem 4.1: Random Walk Theorem. Short path  and 

long path  are correlated by the random walk formula: 

; or .                  (4.2)                                                                

 and  are normalized with respect to Planck lengt , 

both are numbers.  

Proof: According to (2.8), the probability from point 

 to point  is: 

.    (4.3)                            

Take a random walk from  to  with , , 

 steps along , ,  directions, respectively. The 

probability of reaching the destination is:  

, 

.                                                                  (4.4)                                                                                                               

Combining (4.3) and (4.4) yields .                   QED                                                        

Obviously, Random Walk Theorem is based on Gaussian 

Probability Postulation introduced in Section 2. As a 

precondition, the standard deviation  of 3-dimensional 

Gaussian probability must take the values to make the factor 

in front of exponential term equal to 1. Otherwise, Random 

Walk Theorem does not hold. It means that, the only 

parameter  in the first fundamental postulation of SQS 

theory is determined.  

Random Walk Theorem provides the foundation for 

conversions, which are governed by a set of converting rules. 

Physics quantities can be converted by applying these 

converting rules, which serve as the way to dealing with 

hierarchy problems.  

Definition 4.2: The converting factor for short path and long 

path is defined as: 

.                                       (4.5)                          

Lemma 4.1: ,  and  are related as: 

.                           (4.6)                             

Proof: According to Theorem 4.1, the lengths  and  in 

(4.2) are normalized with respect to . Let  appears 

in (4.2): 

.     (4.7)                                    

Multiplying  to both sides of (4.7) yields: 

.                                           (4.8a)                                   

According to (4.5), substituting  into (4.8a) 

yields:  

.                                    (4.8b)                                       

(4.8a) plus (4.8b) is (4.6).                                  QED                                                                    

The basic unit of length in Theorem 4.1 and Lemma 4.1 

as well as the step length of random walk is , which 

indicate the importance of Planck length. 

According to SQS theory, physics quantities at different 

scales have different values determined by converting factors, 

which are governed by converting rules originated from 

Random Walk Theorem.   

Definition 4.3: The conversion factors for general purpose 

are defined as follows.  

1. For bosons without mass: 

 .                             (4.9)                                                

 is the wavelength of the boson. 

2. For particles with mass: 

.                          (4.10)                                               

 is the Compton wavelength of the particle: 

.                                (4.11)                                            

 is the mass of that particle and  is the speed of 

light in vacuum.  

Conversion rules for general purpose are given as follows. 

1. For length: 

.                           (4.12)                                       

, , and  are long path, short path, and Planck length, 

respectively. 

2. For time interval:  

.                            (4.13)                                  

, , and  are long path time interval, short path time 

interval, and Planck time, respectively. 

3. For energy and mass:  

.                (4.14)                                   

.                       (4.15)                                    

, , and  are long path energy, short path energy, 

and Planck scale energy, respectively. , , and  

are long path mass, short path mass, and Planck mass, 

respectively. 

Take the ratio of electrostatic force to gravitational force 

between two electrons as an example to show how converting 

rules work. 

According to Coulomb’s low, the electrostatic force 

between two electrons separated by a distance  is:   
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.                           (4.16)                    

In which,  is the electrical charge of electron,  is 

permittivity of free space. 

According to Newton’s gravity low, the gravitational 

force between two electrons separated by a distance  is:   

.                          (4.17)                        

In which,  is Newtonian gravitational constant,  is 

electron mass. 

According to (4.16) and (4.17), the ratio of electrostatic 

force to gravitational force between two electrons is:  

.   (4.18)                                 

According to (4.15) and (2.1d): 

,                      (4.15)                                

, or .        (2.1d)                        

 is the converting factor for electron.  is Planck mass. 

Substituting (4.15) and (2.1d) into (4.18) yields: 

. (4.19)       

In (4.19),  is the fine structure constant. At electron mass 

scale: 

,   (4.20)             

In which,  is cited from 2010-

PDG (p.126) according to references [3] and [4]. Electron 

converting factor is: 

.          (4.21)               

Substituting (4.20) and (4.21) into (4.19) yields: 

          .            (4.22)                      

 is one of many hierarchy problems in physics. By 

applying conversion rules not only solves the hierarchy 

problem but also reveals its origin and mechanism. On the 

right side of (4.19), the first factor is electrically originated: 

.          (4.23)                 

The second factor  is mass originated: 

.   (4.24)               

According to Random Walk Theorem and Lemma 4.1, 

converting factor  is equal to the ratio of long path over 

short path. Keep this in mind, the  factor can be 

explained naturally. For a pair of electron, the electrostatic 

force is inversely proportion to the square of the straight 

distance  (short path) between them; while the gravitational 

force actually is inversely proportional to the square of the 

zigzagging long path  between them. In terms of 

force mediators, photon takes the short path, while graviton 

takes the long path. According to SQS theory, this is the 

mechanism of tremendous strength difference between 

electrostatic and gravitational forces, which is originated 

from random walk.  

It is the first time to show that Random Walk Theorem 

and the long path versus short path as well as the conversing 

rules are real and useful. There are more examples along this 

line in later sections. 

Once the mechanism is revealed, there are more insights 

to come. 

Rule 4.1: Electron’s converting factor  is a running 

constant as a function of length scale  (in this case,  

is the distance between two electrons) with different 

behaviors in two ranges.   

Range-I: For the length scale : 

  for .        (4.25a) 

Range-II: For the length scale : 

  for  .                 

 (4.25b) 

In (4.25),  is the Compton wavelength of electron, 

 is the lower limit of  in Range-II, 

which will be explained in Section 16.  

Explanation: The reason for  in Range-

I is obvious. Otherwise, if  is not a constant, 

then electron mass in macroscopic scale varies with 

distance, which is obviously not true. Range-II needs 

some explanation. According to Lemma 4.1, , 

in this case , (4.25b) is explained. Fig. 4.1 

shows the variation of , the  versus  

profile is made of two straight lines. In Range-I,  

is a flat straight line with zero slop.  In Range-II,  

is a straight line with slop . Two straight lines 

intersect at . It shows a peculiar behavior of 

. Most physics running constants vary 

asymptotically toward end. This one is different. The 

straight line with slop  on left suddenly stops at 

 and changes course to the flat straight line on 

right. At two straight lines’ intersecting point, the first 

order derivative is not continuous. The mechanism of 

such peculiar behavior will be explained in Section 16.  

There is another factor )4/( 2  in , in which 

 is a running constant. The variation of  
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makes  different from . It rounds the corner of 

 versus  curve at intersecting point show in Fig. 

4.1.   

The  for two electrons given by (4.19) is just an 

example. It can be extended to other charged particles. For 

instance, two protons separated by a distance , the ratio of 

electrostatic force to gravitational force is: 

; 

.                                         (4.26) 

 In which, , , and   are mass, converting 

factor and fine structure constant at proton energy scale, 

respectively.   
 

 
Fig. 4.1  and  versus distance l  curves. (Scales are not 

in proportion.) 
 

Substituting data into (4.26) and ignoring the difference 

between  and  of (4.20) yields the ratio for 

protons:   

  .              (4.27)                              

The conversion rules introduced in this section are subject to 

more verifications. Other applications of converting rules will 

be presented in later sections. 

 

Section 5: Apply to Quantum Mechanics and Special 

Relativity 

 

 In this section, the converting rules introduced in Section 

4 are applied to some examples in quantum mechanics and 

special relativity.  

According to Feynman path integrals theory [5], the state 

 at point  and time  is related to the initial state 

 at point  and time  as: 

, ;          (5.1a)                                              

.       (5.1b)                                       

In which A is a constant,  is the action,  is the 

Lagrangian, , ,  and  are 3-dementional 

coordinates with simplified notations. The integral in (5.1a) 

and summation in (5.1b) include “all possible paths” from 

point  to point .  

Assuming the particle is a photon with visible lights 

wavelength of , it travels with speed c from  to 

 separated by distance . The photon traveling 

through  once takes time . The 

obvious question is: How does photon have time to travel so 

many times through “all possible paths” between  and ? 

Theorem 4.1 and Lemma 4.1 provide the answer. According 

to (4.9), the converting factor for photon with wavelength 

 is:  

.                                        (4.9)                             

According to (4.12), the photon’s long path wavelength is: 

 . (5.2)                            

The  tremendous difference between long path 

wavelength  and wave length  is originated from the 

Random Walk Theorem. From SQS theory viewpoint, the 

“all possible paths” in (5.1) of Feynman path integrals theory 

are covered by photon’s long path wavelength

. It is sufficient for the photon to go 

through “all possible paths” via many billions of billions 

different routes from  to .  

According to (4.13), for the photon with wavelength

, the long path time interval  is much longer 

than its short path time interval  

.  

 (5.3) 

Photon has sufficient time to travel through “all possible 

paths” including many billions of billions routes from  to

. This is the explanation of SQS theory for Feynman path 

integrals theory.  

 But there is a question. If the photon with wavelength 

 really travels through the long path 

, for a stationary observer, it only takes 

time interval of . The 

question is: What is photon speed seen by a stationary 

observer? If the stationary observer sees the long path, the 

speed is indeed superluminal. But according to SQS theory, 

the wave pattern of a particle such as photon is established 

step by step with step length  during its zigzagging long 

path journey. The short path is the folded version of the long 
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path. For an ordinary photon, the folded long path is hidden 

in its wave pattern. The stationary observer sees neither the 

hidden long path nor the superluminal speed. In case the 

photon’s long path shows up from hiding that is another story. 

It will be discussed later.  

The explanation for Feynman’s path can be used to 

explain other similar quantum phenomena such as the 

double-slot experiment for a single particle and quantum 

entanglements.  

Take the double slots experiment for a single photon as an 

example. Experiments have proved that, when the light 

source emits one phone at a time, the interference pattern still 

shows up. As mentioned previously, a photon with 

wavelength  has its long path wavelength 

 and superluminal speed for vacuons (in 

Section 18, vacuon is defined as a geometrical point in space) 

to travel along the long path, which provide the condition to 

let the vacuons pass through two slits enormous times to form 

the interference pattern. Fig.5.1 shows the double-slit 

interference pattern for a single photon. 
                                        

 
Fig.5.1 The double-slit interference pattern for a single photon.  
  

The single photon’s long path builds the wave pattern step 

by step in the space between the plate with double-slit and the 

screen. The two waves come from two slits to form the 

interferential pattern on the screen just like the regular 

double-slit interference pattern. The single photon strikes on 

the screen at a location according to probability determined 

by the interference wave pattern’s magnitude square. When 

more photons strike on screen, the interference pattern 

gradually shows up. The long path provides the condition for 

a single photon’s wave pattern to interfere with itself. It is 

possible because of the long path’s extremely long length and 

vacuons’ superluminal speed, which allow the vacuons pass 

through two slits so many times. In this sense, a single photon 

does pass through two slits.  

According to the converting factor  

based on the Random Walk Theorem, as photon’s frequency 

 and energy increase,  decreases. The difference 

between long path and short path decreases accordingly. As a 

result, the wave pattern becomes coarser and more random. 

In other words, the wave-particle duality is a changing 

scenario with energy, the particle nature is enhanced and the 

wave nature is diluted with increasing energy.  

The tremendous difference between short path and long 

path is related to special relativity. A stationary observer sees 

the photon having wavelength . The photon traveling along 

its short path with a speed  less than  and very close to , 

according to Lorentz transformation:  

, .       (5.4)   

From SQS theory perspective,  and  are photon’s 

short path wavelength and long path wavelength originated 

from Random Walk Theorem. From special relativity 

perspective,  versus  is the result of Lorentz 

transformation. These two apparently different scenarios are 

two sides of the same coin. The key concept is to recognize 

photon traveling along its short path with a speed  less than 

 and very close to . It is a deviation from special 

relativity.  

Substituting  into (5.4) yields:                                                           

.         (5.5)                                     

 and  are the standard notations in special relativity. As 

shown by (5.5), converting factor  is closely related to  

and of special relativity. 

Substituting photons’ converting factor  from 

(4.9) into (5.5) yields: 

,                  (5.6)                                     

Solving (5.6) for photon’s speed  as a function of 

frequency
 
or wavelength  yields: 

，                       (5.7a)                                    

.                         (5.7b)                                    

Photon’s speed varying with its frequency or wavelength 

means dispersion. (5.7) is the dispersion equation of photon. 

The speed of photon decreases with increasing frequency. 

The constant  is not the universal speed of photons, instead, 

it is the speed limit of photon with frequency approaching 

zero. This is a modification of special relativity proposed by 

SQS theory.  

According to the Gaussian Probability Postulation, space 

has periodic structure with Planck length  as spatial period. 

It is well known that, wave traveling in periodic structure has 

(5.7) type dispersion. Look at it the other way: Dispersion is 

caused by the fact that photon interacts with space. For SQS 

theory, space is a physics substance.  

The dispersion effect of visible lights is extremely small. 

It is negligible in most cases. According to (5.7), the speed  

of a photon with wavelength  deviates from c in the 
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order of . On the other hand, for - ray with 

extremely high energy, the dispersion effect is detectable. It 

serves as a possible way for verification. 

On May 9th, 2009, NASA’s Fermi Gamma-Ray Space 

Telescope recorded a -ray burst from source GRB090510 

[6,7, 8]. The observed data are given as follows. 

Low energy -ray: energy , 

wavelength  m10

1 1024.1  . 

High energy -ray: energy , 

wavelength . 

Distance to -ray source:  

Observed time delay (after CBM trigger) for the high energy 

-ray: . 

According to (5.7b), the SQS theoretical value for time 

delay is: 

. (5.8)    

The approximation is due to . 

Substituting observed data and  into (5.8) yields： 

                        (5.9a)                                                       

Substituting observed data and  into 

(5.8) yields：  

s
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.  (5.9b)                             

 is the long path of ,  and  are 

converting factors for  and , respectively. The 

dispersion equation corresponding to (5.9b) according to 

some other theories is： 

.                                (5.10)                                    

(5.7) and (5.10) can be expressed as one equation：  

； ， .        (5.11)            

In which,  is for (5.10) and  is for (5.7).   

Superficially, the observed data seem to favor the result of 

(5.9b) and  for (5.11). Actually it is not true. After 

extensive analysis, the authors of [6, 7, 8] concluded: “… 

even our most conservative limit greatly reduces the 

parameter space for  models. … makes such theories 

highly implausible (models with  are not significantly 

constrained by our results). ”  

The observation data from GRB090510 neither confirm 

nor reject dispersion equation (5.7). In fact, for the distance 

of , to verify (5.7) directly requires the high 

energy  -ray burst with energy level around , 

which is a very rare event.  

Quantum mechanics supports non-locality. For a pair of 

entangled photons separated by an extremely long distance, 

their quantum states keep coherent. Measure one photon’s 

polarization, the other one “instantaneously” change its 

polarization accordingly. Einstein called it: “Spooky action at 

a distance.”  

SQS theory does not support non-locality. For a pair of 

entangled photons, SQS theory provides the following 

understanding and explanation.  

1.   There is a real physical link between entangled photons. 

They are linked by the long path. In case of entanglement, 

the long path shows up from hiding with energy 

extracting from entangled photons. 

2. The transmission of information and interaction between 

two entangled photons does not occur instantaneously, 

instead, it takes time. Even though the time interval is 

extremely short, but it is not zero. For ordinary photons, 

the long path is folded to form photon’s wave pattern, the 

stationary observer only sees the short path with photon 

speed of  given by (5.7a). For a pair of entangled 

photons, the long path shows up serving as the link. A 

stationary observer now sees the long path and 

superluminal speed. The speed of signal transmitting 

along the long path between two entangled photons is   

       .  (5.12)                                               

For visible light with wavelength , according to 

(5.12), . This is why territorial 

entanglement experimenters found that the interaction 

seems instantaneous. Actually it is not. The interaction 

between entangled photons is carried by a signal 

transmitting alone the long path with superluminal speed 

of (5.12). Recently, Salart et al report their testing results: 

the speed exceeds  [9]. Indeed, it is superluminal. 

3. In the entanglement system, two entangled photons and 

the link connecting them have the same wavelength to 

keep the system coherent. 

Entanglement provides a rare opportunity to peep at the 

long path. It is worthwhile to take a close look. 

According to (4.6) of Lemma 4.1 based on the Random 

Walk Theorem, the relations of photon wavelength , long 

path wavelength , converting factor  and Planck length 

 are: 

, ,                                (5.13a)                         

.                          (5.13b)                            

The relations given by (5.13) serve as the guideline to 

deal with photons entanglement.  

Postulation 5.1: For a pair of entangled photons, the 

entanglement process must satisfy energy conservation 

law and (5.13) relations. Under these conditions, a pair 

of entangled photons’ original wavelength  changes 

to  and the original long path wavelength  

changes to  according to the following formulas: 

,                                              (5.14a)                              

, ,         (5.14b)                                   
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,                                                 (5.14c)                            

.                     (5.14d)                                

Explanation: The distance between two entangled photons is 

. The link has two tracks, one track for one direction 

and the other for opposite direction. The total length of 

two tracks is . According to SQS theory, 

photon’s geometrical model is a closed loop with loop 

length of . In the entanglement system, two 

entangled photons and the link connecting them share a 

common loop. The link’s double-track structure is 

necessary to close the loop.  is converting 

factor for photons with wavelength ,  is the 

number of wavelengths in one track. Conservation of 

energy requires total energy for entanglement system 

kept constant: 

,               (5.15a)                                   

.                     (5.15b)                                  

In which,  is Planck constant. The term on (5.15a) left 

side is the energy of two photons with original 

wavelength . On (5.15a) right side, the first term is the 

energy of two photons with elongated wavelength ,  

the second term is the energy extracted from two photons 

to build the link. Substituting  and  from (5.14) into 

(5.15b) yields the formula to determine the elongated 

wavelength : 

 .           (5.16)                                  

A 16-digit numerical calculation is used to solve (5.16) 

for  as a function of  for . The results 

are listed in Table 5.1.  
 

Table 5.1: Entangled Photons Wavelength  as a Function 

of  for 
 

  

The data listed in Table 5.1 show some interesting 

features. 

1. Maximum entanglement distance: Solve  (5.16) for : 

.         (5.17)                                

It shows that, the distance  between two entangled 

photons increases with increasing wavelength . At the 

wavelength , the distance . It seems no 

limitation for . But that is not the case. Because another 

requirement is involved: The link as an integrated part of 

entanglement system must have the same wavelength of 

two photons. Otherwise, there is no coherency. In this 

case,  corresponds to . A half  

( ) of each photon’s energy is extracted out 

to build the link. According to SQS theory, photon’s 

model is a closed loop with loop length of , which 

corresponds to two wavelengths and two long path 

wavelengths inside the photon to build its wave pattern. 

The half energy extracted from two entangled photons is 

only sufficient to provide two wavelengths and two long 

path wavelengths for the link. Under such circumstance, 

the only way to build the link with infinite length is to 

infinitively elongate the long path wavelength as well as 

the wavelength in the link, which make them very 

different from two entangled photons’. It is prohibited by 

violating coherency requirement. So the entanglement 

distance does have its limit. In fact, only one case 

satisfies both requirements: energy conservation and 

quantum coherency. The unique case is . 

According to (5.16),  yields 

 corresponding to . 

A third  of each photon’s energy is 

extracted out to build the link. The total energy is just 

right to make the original two wavelengths and two long 

path wavelengths in each photon becoming three 

wavelengths and three long path wavelengths for the 

entangled system, in which two are kept for each photon 

itself and one extracted out to build one track with length

. In this way, both requirements are satisfied and 

self-consistent. Hence, there is a maximum distance 

between two photons to keep entangled, which is 

determined by (5.17) with : 

. (5.18) 

When , the link breaks down and two entangled 

photons are automatically de-coherent even without any 

external interference. The data for  are listed 

in the bottom row of Table 5.1.  

2. Energy balance:  At the maximum distance , 
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that, one third of each photon’s energy is extracted out to 

build the link. Because the double-track link extracts 

energy from tow photons, , the link 

has the same energy of each photon’s energy. The link 

acts like another photon with the some energy and the 

same wavelength of each entangled photon. In other 

words, at the maximum entanglement distance 

, the entanglement system is seemingly made 

of three photons, in which two are entangled real photons 

and the third one makes the link to connect them. It 

serves as evidence that, the link is a physics substance 

with energy. At shorter distance , the extracted 

energy gradually increases to build the link and to push 

the link for expansion. At distance beyond maximum 

distance, , the entanglement system breaks 

automatically, because it lacks sufficient energy to 

maintain the over expanded link. In this way, both 

requirements are satisfied and everything is consistent. 

The key is to recognize the long path serving as the 

physics link for entanglement.  

3. Entanglement red shift: The wavelength  increases 

with increasing distance . The red shift is caused by the 

fact that, a portion of the entangled photons energy is 

extracted out to build the physics link. It is the energy 

conservation law in action. According to (5.16), the red 

shift continuously increases with increasing distance. The 

maximum red shifted wavelength at 
 
is.  

.                       (5.19)                  

The entanglement red shift happens gradually. For a pair 

of photons separated by distance much shorter than the 

maximum distance, the tiny red shift is very difficult to 

detect. As listed in Table 5.1, for a pair of photons with 

wavelength  at distance m, the 

relative red shift is only . For entangled photons 

with visible light wavelength  , the red shift is 

many orders of magnitude less than . This is why 

entanglement experiments with limited distance haven’t 

found the red shift effect yet. But it is out there. 

Otherwise, the physics link energy has nowhere to come 

from.  

4. De-coherent blue shift: When a pair of entangled 

photons is de-coherent, the outcomes depend on the de-

coherence location. If the location is right at the middle 

,  the physics link is broken evenly and each photon 

gets back equal share of the link energy to resume original 

wavelength corresponding to a blue shift. According to 

(5.16), the two de-coherent photon’s wavelength is 

shortened from  to  causing the blue shift.  

.                          (5.20)                         

At , the blue shift is:  

.                     (5.21)   

In terms of frequency, the blue shift is:  

.     (5.22)   

If the de-coherent location is at the close vicinity of one 

photon, this one does not gain energy to change its 

wavelength and shows no blue shift. The other one gets 

all energy of the link and has the maximum de-coherent 

blue shift to the wavelength  shorter than the original 

wavelength . According to energy balance of (5.15):  

,  

or      . 

For photon at distance  from de-coherent location, its 

wavelength is shortened to : 

.                     (5.23)                          

For de-coherence at locations between  and , the 

blue shift for the far away one is between the two values 

given by (5.20) and (5.23). At the maximum 

entanglement distance ,  according to (5.23), 

the maximum blue shift in terms of frequency is: 

.               (5.24)                             

 is the blue shifted frequency of the photon at the 

distance  from the de-coherence location. For de-

coherence at locations between  and , the blue 

shift is between the two values given by (5.22) and (5.24). 

The de-coherent blue shift happens suddenly with a large 

frequency increase, which is relatively easy to detect, but 

the problem is the uncertainty of de-coherent timing.  

The above analyses show that, entangled photons are 

connected by a physics link, interactions and information 

between them are transmitted with superluminal speed 

. It is much faster than  but 

not infinite. From SQS theory standpoint, the physics link 

and the non-infinite superluminal speed serve as the 
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foundation for locality. After all, Einstein was right: No 

spooky action at a distance. 
Conclusion 5.1: Entanglement has limited distance. The 

distance between entangled particles cannot be infinitely 

long.  

Proof: Conclusion 5.1 is not based on Postulation 5.1. It is 

based on basic principle. Consider the opposite. If a pair 

of entangled particles is separated by infinite distance, 

the physics link between them must have nonzero 

energy density, energy per unite length. Then the total 

energy of the link equals to infinity. That is impossible, 

the opposite must be true.                                      QED 

Explanation: According to Conclusion 5.1, the maximum 

entanglement distance  given by (5.18) serves only 

as an upper limit. Whether a pair of entangled photons 

can be separated up to or not, it also depends on 

other factors. For entangled photons with very long 

wavelength, their quantum has very low energy. As the 

link stretched very long, the energy density becomes 

lower than the vacuum quantum noise. The link could 

be broken causing de-coherence with distance shorter 

than the maximum distance . The other factor is 

external interferences causing do-coherence, which is 

well known and understood. 

According to SQS theory, photons travel along the short 

path with speed of with dispersion given by (5.7); the 

signals between entangled photons transmit along the long 

path with superluminal speed  of (5.12). These 

are the conclusions derived from converting rules introduced 

in Section 4. The key concept is the long path, which is 

defined by (4.12) based the converting factor and originated 

from the Random Walk Theorem. If the existence of long 

path is confirmed, so are these conclusions as well as its 

foundation.  

If photon’s long-path is confirmed, the non-locality of 

quantum mechanics must be abandoned. Moreover, long path 

is based on converting rule. If it is confirmed meaning photon 

does have dispersion. Special relativity should been revised 

as well.  

The dispersion equation of (5.7) is not the final version. In 

Section 25, a generalized dispersion equations will be 

introduced, in which the Planck length in (5.7) is replaced by 

longer characteristic lengths. It makes easier for experimental 

verifications. 

In this section, special relativity is revised. For most 

practical cases, the revision for photon’s speed in vacuum is 

extremely small, but its impact are huge such as the 

introduction of superluminal speed  . 

Is it inevitable? Let’s face the reality: Experiment carried out 

by Salart et al [9] proved that, the speed of signal transmitting 

between two entangled photons exceeds 10000c. It leaves us 

only two choices: One is to introduce non-infinite 

superluminal speed as we did in this section; the other is to 

accept “spooky action at a distance”. Obviously, the second 

choice is much harder for physicists to swallow. Therefore, 

the superluminal speed is indeed inevitable. Besides, the 

superluminal speed introduced in this section is within 

special relativity framework. The key concept is that, the long 

path and the superluminal speed are hidden, they only show 

up in very special cases such as entanglement.  

The converting factor seemingly has two different 

meanings: One is from random walk; the other is from 

Lorentz transformation. Actually, they are duality. Such 

duality is common in physics. One well known example is 

wave-particle duality. The mechanism of the random walk-

Lorentz duality is not clear, which is a topic for further work; 

and so it the mechanism of the wave-particle duality. In fact, 

the long path concept digs into the mechanism of wave-

particle duality down to a deeper level: The vacuons’ 

movement builds the wave-pattern step by step.      

 

Section 6: Electron.      

 

Define the DS-function         xSxSxDS  5.011
2

1 as: 

.    (6.1) 

According to its definition,  is symmetrical with 

respect to  in region : 

; .   (6.2)                               

 satisfies the periodic condition: 

.                                (6.3)                          

Fig. 6.1 shows  versus  curve in region . 

The other part in region  is the mirror image of this 

part with respect to . 
                              

 
Fig. 6.1  versus  curve in region . 
 

Definition 6.1: Define the DS-equation as a member of the S-

equation family: 

. (6.4) 
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In region ,  has two roots: , 

. According to (3.12), the path length of 

probability transportation from  to  via complex -

plane is: 

.                      (6.5)                                    

In (6.5),  appears as the unit length hidden in (3.12). The 

reason for the factor 2 in (6.5) has been explained 

mathematically in Section 3. Physically, according to the 

spinor theory proposed by Pauli, electron as Dirac type 

fermion has two components, which move in the zigzagging 

path called “zitterbewegung” phenomenon [10].  

According to (3.14), the loop length corresponding to path 

length for  and  is: 

.                                           (6.6)                                

 means that the probabilities compensation 

between excess and deficit is exact. The oscillation between 

 and  does not decay, which corresponds 

to a stable fermion. Electron is the only free standing stable 

elementary fermion, which neither decays nor oscillates with 

other particles. It is the most probable candidate for this 

particle.  

Assuming the resonant condition for the lowest excitation 

in a closed loop with loop length  is: 

.                                           (6.7)                                        

In which,  and  are the mass and Compton wavelength 

of the particle, respectively. Substituting (6.6) into (6.7) and 

solving for the mass of this particle yield: 

          (6.8)                                        

It is recognized that  is the Planck mass. According 

to 2010 PDG data, the mass of electron is: 

.                      (6.9)                                     

 is  time heavier than , which is one of the 

hierarchy problems in physics. It can be resolved by applying 

conversion rule. According to (4.10), the converting factor 

for electron is:  

.                                      (6.10)                                   

The mass of (6.8) after conversion is: 

                            (6.11)                                      

The particle is identified as electron. Of cause, this is a 

trivial case, but it serves as the basic reference for nontrivial 

cases given later. 

The reason for miscalculating the mass with  times 

discrepancy is mistakenly using Compton wavelength  in 

(6.7).  In reality, the resonant condition in Planck scale closed 

loop should be:  

 .                                   (6.12)                                   

.                           (6.13)                                    

N  is the converting factor for that particle.  is 

defined as the Planck wavelength. The number m in (6.12) is 

related to the spin of particle. For electron,  

corresponds to spin . In general, the spin of a particle 

equals to . Odd m corresponds to fermions, and even 

m corresponds to bosons. m is the first numerical parameter 

introduced by SQS theory. 

Electron as a Dirac type fermion, its trajectory has two 

types of internal cyclic movements, one contributes to its spin 

and the other one does not. In (6.12), the loop with length 

 is the main loop celled loop-1 and the other loop is 

loop-2. The dual loop structure of electron corresponds to 

two components. The dual loop structure is not only for 

electron but also for other Dirac type fermions, which will be 

discussed in later sections. 

The basic parameters for electron are listed below. 

Mass:  

 
(6.14)                    

Compton wavelength:  

.               (6.15)                       

Converting factor:  

.                          (6.16)                                           

Loop parameters: 

, , , .           (6.17)                                  

At , , , the 

probability compensation is exact corresponding to electron 

as a stable particle. At other locations, the probability 

compensation is not exact corresponding to unstable particles. 

Electron is unique. Its mass servers as basic unit used for 

calculating other fermion’s mass. The general formula to 

determine  for fermion with mass is: 

.           (6.18)                              

The reason for (6.18) is that, loop length  is 

inversely proportional to mass. 

According to (6.18), the values of  and  of the 

fermion with mass  are: 

,                        (6.19a)                                    

.                                                        (6.19b)                                    

Along the x-axis, according to (2.19) and (2.20), the 

region between two special points 
 
and  is:  

 . 

    (6.20)            
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Inside region  , both  and , 

probability transportation for unitarity does not make sense. 

Rule 6.1: The special points  sets a mass upper limit  

for stand alone fermions: 

.    (6.21)                        

A fermion with mass heavier than  cannot stand 

alone. It must associate with an anti-fermion as 

companion to form a boson state. 

Rule 6.2: The  and  inside region  belong to 

gauge bosons with spin .  

Rule 6.3: The region  belongs to scalar bosons with 

spin 0. Point 
cx'  is defined as: 

510552843726973.1

73026452499871562.025.025.0'



 cc xx .  

  (6.22) 

The meaning and the effectiveness of these rules will be 

given in later sections. 

This section serves as the introduction of electron for SQS 

theory. It will be followed by later sections in much more 

details. 

 

Section 7: DS-Function on k-Plane as Particles Spectrum 

 

In Section 6, the  as a function of x is defined as: 

.         (6.1)                                     

Taking Fourier transformation to convert  into

 on complex k-plane yields:   

       

(7.1) 

Summation index  in (6.1) is replaced by index j in (7.1) 

for simplicity. In (7.1), k is the wave-number on complex k-

plane. Normalize k with respect to  as: 

.                                      (7.2)                         

In terms of , the  function (7.1) becomes: 

   
   (7.3)                                  

 and  are the DS-functions on the complex k-

plane and -plane, respectively. Because  and  in (6.1) 

are normalized with respect to Planck length  as numbers. 

In the Fourier transformation process,  and  are also 

numbers, so  and  are normalized with respect to .  

Definition 7.1: The real part  and imaginary part  of  

are related to particle’s complex mass as:  

                 (7.4)                                     

 and 
 
are the real mass and the imaginary mass of 

the particle, respectively.  is electron’s mass serving 

as the basic mass unit. 

Explanation: Definition 7.1 is based on the concept that, -

plane serves as the spectrum of particles. According to 

(7.4), particle’s mass and its decay time  are: 

,                           (7.5a)                                                  

.                                      (7.5b)                                                 

In which,  and  are the mass and Compton 

wavelength of electron, respectively.  

Formula (7.5a) is derived from real part of (7.4). Formula 

(7.5b) is derived from imaginary part of (7.4) as:  

.

          (7.6)                     

 and  are imaginary part of energy and frequency of the 

particle, respectively.  

Numerical calculations of  found the following 

results. 

1, ,  is a root of . According 

to (7.5a) and (7.5b): 

, .                                         (7.7)                                            

 at  corresponds to electron as a 

fermion. 

2,  ,  is a pole of . According 

to (7.5a) and (7.5b): 

, .                            (7.8)                                              

,  corresponds to photon as a boson. 

Rule 7.1: In general, the local minimum of  

corresponds to a fermion, while the local maximum of 

 corresponds to a boson. At the local minimum 

or local maximum of ,  with real value 

corresponds to a stable particle,  with complex value 

corresponds to an unstable particle.  

Explanation: Rule 7.1 is the generalization of 

 for electron as a fermion and 

 for photon as a boson.  

Consider the factor in (7.3): 
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       (7.9)              

In (7.9), for  and , , which 

drastically suppresses the magnitudes of local minimum and 

local maximum of  and makes numerical calculation 

difficult. In (7.3), the -function  does not contribute 

except for . Let’s disregard the factor  and 

drop the  term to define the simplified version of 

 as:  

.                     (7.10)                                       

In terms of the  value at local minimum or local 

maximum of , the error caused by simplification is 

evaluated in Appendix 3, which is negligible in most cases. 

The simplified  of (7.10) is taken for technical 

reasons. It does not mean ignoring the importance of the 

factor  and the term  in the original  

of (7.3). In fact, the factor  serves as the 

suppression factor for the original  of (7.3). The 

suppression factor plays an important role in Section 15 for 

unifications. In addition, as the suppression factor value 

decreases to extremely low level, the magnitudes of the local 

minimums and local maximums are suppressed too much and 

no longer distinguishable from the background noise. This 

scenario may relate to the early universe with extremely high 

temperatures. The term  in the original  of (7.3) 

comes from the unitarity term “ ” in  of (6.1). In 

Section 9,  is extended based on the extension of the 

 term. Then the extended version is Fourier transformed 

back to the complex -plane, a number of new things show 

up, which will be discussed in Section 9.      

 serves as particles spectrum with fermions at 

local minimum and bosons at local maximum. Particle’s mass 

and decay time can be calculated from  according 

to (7.5). The summation index j in (7.10) must be truncated at 

integer n. The rules for truncation are:  

For odd n:  ,          (7.11a)                                                        

For even n:  ,  

or  .                          (7.11b) 

The numerical parameter n assigned to particles is from the 

mass ratio: 

.                                          (7.12)                            

For  serving as spectrum, the number n for 

truncation in (7.12) must be integer, if the n-parameter in 

(7.12) is not an integer, multiplication is taken to convert it 

into an integer for the truncation in (7.11).  

In (7.12), n and p are the second and third numerical 

parameters introduced after the first one of m introduced in 

Section 6. For a particle, the set of three numerical 

parameters m, n, p plays important roles for particles models 

and parameters, which will be explained in later sections.  

As examples, (7.11) is used to calculate the parameters of 

muon and taon. The results of 16-digit numerical calculation 

are listed in Table 7.1. In which, the reason for taking the 

values of numerical parameters m, n, p will be given in later 

sections. 
 

Table 7.1: The Calculated Parameters of Muon and Taon   

 
*   The listed  value corresponds to particle’s lifetime.  

** The relative discrepancy of mass is calculated with the medium value of 

2010-PDG data. 
 

For the truncated  of (7.11), the locations of local 

minimums and local maximums depend on the value of n, 

which must be given beforehand. In other words, different n 

values give different mass values for different particles. 

Fortunately, the n value of a particle can be determined by 

other means. For instance, quarks’ n is selected from a set of 

prime numbers and it is tightly correlated to strong 

interactions. It can be determined within a narrow range and 

in many cases uniquely. The details will be given in later 

sections.  

Look at the spectrum from another perspective,  

actually provides a dynamic spectrum for all particles. As the 

value of n-parameter increases, the locations of local 

maximums and minimums change accordingly corresponding 

to different particles. It is conceivable that, for the full range 

of n-parameter,  serves as the spectrum of all 

elementary particles. Whether it includes composite particles 

or not, which is an interesting open issue. 

Using 16-digit numerical calculations found that, for a 

given value of 
 
such as  for muon, 

there are a series of local minimums located at different 

values of . Table 7.2 shows twenty three values for 

muon over a narrow range from  to 
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. There are 6 local minimums 

corresponding to 6 possible decay times. 

Table 7.3 shows  profile as a function of  over a 

broad range of  alone  line. 
 

Table 7.2 Muon Decay Data in Narrow Range*  

 
* The parameters m, n, p and  are the same as those listed in Table 7.1.  

 

Table 7.3   over Broad Range for Muon*  

 
* The parameters m, n, p and  are the same as those listed in Table 7.1.

 
 

** 2010-PDG listed muon’s mean life . 

As shown in Table 7.3 muon values from  to 

  divided into three regions. In Region-1  , 

average values of  as base line keep constant: . In 

Region-2 ,  base line is in the global 

minimum region. Region-2 is the effective region of muon’s 

decay activities. In which,  corresponds to 

muon’s mean life of . In Range-3 

,  base line increases monotonically.  

Table 7.4 listed some samples of local minimums 

distribution at 11 locations, which are used to estimate the  

average value of the separation between two adjacent local 

minimums. 
 

Table 7.4: Samples of Local Minimums of  for Muon at

30777692307692.206rk  * 

 
 * The parameters m, n, p and   are the same as those listed in Table 7.1.  

 

A distinctive feature of these theoretical results is that, 

along a  straight line,  has a series of local 

minimums corresponding to a series of possible decay times 

for a particle such as muon. Does it make sense? From the 

theoretical viewpoint, it does. According to the first 

fundamental postulation, SQS is a statistic theory in the first 

place. A series of  local minimums corresponding to 

a serious of possible decay times should be expected. On the 

practical side, muon’s mean life having a definitive value 

 is for large numbers of muons as a 

group. For an individual muon,  is the statistical average 

value of many possible decay times, it by no means must 

decay exactly at . 

As shown in Table 7.4, the 121 local minimums are taken 

as samples from  to  with as 

variation step. It shows that, local minimums behavior 

randomly. The average separation between two adjacent 

minimums is calculated from these samples as 

, which roughly kept constant 

over a broad region. These data is used to estimate the total 

number of local minimums in Region-2 between  

and  as: 
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.                 (7.13)                      

Region-2 with decay time from  to 

 is the effective region of muon’s decay 

activity. There are  local minimums in this 

region, each one corresponds to a possible decay time. The 

locations of local minimums determine the values of possible 

decay times. Besides Region-2, there are local minimums in 

Region-1 and in part of Region-3, which will be discussed 

later. 

By counting all local minimums of , in principle, 

the theoretical mean life  of muon can be calculated by 

extensive number crunching. But it requires a tailor made 

program. In the meantime, let’s take a rough estimate.  

According to (7.5b), the separation of two adjacent 

possible decay times and corresponding decay time’s density 

(number of possible decays per unit time) are: 

.                          (7.14a)                               

.                                    (7.14b)                             

In the  domain, the local minimums have roughly even 

distribution as shown in Table 7.4. In the time domain, 

because of the inverse relation  of (7.14a), the 

local minimum of  in the  domain corresponds to 

the temporal response as the local maximum in the time 

domain. As shown by (7.14a), the local maximums in time 

domain are unevenly distributed caused by the  factor in 

denominator of .  

The effective Region-2 is divided into four sub-regions:  

Region-2a:  with center at ; 

Region-2b:  with center at ; 

Region-2c:  with center at ; 

Region-2d:  with center at . 

The values of , , ,  and  at center of each 

sub-regions calculated according to (7.14) and Table 7.4 are 

listed in Table 7.5.  
 

Table 7.5: Parameters in the Center of Four Sub-Regions 

 
 

The values at the center of each sub-region are treated as 

the average values for that sub-region. Take 
 
as 

the probability for muon decay in  sub-region, 

muon’s mean life is roughly estimated as:  

.         (7.15)     

The value of  is 83.7% of muon’s measured mean life 

, which is in the ballpark. Since only the 

activity in Region-2 is counted, the 16.3% discrepancy is 

understandable. The ballpark agreement shows that, the 

spectrum does contain the information of mean lifetime in the 

muon’s case and Region-2 is the effective region.  

The rough estimation is based on the assumption that, 

Region-2 is the effective region for muon’ decay activity. 

The effects of other two regions are not taken into account, 

which need justification. 

The local minimums are not restricted in Region-2, they 

extended to Region-1 from 
 
to . According 

to (7.14b), the decay time density  is proportional to , 

in Region-1,  value decreases rapidly as  value 

decreasing. For instance, the  value at the boundary of 

Region-1 and Region-2, , is roughly less than 

 of the  value at the center of Region-2 where 

muon’s mean life is close by. In other words, muon rarely 

decays in Region-1 with extremely low probability. 

Prediction 7.1: The probability of muon decay time longer 

than  corresponding to  is 

less than  of the probability of muon decay at 

 corresponding to .  

Explanation: According (7.14b),  is proportional to . 

The ratio of decay probabilities at  and at 

 is estimated as: 

.     (7.16)            

For Region-1 with , the ratio of decay 

possibilities is much less than , which can be 

estimated the same way. So the rough estimation of 

 disregarding Region-1 is justified.                                       

The local minimums are also extended in Region-3 with 

rapidly increasing density. However, it does not mean that 

muon decays more frequently in Region-3. In fact, muon 

decays rarely in Region-3, which needs explanation.  

serves as spectrum with fermion at local minimum. In the 

spectrum, the tendency for muon as a fermion to reach 

minimum value of  actually is in two senses, locally 

and globally. The former was considered, now it’s the time to 

consider the latter. In Region-1 and Region-2, as shown in 

Table 7.3, the base line of  is almost flat with minor 
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variations. The vast numbers of local minimums with 

different densities compete for the possible decay time. The 

base line of  increases monotonically in Region-3 and 

the bottom values of local minimums increase with it. In most 

part of Region-3, the bottom values of local minimums are 

higher than the base line level in Region-1 and Region-2. The 

turning point is probably at the vicinity of  

corresponding to . Muons have very low 

probability for decay times shorter than  

despite the fact that the values of  are many orders of 

magnitudes larger than those in Region-2. The abrupt drop of 

decay probability in Region-3 is caused by the local 

minimums disqualified in the global sense, because their 

bottom values are higher than the base line in Region-1 and 

Region-2. So the rough estimation of  disregarding 

Region-3 for muon is also justified.                                       

Moreover, according to (7.14a), the time separation  is 

proportional to the inverse of . In Region-3, as  

increases,  decreases rapidly. At certain point, the 

extremely crowded local minimums in time domain are 

overlapped and no longer distinguishable. In fact, they 

disappear by submerging into the background noise.  

Prediction 7.2: Muon has zero probability to decay at times 

shorter than . 

Explanation: The disappearance of local minimums in 

Region-3 happens at the point that, separation  

becomes shorter than the width of the response in time 

domain for muon. At that point, individual response in 

time domain is no longer distinguishable. Muon’s decay 

is caused by weak interaction mediated by gauge bosons 

 or  with mean lifetime of . The 

muon’s decaying process must complete before its 

mediators’ decay, which roughly determines the width 

of individual response in time domain. The criterion is 

. According to (7.5b) and (7.14a), the 
 
for 

muon is: 

.  

(7.17) 

In which  is the medium average 

value cited from Table 7.4.  

As another example, electron’s  profile over 

broad range is sown in Table 7.6. The reason for taking such 

values of numerical parameters m, n, p for electron will be 

given in later sections. 

The distinctive features of electron’s  profile 

over broad range are the disappearance of Region-2 and 

Region-1 becoming global minimum region with only one 

local minimum of  at  corresponding to 

. It is consistent with the fact that electron is stable. 

This is an important check point to verify that, the rough 

estimation of mean life based on the global minimum concept 

for muon is correct. It also increases the credibility of 

 serving as particles spectrum with information of 

decay times and in some way related to mean life. But nuon 

and electron are just two examples, which are by no means 

sufficient to draw a conclusion. The real correlation between 

 as spectrum and particle’s mean life is still an open 

issue. More works along this line are needed.  

As illustrated in this section,  as a member of the 

S-equation family has rich physics meanings. In general, 

 serving as particle mass spectrum is conditional. It 

subjects to a prior knowledge of numerical parameters. Even 

though, it does provide useful information. More importantly, 

 serves as the base for an extended version, which 

reveals more physics significance. Details will be given in 

later sections. 
 

Table 7.6   over Broad Range for Electron at  

with m=2, n=1, p=1 

 
 

In this section, muon and taon are used as examples for

 serving as particles spectrum on the complex k-plane. 

More details of muon and taon will be given in later sections.   

 

Section 8: Electron Torus Model and Trajectories 
 

As mentioned in Section 6, electron has two-loop 

structure. Loop-1 is the primary loop with loop length . 

Loop-2 perpendicular to loop-1 is the secondary loop with 
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loop length . Loop-2 center rotates around loop-1 

circumference to forms a torus surface. According to SQS 

theory, all Dirac type fermions’ models are based on torus. 

Torus is a genus-1 topological manifold with one center hole 

and four tiny holes , , ,  corresponding to four 

branch points on Riemann surfaces described in Section 3.  

To begin with, torus as a topological manifold has neither 

definitive shape nor determined dimensions. The four tiny 

holes , , ,  without fixed location can move 

around on torus surface. To represent a particle such as 

electron, the torus model must have definitive shape and 

determined dimensions, and the location of four tiny holes 

must be fixed as well. To determine these geometrical 

parameters, additional information is needed, which comes 

from SQS theory first principle.   

Fig.8.1 shows the torus serving as electron model. There 

are three circles on x-y cross section shown in Fig. 8.1a. The 

two solid line circles represent the inner and outer edges of 

torus, and the dot-dashed line circle represents loop-1 and the 

trace of rotating loop-2 center. In Fig. 8.1b, the right and left 

circles shown torus two cross sections are cut from line  

and line on x-y plane, respectively. 

According to SQS theory, a set of three numerical 

parameters, m, n, p is assigned to each fermion defined as: 

,                                             (8.1a)                             

,                                             (8.1b)                             

In which,  and  are the mass of the fermion and 

electron, respectively. 

For electron, its original m, n, p parameters are selected as: 

, , .                     (8.2)                                 

Substituting (8.2) into (8.1) yields:                                                

,                                            (8.3a)                             

.                                           (8.3b)                            

The torus surface is divided into two halves as shown in 

Fig.8.1b. The outer half has positive curvature and the inner 

half has negative curvature. According to S-equation of 

(3.20), unitarity requires:  

.            (8.4)                                               

In (8.4), the original summation index  is replaced by

 for simplicity. The lower and upper summation limits are 

truncated at  for numerical calculation. A sufficient 

large  is selected for  to converge. As discussed 

in Section 6, the two points on real -axis of Fig.3.4 

representing electron are: 

, and .                       (8.5)                                            

Substituting (8.5) into (8.4) and solving for  yields:        

;          (8.6a)                                    

.   (8.6b)   

)( 1x  and  serve as the messengers to transfer 

information from S-equation to torus model.  

corresponds to negative curvature on the inner half of torus; 

and  corresponds to positive curvature on the outer 

half of torus.   

The distance between two loops’ centers is , which is 

the radius of loop-1. For electron, loop-1 circumference 

equals to one Planck wavelength, , which 

corresponds to . For convenience, let’s set 

 as the reference length for other lengths on the torus 

models, and consider its real value later.  

 

 
Fig.8.1 Electron torus model: (a) x-y cross section; (b) Right is cross 

section along line , left is cross section along line .  
                             

According to (8.3a) and , the radius of loop-2 for 

electron is determined as: 

.                   (8.7)                                             

The two dimensions of torus as electron model are 

determined as , . The next step is to fix the 
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locations for four tiny holes , , ,  shown in Fig. 

3.5 b. 

In fact, the electron torus model is shared with its anti-

particle, the positron. For the four tiny holes  , , , , 

two of them belong to electron and the other two belong to 

positron. The values of  and  determine the 

locations of two characteristic points ,  for electron.  

 of (8.6b) corresponds to 

the torus outer half with positive curvature like a sphere. On 

the  cross section at the right of Fig 8.1b, the location of 

point  at  with origin at cross section center 

 is determined by  according to the following 

formulas: 

, ,  (8.8a)                      

,                                         (8.8b)                                                             

, .      (8.8c)                                                                   

As shown in Fig. 8.1b, point  and two loops’ centers 

,  form a triangle . The three inner angles , 

,  of triangle  are determined by: 

 , ,                              (8.9a)                      

,                                                    (8.9b)               

.                                                     (8.9c)                  

On x-y plane shown by Fig. 8.1a, the location of point  

at  with origin at  is determined by angle 

 from  according to following formulas:    

,                           (8.10a)                    

.                                       (8.10b)              

The three inner angles , ,  of triangle  are 

determined by: 

, ,                       (8.11a)                      

,                                                      (8.11b)                                             

 .                                                      (8.11c)             

  44200373.87710292)( 1x  
of (8.6a) corresponds to 

the inner half of torus with negative curvature like a saddle 

surface with sinusoidal variation. The parameters of saddle 

surface are determined by  according to following 

formulas:  

,        (8.12a)                                     

,  .    (8.12b)                              

 and  are the amplitudes of saddle sinusoidal variation 

on circles with radius  and radius , respectively. The 

locations of points  and point  are determined by the 

following simultaneous equations: 

, ,     (8.13a)                           

, , .      (8.13b)                                 

Equation (8.13a) represents a circle with radius  centered 

at . The location of point  at  

with origin at is determined. Equation (8.13b) represents 

the circle with radius  centered at  on the 
 
cross 

section in Fig.8.1b. The location of point  at 

 with origin at  is determined. 

In the 
 
cross section in Fig. 8.1b, the three inner 

angles , ,  of triangle  and angle  are 

determined by: 

,                                           (8.14a)                                        

,                                                 (8.14b)                                        

,                                      (8.14c)                                        

.                                            (8.14d)                                       

On the x-y plane shown by Fig. 8.1a, The three inner 

angles , ,  of triangle  and angle  are 

determined by:  

, ,                (8.15a)                                            

 

,                                    (8.15b)                                         

 ,                                       (8.15c)                                                                      

.                                   (8.15d)                                                                                                                                                                                  

According to the torus model and two characteristic points 

A, B determined by  and  from the S-equation, 

electron parameters calculated with the above formulas are 

listed in Table 8.1.  

In Table 8.1, notice that: 
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,                              (8.16c)                                                  
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.                       (8.16d)                                                    

Let’s consider the meanings of (8.16a).  is the angle at 

the center of loop-2 between line  and line  as 

shown in Fig.8.1b, which serves as the initial phase angles of 

cyclic movements along loop-2.  is the angle at the center 

of loop-1 between the x-axis and line
 
on x-y cross 

section shown in Fig.8.1a, which serves as the initial phase 

angles of cyclic movements along loop-1.  means that 

the two cyclic movements around loop-2 and loop-1 are 

synchronized in phase. (8.16b) indicates that the phase angles’ 

differences of  and  both equal to 

, which is close to the Weinberg angle . 

This is the first hint that, the characteristic points such as 

point  and the triangle  have something to do with 

particle’s interaction parameters. (8.16c) and (8.16d) indicate 

that, the some types of synchronizations as (8.16a) and (8.16b) 

hold between angles  and  as well as between  and 

 in the inner half of torus shown by Fig.8.1a and Fig.8.1b 

on left side.  
 

Table 8.1: Parameters for Electron Torus Model* 

 
* All data are from 16-digit numerical calculations, only 8-digit after the 

decimal point is presented. 
** The reduced numerical parameters are the original numerical parameters 

divided by m. 
 

These types of synchronizations are interpreted as the 

geometrical foundation of electron’s stability. It is the first 

conclusion drawn from electron’s torus model. 

The torus model represents electron, it must have all 

electron parameters expressed in geometrical terms. This is 

the job a model supposed to do. But the torus has only two 

geometrical parameters and  to determine its shape and 

size, which are by no means sufficient to represent all 

parameters.  and  come to help. They serve as 

the messengers to transfer information from S-equation to 

torus model to define the locations of characteristic points 

and the triangles associated with them. In this way, the torus 

model with defined characteristic points and triangles is 

capable to represent all parameters of electron. The details 

will be given later. 

For the standard model, particle is represented by a point. 

A point carries no information except its location. That is 

why twenty some parameters are handpicked and put in for 

standard model. For SQS theory, parameters are derived from 

the first principle and represented by geometrical model. In 

which, two messengers  , , the characteristic 

points and triangles play pivotal roles.  

The torus model provides a curved surface to support the 

trajectory of electron’s internal movement. Electron internal 

movement includes three types: (1) cyclic movement along 

loop-1; (2) cyclic movement along loop-2; (3) sinusoidal 

oscillation along trajectory. Fig. 8.2a and Fig. 8.2b show the 

projections of electron’s trajectory on x-y plane and  x-z plane, 

respectively. On x-y plane shown in Fig.8.2a, the top 

trajectory is for electron, and the bottom trajectory is for 

positron. Because these two trajectories are symmetrical, to 

explain the one for electron is sufficient to understand the 

other.  
 

 
Fig. 8.2 Electron and positron trajectories on torus model: (a) 

Projection on x-y plane; (b) Projection on x-z plane.  
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The trajectory is a closed loop. It can start anywhere on 

the loop as long as it comes back to close the loop. Let’s look 

at trajectory starting at point  on torus outer half bottom 

surface represented by the short dashed curve shown in Fig. 

8.2a. It passes through the torus outer edge and goes to the 

upper surface shown by solid curve. It passes the top center 

line getting into the inner half and reaches point  on torus 

inner half top surface to complete its first half journey. The 

second half journey starts from point . At the torus inner 

edge, it goes back to the bottom surface shown by dashed 

curve. It passes through the bottom center line and comes 

back to point  to complete a full cycle. The trajectory 

repeats its journey again and again. The x-z plane projection 

of the trajectory is shown in Fig. 8.2b.   

The trajectory shown in Fig.8.2 is a rough sketch. Its 

exact shape is determined by two geodesics on the torus 

surface. One from point  to point ; the other from point 

 back to point  to close the trajectory loop. The 

characteristic points  and  not only carry the parameters 

information to define the triangles but also serve as the 

terminals for the two geodesics to form the trajectory. 

Notice that, in Fig.8.1 and Fig. 8.2a, the three points , , 

 are not aligned. The difference between two angles  and 

 is: 

 . (8.17)              

 is the angle deviated from  representing a perfect 

alignment of three points , , .  It is important to point 

out that,  and  are not fixed points. Instead, they define 

two circles, circle-A and circle-B, with radius  and , 

respectively. The trajectory may start at a point on circle-A 

halfway through a point at circle-B and comes back to point A. 

The trajectory is legitimate as long as it kept the same angle 

of : 

.             (8. 18) 

There are many trajectories on torus surface with the same 

angle  given by (8.18), all of them contain the same 

information carried by  and . These trajectories 

spread over torus entire surface. As shown in later sections, 

trajectories are discrete in nature and the number of 

trajectories is countable, which form a set of discrete 

trajectories on torus surface. At a given time, electron is 

represented by a trajectory. As time passing by, it jumps to 

other trajectories. The scenario is dynamic and stochastic. 

Physically, jumping trajectories on the same torus surface 

corresponds to emitting and absorbing a virtual photon by the 

electron. 

For the x-y projection shown in Fig. 8.2a, the trajectory on 

the bottom for positron goes through two characteristic points 

 and  with anti-clockwise direction. As shown in 

Fig.8.2b, the x-z projections of two trajectories are coincided 

with opposite directions: anti-clockwise for electron and 

clockwise for positron.  

In essence, the S-equation determine the value of  

and  from  and ;  and  determine the 

location of characteristic points  and  on torus model; 

Points ,  and two geodesics between them define a 

trajectory on torus surface; Rotating points  and  defines 

circle-A and circle-B along with a set of discrete trajectories 

on torus model.  

The sinusoidal oscillation along trajectory path is 

represented by a term in two ad hoc equations. Fig. 8.3 shows 

two orthogonal differential vectors  and : 

,                          (8.19a)                                  

.                                (8.19b)  
 

 
Fig. 8.3 Differential vectors on torus model. 

 

The oscillation on trajectory is represented by a sinusoidal 

term: 

 ,                                             (8.20a)                              

.    (8.20b)                                                                                          

In which,  and   are the mass of the particle and 

electron, respectively. For electron  , 

 and , (8.20a) becomes:     

.                            (8.20c)   

As shown by (8.20), the sinusoidal oscillation term 

 is related to mass, it is called the “mass term”. 

Adding the mass term of (8.20c) to the numerator on right 

side of (8.19a) yields:  

,         (8.21a)                             

or   .     (8.21b)                             

According to Fig. 8.3 and (8.21b), the combined differential 

vector length is: 

. (8.22) 

Take the integral of (8.22) from 0 to : 
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.          (8.23)                     

According to (8.21b) and (8.19b), the differential angle along 

the -direction is: 

.     (8.24)                  

Take the integral of  from 0 to : 

.     (8.25)                                                  

Definition 8.1: Define the Angle Tilt (AT) equation and the 

Phase Sync (PS) equation as: 

1. AT-equation:  

;  (8.26a)              

2.  PS-equation: 

 .                        (8.26b)                       

In (8.26a), the factor 2 in the denominator of second term 

comes from Section 3: 

.              (3.13)                          

 is the separation angle of three lines on the 

complex plane shown in Fig.3.2. 

For , solving the two equations of (8.26) for  

yields:  

.                        (8.27)                            

AT and PS are two independent equations with one 

unknown . Both equations are satisfied simultaneously 

with the same solution . It indicates 

that they are self consistent and mean something. 

 means that, the torus original circular cross 

section is distorted. To keep loop lengths ratio  

unchanged, the original cross section parameters,  and  

 must be changed accordingly, which makes the torus 

cross section elliptical. 

Definition 8.2: The Modification Factors (MF) of the f-

modification are defined as: 

 ,                          (8.28a)                                            

 .                                                  (8.28b)                                            

For electron, , , , 

and  is determined by: 
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,      (8.29a)           

.                                        (8.29b)                                                          

Explanation: In essence, the f-modification is introduced to 

satisfy (8.26) and to keep loop-2 length  unchanged 

as shown by (8.29a). It is important to keep loop length 

ratio  unchanged, because it is related to 

interactions.  

According to Definition 8.2, the modification factors of 

electron are calculated as: 

,                     (8.30a)                                              

.                     (8.30b)                                              

After the f-modification, the geometrical parameters are 

changed accordingly. The rules are to keep the initial phase 

angles unchanged as the originals: 

,                       (8.31a)                                                        

,                        (8.31b)                                                       

,                       (8.31c)                                                       

.                        (8.31d)                                                      

The other geometrical parameters of the modified torus 

model change accordingly. The rules are: (1) To keep the 

initial phase angles given by (8.31) unchanged; (2) The torus 

cross section becomes elliptical with  and  given by 

(8.27) and (8.29b), respectively. The rest is from geometry. 

The modified point  and triangle  related 

angles are determined by: 

,                   (8.32a)                                       

, ,        (8.32b)                                   

,       (8.32c)                              

.                                    (8.32d)                         

The modified point  and triangle  related angles 

are determined by: 
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.                                         (8.33d)                      

The modified point  at  with origin at  

 and triangle  related angles are determined by: 
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,                                           (8.35a)                        

,  , (8.35b)                          

,                                          (8.35c)                     

,                                                     (8.35d)                    

,                                  (8.35e)                        

.                                      (8.35f)                        

The modified data for electron are listed in Table 8.2. In 

which the effective parameters after f-modification are 

marked with ‘ sign.  
 

Table 8.2: Modified Parameters for Electron Torus Model

 
* All data are from 16-digit numerical calculations, only 8-digit after the 

decimal point is presented. 

** The reduced numerical parameters are the original numerical parameters 
divided by m. 

 

After modification, despite the change of 

 428.4794845'' 2

 W
from original , 

as shown in Table 8.2, three out of four synchronizations still 

hold with one slightly off: 

,                          (8.36a)                                       

,  (8.36b)                              

,                        (8.36c)                                       

.      (8.36d)                               

It indicates that electron stability is persistent and robust.  

To understand the meaning of f-modification, in the AT-

equation, let’s set the mass term  to see its 

effect, (8.26a) and (8.28) become: 

,                  

, ; .    (8.37)                                                                                         

 means no f-modification. It clearly shows that the 

effect of f-modification is caused by the added mass term of 

, which represents the mass effect.  

 In the standard model, particle acquires mass through 

symmetry broken. Likewise, in SQS theory, the mass term of 

 breaks the 3-fold symmetry with  on the 

complex plane. This analogue plus the simultaneous 

satisfaction of two independent equations with the same 

solution  give some legitimacy to AT-equation and PS-

equation despite their ad hoc nature.  

Let’s look at the geometrical meaning of the f-

modification. As shown in Section 3, the angle separates 

three lines on complex plane is: 

  .                                 (3.8d)                                                                                                      

The f-modification causes the angle having a slight tilt from 

 to : 

    
 (8.38a) 

  

,          (8.38b)                           

   .                  (8.38c)            

is the tilting angle deviated from . It 

indicates that, original  3-fold symmetry is slightly 

broken by tilting angle  for electron having mass. 

After f-modification, AT-equation and PS-equation are 

satisfied simultaneously. It indicates that, the two cyclic 

movements of two loops and the sinusoidal oscillation along 

the trajectory are synchronized perfectly for electron as a 

stable particle.  

Numerical calculations found that, AT-equation of (8.26a) 

has only one root  given by (8.27) with the  value given 

by (8.30a). On the other hand, PS-equation of (8.26b) has a 

series of roots. Start from , varying 

its value with  steps calculate the values of  as a 

function of :  
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A sample of numerical calculated results are listed in 

Table 8.3.  

 In Table 8.3,  means phase precisely 
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results of Table 8.3 are interpreted as that, electron’s torus 

model is dynamic and stochastic in nature. It changes its 

loop-2 tilting angle constantly corresponding to different , 

 and ,  values representing different torus surfaces. 

Electron’s trajectory changes accordingly. The tilting angle 

changes discretely, so does the trajectory, which means that 

trajectories are quantized. At a given time, electron is 

represented by a trajectory on a torus surface. As time 

passing by, it jumps to other trajectories on another torus 

surface. It is a stochastic scenario of jumping trajectories on 

different torus surfaces. Physically, it corresponds to 

interactions such as emitting and absorbing a photon. As 

mentioned previously, jumping trajectories on the same torus 

surface corresponds to emitting and absorbing a virtual 

photon by electron. 
 

Table 8.3: Some Roots of Equation (8.26b) 

 
* Note:  and . 

 

As shown in Table 8.3, PS-equation has 23 roots in region  

  corresponding root density of: 

.                   (8.40)                      

The root density D roughly kept constant in the effective 

region . For orders of magnitude estimation, the total 

number of roots for PS-equation in region  is:  

    1315

1984.0
10544.7106.49836.01' 


DfN a

.   (8.41a)   

         Since the root density D is roughly the same in the other 

effective region  )1(1,1 af , the total number of roots for 

PS-equation in region  )1(1),1( ac ff   is: 

14

1984.0
10509.12 


DfN a

.                  (8.41b) 

As mentioned previously, there is a set of discrete 

trajectories on the same surface of a torus surface. Now on 

top of it, there is another set of discrete trajectories on 
1310544.7 N different torus surfaces caused by f-

modifications. At a given time, the real trajectory is the one 

randomly chosen from these two sets of discrete trajectories. 

In other words, electron trajectories are dynamic and 

stochastic in nature, which spread like clouds around the 

torus surfaces. The term “electron clouds” was used to 

describe electron’s behavior around a nucleon according to 

quantum mechanics wave function. Here the clouds appear in 

a deeper level, which should not be a surprise.   

As shown in Fig. 3.4 of Section 3, the loop on the 

complex plane connecting  and  has many different 

paths with the same loop length. That scenario is consistent 

with the different trajectories with the same length on 

different torus surfaces and different locations. It shows the 

consistency of the theory.  

In Table 8.3, the step of  variations and step of  

and  variations are in the order of  to  Planck 

length corresponding to  to  meters. The step of 

torus surface variations is extremely tiny. As the torus’ loop-

2 tilts, the electron’s trajectory jumps from one torus surface 

to the other. In fact, this dynamic picture is expected from 

quantum theory. The three types of movement for electron 

described in this section all are deterministic in nature. 

Without trajectory jumping, the deterministic movements are 

contradictory to the uncertainty principle. Moreover, the 

Gaussian Probability Postulation of SQS theory is stochastic 

in the first place. The trajectory jumping is ultimately 

originated from the Gaussian probability assigned to discrete 

points in space. The  fluctuating data listed in 

Table 8.3 is an indication of the stochastic nature of SQS 

theory, even though the PS-equation of (8.26b) is not derived 

from the first principle.  

Fig 8.4 shows the right side of Fig. 8.1b in details. Points

, , define a right triangle ,  which contains two 

additional right triangles:  and . The triangle 

 is identified as the Glashow-Weinberg-Salam triangle, 

GWS-triangle for short. In the  unit system, the sides 

of GWS-triangle are related to electroweak coupling 

parameters: 

, , , .    (8.42)   

, and ,  are electric charge and two weak coupling 

constants, respectively. The following formulas are from 

geometry: 

,                       (8.43a)                              

.                                                     (8.43b)  

 Combining (8.43a) and (8.43b) yields: 

.                          (8.44)                              

Formula (8.44) is used extensively in later sections as the 

criterion to construct the model for other fermions. 

According to 16-digit numerical calculation, the original 

and effective Weinberg angles of electron are: 
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Original:   ,             (8.45a)                                             

Effective:  .           (8.45b) 

One of SQS theory final goals is that, all parameters of an 

elementary particle should be derived from its model. To 

identify the GWS-triangle with Weinberg angle in the torus 

model is a step toward the final goal. Some other 

characteristic triangles will be introduced in later sections. 
 

 
Fig. 8.4 Glashow-Weinberg-Salam triangle. 

                     

From Einstein’s unified field theory viewpoint, everything 

including all elementary particles and interactions are 

originated from geometry. For SQS theory, the model plays 

that role. Torus as a genus-1 topological manifold has one 

center hole, its shape and size are arbitrary to begin with. In 

order for the torus model to represent a particle with its 

parameters, additional steps must be taken. Take electron as 

an example. As the first step, the shape and dimensions of 

torus are determined by loop-2 to loop-1 length ratio of 

 and . The second step is to fix 

the locations of characteristic points  and  on torus 

surface by utilizing the curvature information carried by 

 and  from the S-equation. In this way, the 

triangles such as the GWS-triangle are determined and the 

parameters are determined as well. The process shows 

mathematics at work. The mathematics at work viewpoint 

will be enhanced further in later sections.  

Recall in Section 3, the four tiny holes , , , 

served as four branch points 1, , ,  on the Riemann 

surface. Moreover, the way Penrose built the torus is to glue a 

pair of slits on two sheets of Riemann surface together [2]. In 

fact, there are infinite sheets of Riemann surface 

corresponding to a general form of (3.23):  

, ,  , 

.  (8.46) 

These sheets can be combined into pairs to build many 

genus-1 torus surfaces, which serve as the topological base of 

many torus surfaces with slightly different parameters  

and  derived from PS-equation as discussed earlier. After 

all, there are enormous numbers of torus surfaces provided by 

(8.46) for trajectory to jump on. This argument gives more 

credit to the ad hoc PS-equation.  

Moreover, the torus with four tiny holes shown in Fig. 

8.5a is topologically equivalent to a pair of trousers with a 

large hole in their waistband shown in Fig. 8.5b. The four 

tiny holes on torus with their edge extended outwards form 

four tubes as the four ports. According to [11], if the loops 

around trousers shrink to points, the trousers with four ports 

degenerate to a Feynman diagram with one closed loop and 

four branch lines shown in Fig. 8.5c. Feynman diagram is 

correlated to interactions. Therefore, the triangles such as 

GWS-triangle defined by characteristic points carry 

interactions information are natural.  
 

 
 

Fig. 8.5 (a) Torus with four tiny holes; (b) Four tiny holes’ edge 

extended into four tubes; (c) Degenerated into a Feynman 

diagram with one loop.  
 

In summary, electron’s torus model is built on three bases: 

1. Loop lengths ratio  and masses ratio 

 are determined by a set of three 

numerical parameters, , , . 

2. The 3-dimensional Gaussian probability’s , ,  

plus  are identified as four branch points on the 

Riemann surface, which are topologically equivalent 

to four tiny holes on torus. 

3. The four tiny holes on torus correspond to 

characteristic points , and , . Their locations 

are fixed according to the information carried by 

 and , which are the solutions of the 1-

dimensional S-equation. 

In the three bases, No.2 and No.3 are originated from 

SQS theory first fundamental postulation, the Gaussian 

Probability Postulation. No.1 is a set of three numerical 

parameters. It is related to the second fundamental 

postulation of SQS theory, which will be introduced in later 
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section. These are the only things needed to build the model 

for a particle such as electron to carry all its parameters. It 

shows the power and the simplicity of the first principle of 

SQS theory. 

The electron torus model introduced in this section serves 

as the basic building block. It is not the final version. The 

details will be given in Section 12. 

 

Section 9: Complex -Plane and Fine Structure Constant  

  

 of (7.1) is the Fourier transformation of  of 

(6.1):  

           (7.1)               

 serves as particles spectrum. The local minimums of

 correspond to fermions and the local maximums of

 correspond to bosons. In this section,  is 

extended as . Then  is Fourier transformed 

back to the complex -plane and compared with  to 

find some physics implications.    

Definition 9.1: Define the  function as the extension 

of  function

 
.   

(9.1) 

Explanation: In the , the original term  in 

 of (7.1) is extended by the second summation 

terms with two sets of -functions. The  term in 

the second summation,  is the 

original delta function  in , and all the other 

terms in the second summation are newly added delta 

functions. The extension adds a series of additional 

local maximums for  representing bosons. 

Look at (9.1) closely, the added -functions also affect 

fermions in (7.1). For instance,  ( ) 

in  is a root of  represents electron as 

a fermion. In , the ,  term 

 causes 

. It represents a boson.  

Using Fourier transform to transfer  back to the 

complex -plane: 

  .                                (9.2)                          

Substituting (9.1) into (9.2) yields the -function on 

the complex -plane: 

. (9.3)      

In the , the first summation is  as 

expected; the second summation includes the unitarity term: 

. The other terms in the second 

summation correspond to bosons representing interactions, 

which are originated from delta functions added in .  

Numerical calculations found that: 

In general on -plane:  

.                (9.4a)                                      

On the real x-axis: 

.                              (9.4b)                                                             

Errors of approximations are around  and  for (9.4a) 

and (9.4b), respectively. 

Definition 9.2: Define the SS-function and SS-equation on 

the complex -plane as: 

   

   (9.5)

                                                                                                                                                    

According to (9.4a) and (9.5a), . The values of 

 fluctuate around  and occasionally 

equal to zero, which are the roots of .  

As shown in Section 6,  is a real equation on 

the real x-axis. It has a root at  on the x-axis 

corresponding to electron. On the other hand,  is a 

complex equation and  is not its root. Instead, a 

root of  is found by numerical calculations at: 

,                                            (9.6a)                           

,               (9.6b)                                

.                    (9.6c)                                

 is electron original Weinberg angle of 

(8.45a) before f-modification.  is 

slightly less than . According to (6.19a),  

 correlates to the mass  slightly 

less than : 

.                            (9.7)                         

As shown in Appendix-4, charged particle mass subjects to 

electromagnetic modification. According to (A4.5) and (9.7): 

. (9.8)              
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In which  is “fine structure constant” of electron. Solving 

(9.8) for  yields: 

.  (9.9)      

According to references [3,4], 2010-PDG (p.126) provides 

the experimental data: 

.             (9.10)     

The relative deviation of SQS theoretical value and 2010-

PDG data medium value is 

 .                                       (9.11)        

 is also used for calculating the  values for 

electron quantum states with fractional charges. According to 

(8.44) with assumption of , the Weinberg 

angle  for particles with fractional charges are 

determined by: 

.                            (9.12)                                                              

, , are for fractional charges,  e/3, 2e/3, 

respectively. Formula (9.12) and  

are used to calculate the values of . 

The definition of fine structure constant  is:  

.                            (9.13)                          

According to (9.13),  is proportion to  . For the electron 

states with fractional charges , , (9.8) and (9.9) 

are changed accordingly as.  

.                        (9.14)                                  

.                (9.15)                                    

The SQS theoretical values of ,  and  for 

electron states with different charges from 16-digit numerical 

calculations are listed in Table 9.1.   
                                   

Table 9.1:  , ,  for Electron with Different Charges  

 
* Note:  is the relative deviation from 2010-PDG medium value of 

. 

In fact, the electron fractional charge states did show up in 

the quantum Hall effect experiments. 

The  effect on mass is originated from electromagnetic 

interaction. It is consistent with the fact that  does not 

include interactions and  does. It also explains why 

 on the real x-axis does not require mass 

correction with  and  with 

phase angle  on the complex -

plane does.  

The values listed in Table 9.1 are not unique. In fact, 

 has a series of roots corresponding to a series of 

different  values. The multi-value behavior reflects the fact 

that  is a running constant and the stochastic nature of SQS 

theory. The details will be discussed in later sections. 

The  function introduced in this section is not 

only used to define  function but also has other 

important applications, which will be given in Section 15. 

 

Section 10:  Muon and Taon Torus Model and Parameters 

 

Muon and taon belong to the second and third generations 

of lepton family. Their torus model is similar to electron torus 

model except that the x-z cross section is elliptical for the 

original version. Instead of one radius  for the circular 

cross section of electron torus model, the elliptical cross 

section has two radii  and . To determine the parameter 

 requires an additional equation. The option taken in this 

section is to keep the original (before f-modification) 

Weinberg angle the same for all three charged leptons: 

 .                                              (10.1a)                               

 is the original Weinberg angle for electron,  is the 

original Weinberg angle for muon or taon. According to 

(10.1a) and (8.45a), the original angle   for 

muon and taon is determined: 

.    (10.1b)                  

The original numerical parameters , ,  for muon and 

taon are selected as: 

Muon:       , 
4

129n ,  ;               (10.2a)                                                        

Taon:        , ,  .              (10.2b)                                                         

The reasons for selecting such values of , ,  will be 

given in later sections.  

The values of  and  for muon and taon are 

calculated according to (6.19): 

,           (10.3a)                                  

.                                        (10.3b)                               

In (10.3a),  is according to 
 
of 

(8.1b). Substitute the values of p and n given by (10.2) into 

(10.3) yields:  
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, . 

(10.4b)                




 
50359990834.137

'25.08

1
1

1

1

1 















x


)51(035999084.1371 

1210013.4 

 xSS 1

constgg  22 '

FW ,

F
WW

FWFW






cossin

cossin ,,

3/1F 3/2F
1384598708641.28W

FW ,



hc

e

0

2

2
 


2e

3/e 3/2e

 1

2

'25.08

1
1

x
F


 

 

1

1

21

'25.08

1
1

















x
F

1
W FW ,


W FW ,



035999084.1371 


 xDS

 xSS

125.01 x

 78213151240811255.0'1 x

1384598708641.28W x

  0xSS




 xEDSx

 xSS

2a

2a
2b

2b

WeOWO  

WeO WO

WeOWO  2

1384598708641.282  WeOWO 

m n p

18m 6048p

42m 120n 417270p

m n p

1x 2x

p

n

M

M
x e

8
25.0

8
25.01 

12 5.0 xx 

)8/()8/( pnMM e  npMM e // 

13095240.249395461 x 86904760.250604532 x

20526280.249964051 x 79473720.250035942 x



1246                                 Z.Y.SHEN 
 

Copyright © 2013 SciRes.                                                                                                                                                                         JMP 

Substituting  and  of (10.4) into the S-equation 

(3.20) and solving for  and  yield: 

Muon:  

, ;                                

(10.5a)  

Taon:  

, 14241414262265.3)( 2 x  . 

(10.5b)  

Most formulas of electron torus model to determine 

characteristic point , point  locations and other 

geometrical parameters in Section 8 are valid for muon and 

taon except some differences caused by the cross section 

change from circular to elliptical. 

The formula to calculate loop length ratio  is: 

.                   (10.6) 

For the torus outer half, formulas (8.8b), (8.9a) through 

(8.9c), (8.10a) through (8.10b), (8.11a) through (8.11c) are 

also valid for muon and taon. The changes are (8.8a) and 

(8.8c), in which  is replaced by .  

For the torus inner half, formulas (8.12a), (8.13a), (8.14a) 

through (8.14d), (8.15a) through (8.15d) are valid for muon 

and taon. The changes are: in (8.12b),  is replace by 

; in (8.13b),  and  are replaced by 

 and .                

For the f-modification, (8.26a) and (8.26b) are for electron. 

For other fermions including muon and taon, they are 

generalized as: 

AT-equation: 

 ;     (10.7a) 

PS-equation: 

 .                         (10.7b)                                     

Mass term’s : 

.    (10.7c)                                       

The  in the denominator of PS-equation does not change, 

because it is originated from geometry relation of (8.19b) and 

has nothing to do with mass. 

The rest of formulas for the f-modification, (8.28a), 

(8.28b), (8.29a), (8.31a) through (8.31d), (8.32a) through 

(8.32d), (8.33a) through (8.33d), (8.34a) through (8.34e), 

(8.35a) through (8.35f), angle tilt formulas (8.38a) through 

(8.38c) and (8.39) all are valid for muon and tuaon without 

change. The GWS-triangle and related formulas (8.40), (8.41) 

and (8.42) are also valid for muon and tuaon.  

Table 10.1 and 10.2 list the calculated parameters for 

muon and taon, respectively. In these tables, the parameters 

with the ‘ mark are effective, i.e. after the f-modification and 

the parameters without the ‘ mark are original, i.e. before the 

f-modification. 

 

Table 10.1: The Calculated Parameters of Muon Torus Model* 

 
 

Table 10.2: The Calculated Parameters of Taon Torus Model* 

 
* All data are from 16-digit numerical calculations, only 8-digit after the 

decimal point is presented. 

** The reduced numerical parameters are the original numerical parameters 
divided by m. 

 

The synchronization related angles in Table 10.1 are:  

,                      (10.8a)                     

, (10.8b)           

,                    (10.8c)                  

.                  (10.8d)                      

The synchronization of two loops cyclic movements for 

electron described in Section 8 no longer holds for muon. It 

indicates that, muon is not a stable particle. In fact, muon has 
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a mean life of   (2010-PDG 

data). 

The synchronization related angles in Table 10.2 are:  

,                       (10.9a)                       

,       (10.9b)         

,                    (10.9c)                       

.                    (10.9d)                     

The synchronization of two loops cyclic movements for 

electron described in Section 8 no longer holds for taon. It 

indicates that, taon is not a stable particle. In fact, taon has a 

mean life of  (2010-PDG data). 

The parameters listed in Table 10.1 and Table 10.2 for 

muon and taon are calculated according to the formulas in 

Section 8 for electron with modifications introduced in this 

section, in which some of them are optional and subject to 

verification. If some of them are replaced by other options, 

related parameters should be changed accordingly. 

The characteristic points, the trajectory, the circle-A, 

circle-B, the tilt angle  breaking  3-fold 

symmetry, the jumping trajectories, the torus model with four 

tiny holes equivalent to trousers with a large hole in the 

waistband and 4 ports degenerated to Feynman diagram, 

these and related issues discussed in Section 8 for electron 

are also valid for muon and taon. 

The torus models for muon and taon introduced in this 

section serve as the basic building blocks, which are not the 

final version. The final version of models will be introduced 

in Section 12.   

 

Section 11: Quarks Model and Parameters 

 

Quarks torus model has elliptical x-z cross section. The 

formulas for muon and taon in Section 10 are valid for quarks 

with exception that formula (10.1) is replaced by following 

formulas for quarks with fractional charges. 

For up-type quarks: 

 , ,   (11.1a)                            

For down-type quarks: 

, .  (11.1b)                        

In which,  and  are original values of the angle 

 as shown in Fig. 8.1 before f-modification for up type 

and down type quarks, respectively. Formulas (11.1) is based 

on an assumption: , which is optional. 

There is another difference. The top quark is different 

from the other quarks. Because its mass exceeds the upper 

limit set by (6.21), top quark’s model is spindle type torus 

with covered center hole as shown in Fig.11.1. The inner half 

of spindle shape torus also has positive curvature, which is 

consistent with top quark’s . This difference makes 

top quark’s inner half two triangles with different definitions 

and different physics meanings. 
 

 
Fig. 11.1 Spindle type torus model for top quarks. 
 

As shown in Fig.11.1, the location of points  and  are 

determined by  the same way as points  and  

determined by .  

On x-y cross section:  

, ,                             (11.2a)                              

.                                                  (11.2b)                          

On  cross section:  

, ,  (11.3a) 

,                                                         (11.3b)                                                         

, .                         (11.3c)    
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,                                   (11.4a)    

,                          (11.4b)                              

.                               (11.4c) 

.                                  (11.4d) 

In Fig.11.1b, the triangle  related angles are: 

,                                 (11.5a)                               

,                            (11.5b)                              

,                                (11.5c)                                     

.                                    (11.5d)                          

The generalized  AT- and PS-equations of (10.7) are 

applicable to all quarks except the top quark. The top quark’s 

model must have  to qualify as the spindle type 

torus. The f-modification reduces  to , 

that is not valid for spindle type torus. The effectiveness of f-

modification for top quarks is limited to the  part, 

which does not includes the root for the AT-equation.  

Before going further, one question must be answered: 

How many quarks are there? 

Postulation 11.1: Quarks with the same flavor and different 

colors are different elementary particles. There are 

eighteen quarks in three generations.  

Explanation: Elementary particles are distinguished from 

each other according to their different intrinsic 

parameters. Quarks with the same flavor and different 

colors have at least two different intrinsic parameters: 

one is color and the other is mass. To recognize them as 

different elementary particles is inevitable and 

legitimate.  

According to Postulation 11.1, there are eighteen different 

quarks instead of six, in which six flavors each has three 

colors as shown in Table 11.1. Postulation 11.1 has important 

impacts beyond quarks, which will be shown in later sections.  

Postulation 11.2: Prime Numbers Postulation. Prime 

numbers are intrinsically correlated to elementary 

particles’ parameters as well as cosmic space structure 

and cosmic evolution. 

Explanation: Prime Numbers Postulation serves as the 

second fundamental postulation with importance next to 

the first fundamental postulation of Gaussian probability. 

It provides a principle. The details are given by 

corresponding rules.  

Definition 11.1: A pair of two consecutive odd prime 

numbers with average value equal to even number is 

defined as an even pair. A pair of two consecutive odd 

prime numbers with average value equal to odd number 

is defined as an odd pair. 

The numerical m-parameters of 18 quarks are selected by 

the following rule.  

Rule 11.1: The eighteen least odd prime numbers including 1 

are assigned as the m-parameters of eighteen quarks as 

shown in Table 11.1. The m-parameters of eighteen 

quarks are paired of up-type and down-type for each 

color. All nine pairs are even pairs. 
 

Table 11.1: 18 Prime Numbers Assigned to 18 Quarks m-Parameters*  

 
* The m-parameters listed are their magnitude; the signs are defined by (11.6). 
 

Conclusion 11.1: There are only three generations of quarks. 

Proof: As shown in Table 11.1, for the nine pairs of quarks 

in three generations, their m-parameters: 1 & 3, 5 & 7, 

11 & 13, 17 & 19, 23 & 29, 31 & 37, 41 & 43, 47 & 53, 

59 & 61 all are even pairs. The next prime numbers pair 

of 67 & 71 is not an even pair, which violates Rule 11.1. 

The fourth generation quarks are prohibited based on 

the Prime Numbers Postulation and the prime numbers 

table.                                                                       QED 

In fact, no quarks beyond three generations have found in 

experiments.  

The numerical parameters n and p of quarks are selected 

in the following rules.  

Rule 11.2: The quarks’ n-parameters are selected from prime 

numbers. The values of quarks n-parameter are closely 

related to strong interactions among them, which will be 

discussed in Section 13.   

Rule 11.3: For a quark, the p-parameter is determined by 

, in which, and  are the mass of 

the quark and the mass of electron, respectively. The 

ratio  equals to an integer. 

The reasons for such rules will be explained later. 

Definition 11.2: The signs of numerical parameters m, n, p 

for fermions and anti-fermions with different 

handedness are defined as:  

Fermion with right handedness: 

, , ,                            (11.6a) 

Fermion with left handedness:   

, , ,                      (11.6b) 

Anti-fermion with right handedness: 

, , ,                      (11.6c) 

Anti-fermion with left handedness: 

, , ,                       (11.6d) 

Explanation: According to definition 11.2, for all four cases, 

the ratios  for mass are always positive as they 

should be. Loop ratios are different:  for 

fermions and  for anti-fermions, which serve 

as the mathematical distinction for fermions and anti-

fermions. For all fermions,  represents right 

handedness, and  represents left handedness. 
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The verifications and applications of Definition 11.2 will 

be given later. 

The geometry parameters of quarks calculated by using 

above formulas and rules are listed in Table 11.2. In which, 

for up, down, strange, charm, bottom quarks, the parameters 

with the ‘ mark are effective, i.e. after the f-modification, and 

the parameters without the ‘ mark are original, i.e. before the 

f-modification. All parameters for top quarks listed in Table 

11.2 are original. 
 

Table 11.2: Calculated Parameters for 18 Quarks* 
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* All data are from 16-digit numerical calculations, only 8-digit  

after the decimal point is presented 
** Except n/m and p/n, all other parameters in quarks summary  

are average value of three colors. 
 

The mass values for six quarks as the average values of 

three colors for each flavor listed in Table11.2 are all within 

2010-PDG data error ranges. The PDG data are not from 

direct measurements; they are extracted from experimental 

data of baryons made of quarks. So the agreements are 

indirect.  

The three inner angles of the triangle  for six 

quarks are listed in Table 11.3, which is averaged over three 

colors for each flavor cited from the summary tables of Table 

11.2. 
 

Table 11.3: Three Inner Angles , ,  of Triangle 
 

   

According to 2010-PDG (pp. 146-151) experimental data,  

in the Cabibbo-Kobayashi-Maskawa (CKM) triangles, the 

three inner angles of the unitarity triangle are: 

,                                  (11.7a)                                     

,                            (11.7b)                                     

.                                          (11.7c)   

Other five CKM-triangle all are elongated.                     

Comparing Table 11.3 to 2010-PDG data shows close 

similarities: 

1. The  triangle of up quark is very close to the 

unitarity triangle given by (11.7). In fact, the SQS 

theoretical values of two angles , and  are within 

PDG data error ranges. The relative deviation of 

 from 2010-PDG medium value

 is at its error range’s upper edge. 

2. The experimental data show that, except for the 

unitarity triangle of (11.7), five other CKM-triangles are 

elongated. In Table 11.3, except for  triangle 

of the up quark, other four quarks’  triangles 

are elongated and the one for top quark is not valid. 

3. Required by unitarity of probability, the side between 

angle 
 
and angle  of CKM-triangle is normalized to 

unity. The side  of triangle  is 

normalized to unity for the other two sides representing 

probabilities.  

According to SQS theory, there are fifteen  

triangles comparing to five CKM-triangles for five flavored 

quarks except the top quark. This difference may provide an 

important clue for the question regarding CKM-triangle: Is 

the unitarity CKM-triangle really a triangle? This is a serious 

question. If the answer is no, the standard model must be 

revised. As shown by (11.7), two angles  and  have large 

error ranges, and the sum of three inner angles medium 

values equals to  instead of . From SQS theory 

standpoint, the problem can be naturally resolved by 

recognized the fact that, there are eighteen quarks with 

different flavors as well as different colors. As a result, the 

unitarity CKM-triangle isn’t a single triangle, it is a set of 

three triangle corresponding to three different colored quarks 

, , . As listed in Table 11.2, three up quarks , , 

 have , , 

, respectively. The large error range of 

 give by (11.7c) is the result of attempting 

to combine three different triangles into one. The same 

argument is applicable to angles  and . So the large error 

ranges of CKM-triangle data have a reasonable explanation 

based on Postulation 11.1.  

There are other reasons to identify triangles  as 

the CKM-triangles. Quarks are represented by their torus 

models and characteristic points carry information from the 

S-equation to torus model. In principle, all parameters 

including the CKM-triangles should be derived from the 

model. Moreover, if the angles are kept the same, the 

triangles are similar. As one side is normalized, the other two 

sides of the similar triangles also represent the same 

information. In this way, the converting probabilities among 

different quarks via weak interactions indicated by the other 

two sides of the CKM-triangle should be transferred to the 

 triangle as well. For all these reasons, the  

triangles are identified as the CKM-triangles. It is another 

step towards the final goal: All physics parameters of an 

elementary particle are derived from its model.  

The generalized AT- and PS-formulas of (10.7) are used to 

calculate the angle tilt and phase sync data for fifteen quarks 

listed in Table 11.4. Three top quarks are excluded, because 

for them the f-modification is not fully applicable. The data 

for three charged leptons are listed for comparison.  
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Table 11. 4: Phase Sync Data for 15 Quarks and 3 Charged 

Leptons* 

 
* 1. The data are from 16-digit numerical calculations. Only three effective 

digits are listed. 

2. The listed  vary in  steps within range of . 

 

The features of these results are summarized as follows: 

1. Electron, three up quarks and three down quarks have 

perfect phase synch among two loops’ cyclic movements 

and the sinusoidal oscillation of the mass term indicated 

in Table 11.4 as “PS values at ” equal to zero. 

Their angle tilt equation (10.7a) and phase sync equation 

(10.7b) are satisfied simultaneously. The perfect 

synchronization is interpreted as electron, up quarks and 

down quarks are stable fermions. In fact, these three types 

of particles are stable and serve as the building blocks of 

all atoms and molecules in the real world.  

2. The other particles listed in Table 11.4 namely muon, 

taon, and strange, charm, bottom quarks are not perfectly 

synced indicated by their “PS values at ” equal to 

nonzero values. According to the same reason, it can be 

interpreted as they are not stable particles. In fact, muon, 

taon, and all hadrons composited with strange, charm, 

bottom quarks are unstable and subject to decay.    

3. All fifteen quarks and three charged leptons have 

fluctuation phase variations noted as the “PS value 

variation” in Table 11.4. It means that all these particles 

have the trajectory jumping behavior similar to electron’s 

trajectory jumping behavior described in Section 8.  

Formulas of (8.38) are used to calculated the tilted angle 

 deviated from . The  data along with , 

 and  for three charged leptons and fifteen quarks are 

listed in Table 11.5. Three top quarks are excluded, because 

the f-modification is not fully applicable. 

It is interesting to find out that, for the fifteen quarks 

despite of their more than three orders of magnitude mass 

differences, the values of  are within 

 degree, which corresponds to the values of 

 within the same range. This is possible 

because despite their very different mass and  values, the 

f-modification is capable to bring back the  values within a 

very narrow range of . These 

results are related to the  group symmetry associated 

with quark’s flavors and colors, which will be discussed in 

Section 21 and Section 24.  
 

Table 11.5: Calculated , ,  Data for 3 Charged  

Leptons and 15 Quarks*  

 

 
*. The data for leptons are based on trefoil type model in Section 12. 
 

The results shown in Table 11.4 and Table 11.5 indicate 

that, even though the AT- and PS-equations are ad hoc 

equations, they catch the essence of these particles.  

Postulation 11.1 is important for SQS theory. To 

recognize quarks of same flavor with different colors as 

different particles plays pivotal roles in many areas. There are 

at least two facts to support Postulation 11.1. As mentioned 

previously, the large error ranges of  and  for the unitarity 

triangle shown in (11.7) can be explained naturally by three 

up quarks with different colors as three particles instead of 

one. It serves as evidence. The other evidence is quarks mass 

values. As shown in the PDG data book, most of the 

weighted average curves for quarks’ mass have more than 

one peaks corresponding to a flavored quark made of multi-

components with different mass values. According to 

Postulation 11.1, the multi-peak behavior corresponds to 

quarks with the same flavor and different colors having 

different masses. Moreover, compared to the 2008-PDA data, 

the 2010-PDA data show more evidences of multi-peak 

behavior for quarks mass curves. This argument is also 

supported by other evidence. In the PDG data book, most 

af
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weighted average mass curves for hadrons made of quarks 

(anti-quarks) with different flavors show similar multi-peak 

behavior as they should be. Quarks with different flavors 

having different mass values are recognized as different 

elementary particles, with the same reason, so are quarks with 

different colors having different mass values.  

Experiments found that, a hadron is composed of point-

like constituents named “partons”. There are three valence 

partons identified as three quarks, u, u, d as the constituents 

of proton. According to Postulation 11.1, proton is composed 

of nine quarks: , ,  for an  u quark, , ,  for 

another u quark, , ,  for the d quark. The question is: 

How the nine quarks show up in a proton? There are two 

possible options. 

Option-1: There are three smaller point-like constituents 

inside a valence parton simultaneously. If this is the 

case, a flavored quark’s mass equals to the sum of three 

constituents quarks. It is contradictory to fact that, as 

shown by quark multi-peak weighted average mass 

curve, a flavored quark’s mass equals to the average of 

constituents’ mass. So this option is ruled out. 

Option-2: For a quark with the same flavor and different 

colors such as , , 
 
each one takes turns to show 

up. At a given time, only one out of three shows up. A 

flavored quark’s mass equals to the average of its three 

constituent colored quarks’ mass. It fits the multi-peak 

weighted average mass curve well. This option is 

accepted. But it raises a question: Does each colored 

quark show up with different time intervals? If the 

answer is yes, then the flavored quark’s mass equals to 

the weighted average of three constituents mass. In this 

way, the average mass for favored quark and the 

theoretical value  listed in Table 11.3 

should be re-calculated to include the weighed factors. 

The results with weighted factors proportional to the 

reciprocal of three colors’ mass values are as follows.  

Weighted up quark mass value: 

 ,                (11.8a)  

  Weighted up quark  value: 

 .                          (11.8b)                                     

Both results are within 2010PDG data error ranges.  

The importance of Postulation 11.2 and Rule 11.1 has 

been shown by Conclusion 11.1. In fact, Postulation 11.2 as 

the second fundamental Postulation of SQS theory has many 

important impacts far beyond quarks, which will be given in 

later sections.   

 

Section 12: Trefoil Type Model for Charged Leptons 

 

In this section, a broad view is taking to look at leptons. 

Based on Prime Numbers Postulation and intrinsic relation 

between leptons and quarks, a new type of model with torus 

as building blocks is introduced for charged leptons.  

In Section 11, nine even pairs of prime numbers are 

assigned as the m-parameters for nine pairs of up type and 

down type quarks as listed in Table 11.1.  

Postulation 12.1: The original (before reduction) m-

parameter of a lepton is an even number equal to the 

average value of the m-parameters of associated up type 

quark and down type quark. 

Explanation: In fact, this is the unstated reason in Section 8 

and Section 10 to select 2, 18, and 42 for the original m-

parameters of electron, muon and taon, respectively. 

22/)31(2/)(  drure mmm ,          (12.1a)                      

182/)1719(2/)(  srcr mmm
,        (12.1b)                    

422/)4143(2/)(  brtr mmm
,        (12.1c)                     

According to Postulation 12.1, the results for six leptons 

are listed in Table 12.1. The m-parameters of eighteen quarks 

are also listed for reference. 
 

Table 12.1: Leptons and Quarks with Assigned m-Parameters* 

 
* The m-parameters listed are their magnitude; signs are defined by (11.6). 
 

Conclusion 12.1: There are only three generations of quarks 

and leptons. The fourth generation is prohibited.  

Proof: In the “End” column of Table 12.1, the average of two 

m-parameters, 71&67 , is an odd number,

692)7167(  . According to Postulation 12.1, the 

fourth generation leptons are prohibited. According to 

Conclusion 11.1, the fourth generation quarks are 

prohibited.          QED                                                                                                                                                                                                     

Conclusion 12.1 is the extension of Conclusion 11.1 

based on the Prime Numbers Postulation and the intrinsic 

relation between quarks and leptons.  

On the experiment side, according to 2010-PDG data, the 

number of light neutrino types from direct measurement of 

invisible Z width is 05.092.2  . The number from ee  

colliders is 0082.09840.2  . Both results show no trace of 

fourth generation neutrino existence. These experimental data 

support Conclusion 12.1.  

Notice that, there are vacant cells marked with “?” in 

Table 12.1. The question is: Are there any undiscovered 

leptons? In the three generations, there are twelve lepton 

vacancies, in which six are e,  ,   type, and the other six 

are 
e , 

 , 
  type. If these vacancies correspond to 

undiscovered leptons, the six e,  ,   type would be charged 

leptons with mass ranging from a few 2/ cMeV  to a few 

thousands 2/ cMeV . That is impossible, because charged 

particles in such mass range should be discovered already. 

ru
gu bu ru

gu bu

rd
gd bd

ru gu bu

922.09005841 

2/3276313.2 cMeVM u 

1


93059933.211 
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The neutrinos 
e , 

 , 
   are intrinsically associated with 

their companions leptons,  e,  ,   respectively. If there are 

no undiscovered charged leptons, so are no undiscovered 

neutrinos associated with them.  

To fill the vacancies with undiscovered leptons isn’t the 

only way. The other way is that, these vacancies serve as a 

hint for new structure of existing leptons.  

The first generation fermions are divided into four 

categories including two types of leptons e and 
e , and two 

flavors of quarks each with three colors, 
ru , 

gu , 
bu  and 

rd , 

gd , 
bd . The second and third generations have the same 

structure. Should leptons also have colors? This is the initial 

thought inspired by the vacancies in Table 12.1.  

The basic idea is that, leptons’ new model has three 

branches. Each branch separately is a torus model. The three 

branches combine to form the new model. 

Leptons’ torus model has spin 2/ . The new model made 

of three torus should also have spin 2/ . There are two 

options to deal with the spin problem.  

Option-1. Let two branches have spin 2/ , and one 

branches has spin 2/ . The sum of three branches 

spin is 2/)2/(2/2/   . But this option 

makes the new model lost three-fold circular symmetry. 

More seriously, the opposite spin in one branch abruptly 

reverses loop-1 movement direction, which violates the 

requirement for smooth trajectory. It is not acceptable. 

Option-2. Let each branch has spin 6/ . It can be done by 

selecting the reduced m-parameter 3/1m  for each 

branch. According to SQS theory, the lepton’s spin 

equals to 2/m . For the new model as a whole entity, 

the reduced m-parameter add up to 13/13/13/1 m  

corresponding to the spin 2/ . This option is accepted. 

Next step is to find out how the three torus branches and 

three trajectories are combined. According to Penrose [12], 

there are two types of topological structures with three 

branches. The trefoil-knot-type shown in Fig.12.1(a) is a 

single loop self-knotted to form a trefoil structure. It fits the 

job to combine three trajectories on three torus models into 

one trajectory on the trefoil type model. The Borromean-ring-

type structure shown in Fig. 12.1(b) is irrelevant to leptons 

model, because its three loops do not combine into one.   

Fig.12.2 shows the x-y plan cross section, in which the 

three loop-1 circles shown by dot-dashed lines touch each 

other tangentially from one circle to the other circle with 

continuous first order derivatives. In this way, loop-1 goes 

smoothly from one branch to the other. The total length of 

combined loop-1 equals precisely the sum of three branches’ 

loop-1 lengths representing 2/6/6/6/ h   spin for 

electron as a whole entity. 

Fig.12.2 shows how the three branch trajectories 

combined into a trefoil trajectory. As mentioned in Section 8, 

on the electron torus surface, point-A and point-B in Fig.8.2 

actually represent two circles, circle-A and circle-B. A 

trajectory may start at a point on circle-A and halfway 

through at a point on circle-B to keep the angle BAO1 : 

 98687309.1661801  BAO .             (8. 18)               

This rule is originated from the S-equation and strictly related 

to )( 1x , )( 2x  to determine curvatures of the torus model. 

To construct the trefoil trajectory, (8.18) is used to determine 

the location of point-B from the location of point –A for each 

branch. 
 

 
 

Fig.12.1: (a) Trefoil-knot-type; (b) Borromean rings type. 
 

The other rules for the trefoil trajectory are:  

1. The trefoil trajectory must go through points-A and point-B 

of three branches to satisfy the requirements of )( 1x  and 

)( 2x  for each branch.  

2.  The trajectory is the geodesics between adjacent point-A 

and point-B on trefoil type model surface. 

3.  The three branches of trefoil trajectory have the same 

shape separated by 120 for the 3-fold circular symmetry. 
 

 
Fig. 12.2: The cross section and the projection of trefoil 

trajectory for electron on  x-y plane. 
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In Fig. 12.2, the trajectory on top surface is shown by the 

solid curve and on bottom surface is shown by the  dashed 

curve.  

Trajectory for electron goes anti-clockwise through six 

characteristic points and back to close one cycle: 

rrgbbrggbr ABBABBABBA  . 

 (12.2)                               

Indeed, the trajectory is a trefoil type closed loop with the 

correct topological structure and the 3-fold circular symmetry.  

The Weinberg angle  428.4794845' W is the same for 

all three branches as well as for electron as a whole entity. It 

needs explanation. As mentioned in Section 8, Weinberg 

angle is a phase shift between loop-1 and loop-2 periodic 

movements: 

 - 222  W
.                               (12.3)                           

For the trefoil trajectory, 
2 W
 repeats three times at three 

locations, 
rA , 

gA , 
bA . The repetition means the same phase 

shift kept no change along trajectory at three locations. 

Therefore, the three angles should not be added up to
W3 . 

Look at it the other way, the combined trajectory is the same 

one on the original genus-1 torus surface, which is 

reconfigured to fit the genus-3 manifold. The combined 

trajectory has one Weinberg angle  428.4794845'' 2

 W
 

corresponding to the charge of e  for electron.  

The trajectory shown in Fig. 12.2 is a samples selected 

from two sets of discrete possible trajectories. The jumping 

trajectories described in Section 8 for electron torus model 

are also valid for the trefoil type model. As long as the 

trajectories meet all rules, they are legitimate. In other words, 

the “electron clouds” is also a visualized description of 

electron behavior for the trefoil type model. The same is true 

for the trajectories on trefoil type models of muon and taon.  

Introducing the trefoil type model solves the vacancies 

problem in Table 12.1. Table 12.2 shows the vacancies in 

Table 12.1 are filled with leptons’ branches.  
 

Table 12.2: The m-Parameters of Quarks and Leptons with 3 

Branches * 

 
* The m-parameters listed are their magnitude; their signs are defined by (11.6). 

** The number in parenthesis is the reduced m-parameter.  
  

For three generations of charged leptons, the formulas 

given by (12.1) of Postulation 12.1 are generalized for the 

original m-parameters (before reduction) of trefoil type 

model’s each branch and as a whole entity based on the 

original m-parameters of corresponding up type quark 

jiquptypem
,,  and down type quark 

jiqdowntypm
,, .  

For each branch:  











 


23

1 ,, ,,

,

jiji qdowntypequptype

ji

mm
m , 3,2,1i , bgrj ,, .  

(12.4a) 

For lepton as a whole entity:  





bgrj

jii mm
,,

,
, 3,2,1i .                            (12.4b)             

The factor 3/1  in (12.4a) is introduced to make each branch 

with spin 6/ . The index 3,2,1i  is for three generations 

and the index bgrj ,,  is for three branches. 

The rule to select the n-parameters for the trefoil type 

model is to make the loop ratio mn /  identical for all three 

branches. The formulas to determine the original n-

parameters (before reduction) of trefoil type model each 

branch and as a whole entity are based on the m-parameters 

of (12.4) and the torus model original n-parameter 
torusn . 

For each branch:   

torus

ri

ji

ji n
m

m
n 










,

,

,
3

1 ,  3,2,1i , bgrj ,, ,          (12.5a)                               

For lepton as a whole entity:  





bgrj

jii nn
,,

,
, 3,2,1i .                                    (12.5b)              

The rule to select the p-parameters for the trefoil type 

model is to make the mass ratio np /  identical for all three 

branches. The formulas to determine the original p-

parameters of the trefoil model each branch and as a whole 

entity are based on the m-parameters of (12.4) and the torus 

model original p-parameter 
torusp . 

For each branch:  

torus

ri

ji

ji p
m

m
p 










,

,

,
3

1
, 3,2,1i , bgrj ,, ,             (12.6a)  

For lepton as a whole entity:  





bgrj

jii pp
,,

, , 3,2,1i .                                    (12.6b)              

The original numerical parameters are reduced to make 

the m-parameter for the trefoil type model as a whole entity 

equals to 1 corresponding to spin 2/ . The way of reduction 

is that, the original m, n, p are divided by the original m for 

each branch. 

In Table 12.3, the numerical parameters calculated 

according to formulas (12.4), (12.5), (12.6) are listed for each 

branch as well as for lepton as a whole entity for electron, 

muon and taon with trefoil type model.  

As shown in Table 12.3, all reduced numerical parameters 

m, n, p are identical for three branches. It indicates that, the 

trefoil type model three branches are mathematically identical. 

After reduction, their differences in the original parameters 

no long show up.  
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Table 12.3: Numerical Parameters for Three Generations of 

Charged Leptons 

 
 

The calculated parameters for electron, muon and taon 

with trefoil type model are listed in Table 12.4, Table 12.5 

and Table 12.6, respectively. In which, the parameters with 

the ‘ mark are effective, i.e. after f-modification and the 

parameters without the ‘ mark are original, i.e. before f-

modification. 

The generalized AT-equation and PS-equation of (10.7) 

are also valid for leptons’ trefoil model. 

As listed in Table 12.4, Table 12.5 and Table 12.6, except 

the original numerical parameters differences, all reduced 

numerical parameters as well as other parameters for electron, 

muon and taon trefoil type model are the same of those for 

their torus model listed in Table 8.2, Table 10.1 and Table 

10.2. The consistence is expected. The torus models and 

trajectories serve as the building blocks for trefoil type 

models and trajectories. The three torus models and three 

trajectories combine into one trefoil type model and one 

trefoil trajectory. In the combination process, the only thing 

changed is their dimensions shrunk to one third. Therefore, 

all angles as well as all normalized lengths are kept the same. 

There is an apparent problem. As listed in the tables, the 

values of np /  ratio for each branch are the same for the 

lepton as a whole entity. Since np /  ratios equal to mass 

ratios: 
eMMnp //  , the question is: Does the mass of each 

branch equal to the mass of the lepton? Of cause not, but it 

deserves an explanation. As shown by (10.7c) for the 

generalized AT-equation and PS-equation, the mass term is: 

  



























 

eM

M

L

L

n

p

m

n

m

p

1

22sin2sin
2

sinsin . (10.7c)              

The mass term is oscillating along the entire trefoil trajectory. 

There is no way to define another mass term for each branch 

different from the one for the whole trefoil model. The 

situation is similar to the Weinberg angle discussed earlier. 

The 
eMMnp //   as mass ratio is not for each branch 

separately; it is for the lepton as a whole entity.   

It must emphasis that, lepton trefoil type model as a whole 

entity represents the lepton. The red, green, blue three 

branches are not separated particles. This is the major 

differences between leptons’ colors and quarks’ colors. 

  

 

Table 12.4: Parameters for Electron with Trefoil Type Model* 

 
Table 12.5: Parameters of Muon with Trefoil Type Model* 
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Table 12.6: Parameters of Taon with Trefoil Type Model* 

 
* All data are from 16-digit numerical calculations, only 8-digit after the decimal point is 

presented. 

** With different normalizations, the listed values of length parameters are the same for 

each branch and for taon as whole entity.  
 

For SQS theory, the trefoil type is the real model for 

leptons. Otherwise, the vacancies in Table 13.1 cannot be 

filled. However, the study for leptons’ torus model is not a 

waste effort. It serves as a rehearsal for the real show. 

 

Section 13: Gluons and Strong Interactions 

 

The strong interactions between quarks are mediated by 

eight gluons, which are gauge bosons with spin  and zero 

mass. In this section, the gluons and the strong interactions 

are treated in terms of mathematics. 

Definition 13.1: Eight gluons are made of eight pairs of 

quark and the same type anti-quark:  

, , , , 

, , , ;  (13.1a)                                                      

or     ; ; 

.   (13.1b) 

According to Definition 13.1:                   

; 

, .     

The anti-particle of gluon is itself: 

, .                   (13.2)                  

Definition 13.2: The gluons numerical parameters are 

defined as follows: 

1. The original m-parameter of gluon is defined as: 

.                 (13.3)                                                           

 is the m-parameter of gluon’s constituent quark.  

2. The n parameter of gluon is defined as: 

.                                            (13.4)                                         

3. The gluons handedness is defined as: 

For right handed gluons:      

  and ;                                   (13.5a)                   

For left handed gluons:         

 and .                                   (13.5b)                   

4. The gluon effective m-parameter as gauge boson with 

spin  is defined as: 

.                      (13.6)                                                        

5. The p-parameter of gluon equals to zero for zero mass: 

.                                                       (13.7)                                                              

The numerical parameters of eight gluons are listed in 

Table 13.1. 
 

Table 13.1: The Numerical Parameters of Eight Gluons*  

 
 

Explanation: The definitions of gluons numerical parameters 

are based on their geometrical model. For convenience, 

the following discussions are referring to gluons with 

right handedness. According to SQS theory, the model of 

a gluon as a boson without mass is a single loop with its 

m-parameter given by (13.3). As listed in Table 13.1, the 

original m-parameters for all eight gluons are  

corresponding to spins of , which is 

contrsdictory to gluon as gauge boson with spin  . 

The problem can be solved by their model. As shown in 

Fig. 13.1(a), the gluon loop’s two traces on opposite 

sides are merged into one and leave two small circles at 

two ends. Then the merged portion is twisted into 

 turns akin to a spring shown in Fig.13.1(b). 

The loop unmerged portion is evenly divided into two 

small circles. Each circle’s circumferential length equals 

to  corresponding to spin  with the same 

orientation. Two circles contribute the spin of 

 for the gluon. This scenario is 

consistent with the number parameters listed in Table 

13.1. The effective m-parameter of 

h

rrddg 1 ggddg 2 gguug 3 bbddg 4
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 corresponds to the spin of 

. The n-parameter equals to the number 

of turns shown in Fig.13.1 (b). The p-parameters of 

gluons all equal to zero for zero mass.  
 

 
 

Fig.13.1: Gluon’s model 
 

Rule 13.1: The strong interaction between two quarks (two 

anti-quarks, a quark and an anti-quark)  and  with 

parameters 
 
and  is mediated by a link 

made of gluons with numerical parameters ,  

satisfies the following equations:  

,                           (13.8a)                                                    

.                          (13.8b)                                                    

N is the number of gluon types in the link;  is the 

number of gluons of type .  

Explanation: In (13.8),  means more than one types of 

gluons participating in the link;  means more than 

one gluons of type i participating in the link.  

Definition 13.3: The strong interactions between two quarks 

(two anti-quarks, a quark and an anti-quark) are 

classified into two categories. 

Regular type: All gluons in the link have the same 

handedness, i.e. all 
 
and all  have the same sign. 

Weakened type: Some gluons in the link have different 

handedness, i.e. 
 
and  having different signs. 

Explanation: In a link, all gluons share the same momentum 

orientation. Gluons are bosons. The gluons with same 

handedness and same spin orientation have a tendency 

of condensation, which represents a strong attractive 

force to enhance the link. The gluons with opposite 

handedness and opposite spin orientations weaken the 

link.   

Unless stated otherwise, strong interactions are referring 

to the regular type. 

Theorem 13.1: The regular type strong interaction between 

two members in a pair of quarks (anti-quarks, a quark 

and an anti-quark) with numerical parameters 

and  satisfy: 

.                   (13.9)                                 

Proof: For the regular type strong interaction, according to 

Definition 13.3, (13.9) is subjected to the condition that, 

all gluons participated in the link have the same 

handedness. According to (13.4), and (13.8):  

; .                   

Formula (13.9) is proved for all gluons participated in 

the link with  and  or all gluons 

participated in the link with  and , which 

belong to the regular type.                                QED 

Lemma 13.1: A pair of quarks (anti-quarks, a quark and an 

anti-quark) with numerical parameters 
 
and 

 violating (13.9) is prohibited to have the regular 

type strong interaction between two members in the pair. 

The strong interaction belongs to the weakened type. 

Proof: Lemma 13.1 is the reversed opposite of Theorem 13.1.                         

 QED   

According to Theorem 13.1 and Lemma 13.1, the strong 

interactions among quarks (anti-quarks, a quark and an anti-

quark) have prohibitions meaning no regular type strong 

interactions between certain specific quarks (anti-quarks, a 

quark and an anti-quark). The selectivity of regular type 

strong interactions based on Theorem 13.1 and Lemma 13.1 

plays an important rule for comparing the theoretical results 

with experimental facts.  

The possible gluons links serving as mediators for the 

regular strong interaction among quarks (anti-quarks) are 

given in Table 13.2 and Fig.13.2. The form for numerical 

parameters used in Table 12.2 is:   

, ; 

 ( , ).                                      (13.10) 

In which,  and  are the m-parameter and n-

parameter of two quarks (two anti-quarks or a quark and an 

anti-quark) involved; N is the number of gluon types in the 

link;  is the number of gluons for type ;  is the m-

parameter of gluon type i;  is the n-parameter of gluon type 

i. In the “Facts” row of Table 13.2, the “  type” and 

“  type”  represent the two  signs in numerator and 

denominator for the q-pair part in (13.10) take the same sign; 

the “  type” and “  type” represent the two  signs in 

the numerator and denominator for the q-pair part in (13.10) 

take opposite signs.   
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Table 13.2A: Gluons Links between Up Quarks  

 

Table 13.2B: Gluons Links between Down Quarks  

 
Table 13.2C: Gluons Links between Strange Quarks 

 
Table 13.2D: Gluons Links between Charm Quarks  

 
Table 13.2E: Gluons Links between Bottom Quarks  

 
Table 13.2F: Gluons Links between Up and Down Quarks  

 
 

Table 13.2G: Gluons Links between Up and Strange Quarks  

 
Table 13.2H: Gluons Links between Up and Charm Quarks  

 

Table 13.2I: Gluons Links between Up and Bottom Quarks  

 

Table 13.2J: Gluons Links between Down and Strange Quarks  

 
Table 13.2K: Gluons Links between Down and Charm Quarks  

 
Table 13.2L: Gluons Links between Down and Bottom Quarks  
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Table 13.2M: Gluons Links between Strange and Charm Quarks  

 
Table 13.2N: Gluons Links between Strange and Bottom Quarks  

 
Table 13.2O: Gluons Links between Charm and Bottom Quarks  

 
 

Three top quarks , ,  are not listed in Table 13.2, 

because there is no regular type strong interaction among 

them and with other types of quarks.  
 

 
Fig.13.2: Regular type strong interactions among quarks. The multi-

link of the same type between two quarks listed in Table 

13.2 is represented by a single line.  

According to Table 13.2, Fig. 13.2 shows the regular 

strong interactions among quarks and anti-quarks. The solid 

line represents links between quark with quark or anti-quark 

with anti-quark (the “  type” and “  type” ). The 

dashed line represents links between quark with anti-quark 

(the “  type” and “  type” ). The dot-dashed lines 

represent the weakened links between top quark and top anti-

quark, which will be discussed later.  

The strong interactions shown in Table 13.2 and Fig. 13.2 

have following features: 

1. In general, the hadrons consist of , , , , , , , 

, ,  can be constructed with the gluons links shown 

in Table 13.2 and Fig. 13.2 , which are agreed with 

known experimental facts as shown in the “Facts” row of 

Table 13.2. 

2. For the three lighter quarks , ,  shown in Fig. 13.2, 

there are only solid line links for quark with quark or anti-

quark with anti-quark among different colors in the same 

flavor. It means that, the same flavor quarks are permitted 

to form baryons such as ,   and . But the 

quark and anti-quark with same flavor are prohibited to 

form standalone mesons such as , , . In fact, 

experiments confirmed these conclusions. 

3. The neutral meson  is special. Table 

13.3 provides a possible explanation for the formation of 

. The gluons links consist of gluons with mixed “+” 

and “-” signs for  and to form  

via weakened strong interaction. In fact, the weakened 

strong interaction may explain why  has a much 

shorter mean life  comparing to ,  mean 

life . 
 

Table 13.3A: Some Gluons Links between Up Quarks with 

Weakened Strong Interaction 

 
 

Table 13.3B: Some Gluons Links between Down Quarks 

with Weakened Strong Interaction 
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4. As shown in Fig. 13.2, for the two heavier quarks,  

quarks have only dashed line links between different 

colors, and b qarck have only one solid line links between 

different colors. It means that, the same flavor quarks and 

anti-quark are permitted to form mesons such as  and 

; and the same flavor quarks are prohibited to form 

baryons such as  or . Experiments confirmed 

these conclusions.    

5. There is no link from top quark or top anti-quark to any 

other quarks or anti-quarks, which means no strong 

interaction among them. It is confirmed by experiments. 

No hadrons made of top quark or top anti-quark with 

other type of quarks or anti-quarks have found. There is 

no regular link among three top quarks or three top anti-

quarks either. As mentioned in Section 11, top quark and 

top anti-quark are produced in pairs. Table 13.4 provides 

a possible explanation. In which, the links are weakened 

by the mixed “+” and “-” signs in gluons links. The result 

of such mixed links is a weakened strong interaction 

between  and , which may contribute to pair’s very 

short lifetime of . 
 

Table 13.4: Weakened Gluons Links between Top Quarks  

and Top Anti-Quarks  

 
 

In essence, Table 13.2 and Fig. 13.2 provide mathematical 

explanations for strong interactions among quarks, which 

agreed with known experimental results. The reason for such 

agreement is due to careful selection of the -parameters for 

quarks. According to definition 13.1 and Rule 13.1, there is 

still some room for alternative selections of -parameters for 

quarks. But in order to meet all known experimental facts of 

strong interactions among quarks and anti-quarks to forming 

hadrons, the room for selecting correct n-parameters is 

limited.  

High energy experiments have shown quarks confinement. 

When the gluons link between two quarks is broken, a quark 

and an anti-quark are created at the broken ends. This 

phenomenon can be explained naturally by SQS theory. 

According to Definition 13.1, all gluons are made of quark 

and anti-quark pairs. The broken parts of gluons link are 

naturally a quark and an anti-quark.  

According to Definition 13.2, gluons have nonzero n-

parameters corresponding to . Does  

mean gluons having loop-2? The answer is: No. The n-

parameter assigned to gluon does not represent loop-2, 

instead, n is the number of turns of the “spring” made of the 

loop-1 merged portion as shown in Fig.13.1. However, there 

is a trick. When a gluon serve as the mediator of strong 

interactions, its n does act like regular n-parameter as shown 

in (13.8b). But gluon doing loop-2 job is not necessary mean 

itself having loop-2. 

Rule 13.2: The strong interaction between two gluons with 

parameters 
 
and  by transmitting and 

receiving gluons with parameters ,  satisfies the 

following equations:  

, ,               (13.11a)                                         

, .                (13.11b)                                            

In (13.11), M is the number of gluon types in the link and 

 is the number of gluons of type i.              

According to Rule 13.2, there are trivial cases with , 

,  and , . Besides these trivial 

cases, there are other possibilities, which serve as the 

mediator for strong interaction between gluons. Table 13.5 

and Fig. 13.3 show some examples of strong interactions 

between gluons.  

According to Rule 13.2 and as shown by Table 13.5 and 

Fig.13.3, the strong interactions among gluons have the 

following features. 

1. The existence of strong interactions among gluons 

means that strong interactions are nonlinear in nature 

as expected. 

2.  In the second column from left, the strong interactions 

are regular type represented by all gluons in the link 

with the same “+” sign. 

3. In the third column from left, the strong interactions 

are weakened type represented by the gluons in the 

link with mixed “+” sign and “-” sign.  

The strong interaction mechanism introduced in this 

section is based on a link made of gluons sequence, which is 

a simplified concept. In reality, the scenario is more 

complicated. Inside a hadron, its valence quarks (valence 

anti-quarks) are surrounded by a network of gluons including 

many links. The strong interactions are dominated by the 

strongest link in the network. 

As shown in Table.13.2A, in certain cases such as , 

there is only one link for regular strong interaction. In other 

cases such as  and , each has two links for 

regular strong interaction in parallel. Besides, there are 

weakened links among , ,  listed in Table 13.3A not 

shown in Table 13.2A. Among three top quarks , , , 

there is no link for regular strong interaction. Under such 

circumstance, the next best option is to find the weakened 

link. So the overall scenarios are very rich and complicated, 

but the simplified concept does catch the essence of strong 

interactions evidenced by its results agreed with experiments.  
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Table 13.5: Some Examples of Strong Interactions between 

Gluons 

 

 
 

 
Fig.13.3: Some strong interactions among 8 gluons. 

 

The strong interaction mechanism introduced in this 

section by SQS theory has some similarities as well as 

differences with quantum chromodynamics (QCD) of the 

standard model. 

1. Both theories have eight gluons serving as the mediators 

for strong interactions. 

2. Both theories explain the known experimental facts of 

strong interactions for hadrons. 

3. Both theories indicate that strong interactions are 

nonlinear due to the fact that, there are strong 

interactions among gluons. 

4. Both theories explain the confinement of quarks and 

anti-quarks.  

5. According to QCD, gluons exhibit  symmetry. 

According to Definition 13.1, the eight gluons are made 

of eight quark and anti-quark pairs. They also exhibit 

 symmetries for flavors as well as colors like 

their constituent quarks. 

6. According to QCD, the eight gluons are specifically 

assigned to a pair of quarks (anti-quarks) to transfer 

their colors. According to SQS theory, as described in 

this section, the eight gluons’ function is not specialized. 

To serve as mediator for a specific strong interaction, a 

combination of gluons is lined up to make the link. This 

difference between two theories can be explained by 

proper combinations of gluons.  

7. According to QCD, gluons are represented by complex 

parameters. On the other hand, as presented in this 

section, the gluons are represented by real numerical 

parameters. According to SQS theory, the phase of a 

complex number represents intrinsic time. Taking this 

factor into account, the difference is understandable. 

)3(SU

)3(SU
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Theorem 13.2: For a hadron made of quarks (anti-quarks) 

and gluons, the gluons’ m-parameters cancel out and the 

gluons’ n-parameters also cancel out, which do not 

contribute to the hadron. In other words, only valence 

quarks (valence anti-quarks) m-parameters and n-

parameters count for hadron as a composite particle. 

Proof: The strong interactions are mutual in nature. For a 

pair of quarks (a pair of anti-quarks, or a quark and an 

anti-quark),  and , when  sends a sequence of 

gluons with summed parameters 

 

and 

 

to , 

in return sends the same sequence of gluons with 

summed parameters and  back to  along 

opposite direction. As a result, the net changes of 

parameters for the hadron are:   

, 

.                QED  

The argument is also applicable to strong interactions 

between gluons and gluons. 

Theorem 13.2 greatly simplifies the m-parameters and n-

parameters of hadron as a composite particle. In essence, for 

hadron’s m-parameters and n-parameters, only its valence 

quarks (valence anti-quarks) count, gluons do not count. 

Theorem 13.2 plays important roles for composite particles, 

which will be presented in Section 19. 

The set of n-parameters for quarks used in Table 13.2 and 

Fig.13.2 is a specific selection cited from Table 11.2. It by no 

means the only selection. In fact, other selections are possible, 

which is worthwhile to explore further.  

In this section, a framework is built for strong interactions 

based on mathematics. More works are needed for detailed 

quantitative results. 

The basic idea of this section is to treat gluons and strong 

interactions in terms of mathematics and geometry. It is a 

step toward the final goal of SQS theory. 

  

Section 14: W Z Bosons and Weak Interactions 

 

In this section, SQS theory provides a framework for 

weak interactions based on mathematics. It includes a model 

for gauge bosons  and  along with other mediators 

associated with weak interactions. 

 and  particles are gauge bosons with mass heavier 

than  of (6.21). Their model should have 

topological structure similar to the model of top quarks. But 

top quarks are fermions, and  and  are bosons. This 

problem can be solved by assuming two fermion states  

and  as constituents.  and  are treated as two mixed 

states of  and . 

Postulation 14.1: Two fermion states  and  with spin 

 and charges  serve as the components of  

and .    

The mass of   and 
 
exceeds , according to Rule 

6.1, they must appear in pair serving as the constituents of 

 and . In this way, the fractional charge does not show 

up. 

According to 2010-PDG data, ,   and top quark  

have a mass relation:                   

,                        (14.1a)                                                

,                       (14.1b)                                                 

.                                   (14.1c)                                               

. (14.1d)        

The mass relation implies that, they are correlated. This is 

the first clue to determine the parameters of  and . 

The second clue is  to  mass ratio correlated to 

Weinberg angle : 

. 

(14.2) 

 and are 

cited from 2010-PDS (p. 101). To combine (14.1d) and (14.2) 

yields an approximate mass relations for ,  and top 

quark:  

, .              (14.3)                              

The third clue comes from an apparent symmetry in the 

Elementary Particles Table of Table 18.2 of Section 18, in 

which  ,  are located at right end and photon , 

graviton 
 
at left end. According to SQS theory,  is 

correlated with electron and  is correlated with up red 

quark. At right end of the table,   and  should be 

correlated with taon and top blue quark.   

Keeping these clues in mind, the number parameters are 

selected for  and  as:  

For :           

, , ,                 (14.4a)                                         

For :           

, , .               (14.4b)                                        

Formula (11.1b) is used to calculate  for  and 

with  replaced by . 

The calculated parameters of  and  are listed in Table 

14.1.  

  and  are not free standing particles, they serve as 

two branches of  and . According to Table 14.1, 

except the original numerical parameters m, n, p difference, 
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all other parameters are the same for  and , which is 

similar to the three branches of charged leptons trefoil model.  

 and  both have mass exceeding . Their model 

belongs to the spindle type torus akin to top quarks model 

shown in Fig. 11. 1. The  is greater than 

. The f-modification makes , which is not fully 

applicable to  and . 
 

Table 14.1: Parameters for Fermion States  and 

 
 

According to SQS theory,  and  are two different 

combinations of  and .  Their parameters are listed in 

Table 14.2. 
 

Table 14.2:  and  Parameters Based on  and 
 

 
* The Weinberg angle  is original without f-

modification, which causes the large deviations for and 
 

 

According to SQS theory, or  serve as the 

intermediate state for weak interactions; there are other 

mechanisms and particles involved in weak interactions. 

As indicated in Section 12, the reduced n-parameters of 

charged leptons , ,  is fractional: electron: 
2
1en , 

muon: 
8
51n , taon: 

7
62n , which neither match to , 

 with   nor match to quarks with . The 

solution for n-parameters mismatch problem is the key to 

treat weak interactions mathematically.  
 

Rule 14.1: The Leptons Pairing Rule. To participate in 

weak interactions, charged leptons , ,  are paired 

with corresponding anti-neutrinos , ,  and 

charged anti-leptons , ,  are paired with 

corresponding neutrinos , ,  to form companion 

pairs. 

For , , :  

, ;                               (14.5a) 

 ;   (14.5b) 

For , , :  

, ;                         (14.5c)

 .                             (14.5d) 

The arrows and  indicate right and left handedness, 

respectively. 

Explanation: Rule 14.1 serves as the basic rule for leptons 

participated in weak interactions. It solves lepton’s 

fractional n-parameter problem and makes lepton pairs 

with ,  different from quarks with 

, . It lays the mathematical 

foundation for baryon number conservation and lepton 

number conservation including lepton family number 

conservation. Examples will be given later in this 

section.  

In Table 14.3, different types of  for particles 

involved in the weak interactions are listed. 
 

Table 14.3:  for Particles Involved in Weak Interactions 

 
 

According to the types of  listed in Table 14.3, 

except some rare events, in order to meet baryon number 

conservation and lepton number including lepton family 

number conservation, the mediators to make the links 

between the paired particles involved in weak interaction and 

or  must be the oevenmn //   type. 

According to SQS theory, the link between quark-

antiquark pair and  or  is made of gluons. Gluons also 

participate in weak interaction! Is it true?  No rule prohibits 

gluons participating in part of weak interaction, as long as the 
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other part has specialized feature for weak interaction. The 

other part is the link between lepton pair and  or , 

which is specialized for weak interactions.   

Notice that, in Table 14.3, the , ,  pairs 

and or  both have . Since  

and , the boson to make the link 

between , ,  
 
and  or  must have 

 and . Gluons are not qualified for the job. A 

new type of scalar bosons with  and  is 

introduced to do the job.   

Definition 14.1: Eight scalar bosons called massons labeled 

as  ( ) are made of eight pairs of quark and 

the same type of anti-quark as:   

, , , ,  

, , , ;            (14.6a)                             

, , .   

(14.6b)  

Explanation: According to SQS theory, quarks have 

counterpart bosons. As shown in the Elementary 

Particles Table of Table 18.2,  has its counterpart ; 

 has its counterpart W; , , , , , , , 

 have their counterparts , , , , , , 

, , respectively. There are eight boson vacancies 

left in Table 18.2. To fill these vacancies, SQS theory 

introduces eight neutral scalar bosons with spin 0 as the 

building blocks to make the link between the lepton 

pairs , ,  
 
or , ,  

on one hand and   or  on the other for weak 

interactions.  

According to Definition 14.1: 

, , 

.  

The anti-particle of a masson is itself: 

, .                                        (14.7)                                                                  

The parameters of eight massons are listed in Table 14.4. 
 

Table 14.4: The Parameters of Eight Masson
 

 
 

The masson model is shown in Fig. 14.1. The twisted loop 

model is similar to gluon model with the following 

differences.  

1. The loop is twisted in  turns without the small loops 

at two ends. 

2. The mass term longitudinal oscillation alone the loop is 

the standing-wave type with its zero amplitude point 

located at two ends. The mass term longitudinal 

oscillations instantaneous values along two branch paths 

have  phase shift. But the loop path at end changes 

to opposite direction contributing another  phase 

shift. The combination of two  phase shifts yields 

 phase shift meaning in phase. This is the reason 

for masson having double mass of its constituent quark 

as listed in Table 14.4.  
 

 
 

Fig. 14.1 Masson’s model 
 

The distinguish features of massons are: (1) They are 

neutral scalar bosons with spin ; (2) Their numerical 

parameters are ; (3) They are pure mass stuff 

as the name implied. 

According to SQS theory, there are three types of bosons 

involved in weak interactions, namely  or , gluons and 

massons. In which,  or  serves as the intermediate 

state; gluons and massons serve as the building blocks for 

two types of transitional links.   

Take muon decay as an example to demonstrate the weak 

interaction between leptons. 2010-PDG data show that, muon 

decay mode  has branching ratio 

. As shown in Section 12 and Rule 14-1, the 

reduced m-, n-parameters of electron, muon and associated 

anti-neutrinos are: 

Electron :  

       , ;                       (14.8a)                            

Electron anti-neutrino :     

, .                              (14.8b) 

Muon :                               
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  , ;                          (14.8c)           

Muon anti-neutrino :             

, .                  (14.8d) 

In (14.8), the arrows  in particle symbols indicate these 

particles with right-handedness. 

 serves as the intermediate state with reduced m-, n-

parameters as: 

 gauge boson:                     

, .                                        (14.9)          

The “-” sign of n-parameter for  is due to the fact that  

is the anti-particle of .   

According SQS theory,  decay mode 

includes two processes with two links: Process-1 with link-1: 

; Process-2 with link-2: . In 

process-1,  to replace  is to represent the leptons pair 

of  required by Rule 14.1. In presentation,  serves 

as an input. In reality of muon’s decay,  serves as an 

output. According to Feynman diagram,  as input and  

as output are equivalent. Look it the other way, for process-1, 

 takes the  as an input from a  pair 

out of vacuum to avoid violation of lepton number 

conservation and leaves the  as decay products. In this 

way,  boson status is justified and the lepton family 

number conservation law in process-1 and process-2 both are 

satisfied.  

The two processes are illustrated in Table 14.5 to show 

the makeup of two links.  
  

Table 14.5A: Process-1 for Muon Decay Mode
 

    

Table 14.5B: Process-2 for Muon Decay Mode  

 
 

As shown in Table 14.5A and B, the weak interaction in 

the muon decay mode  has two links and both 

links are made of three massons ,  and .  

Take the free neutron decays to proton as an example to 

demonstrate the weak interaction involved baryons and 

leptons. According to 2010-PDG data, free neutron decay 

mode  has branching ratio . The 

mechanism of such decay is a down quark in the free neutron 

transforms into an up quark changing neutron to proton plus 

an electron and an electron anti-neutrino: . 

The decay mode also has two processes with two links and an 

intermediate state. As shown in Section 11, the m-, n-

parameters of three up anti-quarks and three down quarks are: 

: , ; : , ; : , 

.                                                                 (14.10)        

: , ;  : , ; : , 

.                                              (14.11) 

In (14.10),  to replace 
 
has the same 

reason as  to replace  in the first example. 

The two processes are illustrated in Table 14.6 to show 

the makeup of two links.   
  

Table 14.6A: Process-1 for Down Quark Decay Mode  

  
 

Table 14.6B: Process-2 for Down Quark Decay Mode  

 
 

In this example, the process-1 is quark and anti-quark 

transforms to  mediated by gluons. The process-2 is  

transforms to leptons mediated by massons. 

These two examples serve as the typical cases for the 

regular weak interactions. The examples show that Rule 14.1 

serves the purpose well. Other cases can be treated by the 

same way.  

For the rarely occurred weak interactions, the violation of 

baryon number conservation and/or lepton number 

conservation will be treated differently.  

Definition 14.2: The weak interactions are classified into two 

types. 

Regular type: The weak interactions meet baryon 

number conservation and lepton  number conservation 

including lepton family number conservation.  

Rare type: The weak interactions violate baryon 

number conservation or lepton number conservation 

including lepton family number conservation.  

The weak interaction mechanism proposed by SQS theory 

has following features. 

1. It is based on mathematics. SQS theory provides a 

mathematic framework for weak interactions. 
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2. In general, the rules introduced in this section meet the 

requirement of baryon number conservation. A single 

quark or anti-quark cannot participate in regular weak 

interaction, because its . To 

participate in regular weak interaction, quark must pair 

with anti-quark to have combined parameters of 

. 

3. In general, the rules introduced in this section meet the 

requirement for lepton number conservation including 

lepton family number conservation. A single lepton or 

anti-lepton cannot participate in the regular weak 

interaction, because its . To 

participate, the lepton is paired with its companion anti-

neutrino to form a pair. The pair’ s  along 

with  of   or  yield a combined 

, which 

naturally requires massons with  to serve as 

building blocks of the link between them. In this way, the 

lepton number and lepton family number are conserved, 

and the introduction of massons is justified. 

4. For SQS theory, the conservation laws for baryon number 

and for lepton number including lepton family number are 

required by mathematics represented by Rule 14.1. 

5. The rules introduced in this section are also applicable to 

some rare events. For instance, according to 2010-PDG 

data, the meson  has two rare decay channels of 

 and  with  and 

, respectively. For these two 

decay channels, there is no anti-neutrino involved but 

lepton numbers including lepton family number are still 

conserved. Because  is made of , 

the explanation for its quark and anti-quark part is similar 

to that of free neutron decay case. For the leptons part, the 

n/m ratio of  is 1/)2/1(/ mn , which is the same as 

. The explanation for the leptons part is the same as 

two previous examples. But  is not , Rule 14.1 is 

violated and the decay mode belongs to rare type. 

6. It also provides possible mechanisms for the rare weak 

interaction events which violate lepton family number 

conservation. For instance, according to 2010-PDG data, 

 has three other very rare decay channels: channel-A, 

 with ; channel-B, 

 with ; channel-C, 

 with . Let’s take a 

look at channel-A. the m-parameters and n-parameters 

involved are: 

For :  , , ;  

(14.12a)                                       

For :  , ,  ;                   (14.12b)                                                 

For :  , ;  .             (14.12c)                                                 

In this case, the problem is that, the n/m  values of (14.12) 

do not match as the way  did in Table 14.5B. To 

solve the problem, let’s multiply numerator and 

denominator of  with 8 and 10 for and , 

respectively. 

For :     ,             (14.13a)                                

For :     ,           (14.13b)                                        

For :   .  (14.13c)                                           

The process-2 with link-2 can be carried out the same way 

as previous examples. 

For : 

 .                   (14.14)            

The link of (14.14) can be made of :                           

.                               (14.15)                        

The same approach is applicable to channel-B and channel-

C. Is multiplication of same number to numerator and 

denominator of  legitimate? From mathematic 

viewpoint, the answer is: Yes, of cause. If the reduction for 

the original  is legitimate, so is the multiplication. 

From physics viewpoint, the multiplication of an integer N  

to numerator and denominator of  means that, the 

cyclic movements in loop-1 and loop-2 both take N cycles 

instead of 1 cycle. For instance, in the case of (14.13), the 

process occurred at the moment that,  takes 8 cycles and 

 takes 10 cycles. The probability for such events 

occurred simultaneously determines the 
 
value for that 

decay channel, which explains the rarity of such decay 

channels.  

7. The extremely rare “sphaleron” phenomenon [13] converts 

three baryons into three leptons which violate both baryon 

number conservation and lepton number conservation. 

Three baryons contain nine quarks. The combination has 

, which serves as the mathematical origin 

for violating baryon number conservation. Three leptons 

combination has , which serves as 

the mathematical origin for violating lepton number 

conservation. The regular rules introduced in this section 

are not valid. But as long as multiplication can apply to 

, the “sphaleron” phenomenon can be interpreted 

mathematically. In fact, almost any weak interaction rare 
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event can be interpreted mathematically. The real 

difference is the probability of its occurrence.  

These features indicate that, the weak interaction rules 

have the capability and potential to explain weak interactions 

in terms of mathematics. But there are some questions.  

1. Is it possible that gluons and massons bypassing  and 

 directly link quark-antiquark pair to lepton pairs 

,  or  ?  

2. Massons are scalar bosons. Are they qualified to serve as 

mediators for weak interactions? 

3. Why gluons and massons are different? After all, both are 

quark anti-quark pairs and located in the same row in the 

Elementary Particles Table of Table 18.2. 

Question-1 and Question-2 are correlated. If massons 

must attach to  and , it answers both questions. In fact, 

there are clues for massons attachment to  and . If the 

 group symmetry associated with electroweak 

interaction is perfect,  and  have no mass. The  

symmetry must be broken for  and  to gain mass. 

Massons may play a role to provide mass for breaking the 

symmetry.  

Regarding Question-3, the spin and mass differences of 

gluon and masson are originated from their models as 

explained previously. 

Superficially, the introduction of eight massons seems to 

make theory complicated. In fact, it is just the opposite. The 

way SQS theory treated strong interaction and weak 

interaction is to reveal their mathematic nature in the simplest 

possible way. Gluons and massons both are made of quark 

and anti-quark pairs. This approach greatly simplified the 

theory. From SQS theory viewpoint, quarks and anti-quarks 

serve as the basic elements. Gluons and massons are 

composed with the basic elements in different ways to serve 

their specific purposes. Moreover, the mathematic framework 

of weak and strong interactions are self-consistent without 

artificial additions. The whole approach shows simplicity and 

elegance.    

In Section 18, a new gauge boson will be introduced. It 

also plays some role for the weak interactions involved 

hadrons decay. 

In this section, a framework of weak interactions is 

introduced. It has the capability and potential to explain weak 

interactions including rear events based on mathematics. But 

it only provides a framework; some details need to be 

finalized. For instance, the different ways  and  are 

combined to make  and  with different masses, which 

need more works to nail down the details.  

 

Section 15: Unified Interactions 

 

Traditionally Grand Unification Theory (GUT) is to unify 

electromagnetic, weak, strong interactions, in which gravity 

is not included. For SQS theory, GUT means unification of 

all four interactions including gravity. The unification of 

interactions takes consecutive stages. Starts from 

electromagnetic interaction, weak interaction joints in, then 

strong interaction joints in, finally all interactions are unified 

with gravity. The GUT provided by SQS theory is based on 

mathematics.  

In  of (9.3), the second summation term not 

included in the original DS-function of (6.1) represents 

interactions mediated by bosons, which are originated from 

Fourier transformation of the added -function terms in 

 of (9.1). For convenience,  is divided into 

four summation terms labeled as A, B, C, D: 
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 (15.1) 

Term-A and term-B represent fermions, while term-C and 

term-D represent bosons for interactions. 

According to their variables  and  versus  

and , term-C and term-D are related to term-A and 

term-B, respectively. If the term-A variable  is in the 

 range with ; then the term-B variable 

 is in the  range with 

. For the torus model,  and 

 correspond to its inner half and outer half, 

respectively. It implies that, term-B and term-D 

corresponding to torus outer half are related to the GWS-

triangle representing electroweak interaction. It is natural to 

assume term-D related to electroweak interaction. With the 

same reason, term-A and term-C corresponding to torus inner 

half is related to the CKM-triangle representing hadrons 

decay. It is natural to assume term-C related to electroweak 

and strong interactions. Let’s take this argument as pre-

assumption and verify it by its results later. 

In the  Grand Unified Theory [14, 15], a 

suppression factor SF is introduced: 

.                                          (15.2)                         

 is the proton mass; and 

 is the  GUT mass scale for the 

unification of three interactions except gravitation. In a 

previous paper [16], the author borrowed this concept and 

utilized (15.2) to calculate the mass scale  for the 

unification of electromagnetic and weak interactions: 

W
0Z

ee 
   

W
0Z

W
0Z

)2(SU
W 0Z )2(SU

W 0Z

1Y 2Y
W

0Z

 xEDSx


 kEDSk  xEDSx

j )5.0( j x

)5.0( x

x
)25.00(  x  )(x

)5.0( x  5.0)5.0(25.0  x

  )5.0( x  )(x

  )5.0( x

)5(SU

4











GUT

proton

M

M
SF

2/)23(938272013.0 cGeVM proton 

215 /10~ cGeVMGUT
)5(SU

ewM



1270                                 Z.Y.SHEN 
 

Copyright © 2013 SciRes.                                                                                                                                                                         JMP 

   .                                  (15.3)                              

In which,  is the redefined suppression factor for 

electroweak unification derived from the dominate term of 

term-D in (15.1), in which  is replaced by  and  is 

replaced by : 
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The term with  represents the dominate term, 

which has the maximum magnitude value in term-D. It 

dominates the suppression effect, because other terms with 

 have much less value comparing to  term. 

In (15.4), the value of  is 

defined by (2.22), the value of  is cited 

from Table 3.1, in which only 8 digits after the decimal point 

are taken.  

Substituting (15.4) into (15.3) yields the mass of a scalar 

boson  to unify electromagnetic and weak interactions:      

.

 (15.5)                  

 is within LHC capability, it can be 

verified experimentally.  

Corresponding energy  of the 

scalar boson  serves as the energy scale to unify 

electromagnetic and weak interactions. 

The suppression factor  for electroweak-strong 

unification is derived from the term-C of (15.1). It is 

evaluated at  of (2.21) and 

 cited from Table 3.1 with 8 digits after 

decimal point: 

(15.6) 

In (15.6), the  term is taken as the dominate term instead 

of the  term, because  term represents the 

summation of all probabilities equal to 1 required by unitarity.  

Using the value of  giving by (15.6), the mass  

of a scalar boson  to unify electroweak and strong 

interactions is determined as:  

. 

(15.7)             

In the standard model, the electroweak-strong unification 

is called the grand unification. In SQS theory, the grand 

unification is reserved for the one including gravity. 

Before dealing with the grand unification, let’s look at the 

principles suggested by SQS theory.  

1. There are two types of forces (force is synonymous to 

interaction). The long range force including 

electromagnetic force and gravitational force, both have 

unlimited effective range. The short range force 

including weak force and strong force has limited 

effective ranges. The first principle for grand unification 

is: All forces must be unified to a single force of the 

long range type. The reason is simple, long range 

includes short range, while short range does not include 

long range. According to the first principle, the weak 

force and strong force are not qualified as the final 

unified force.   

2. Second principle: The force with selectivity is not 

qualified as the final grand unification force. 

Electromagnetic force is only for charged particles. It is 

not qualified as the final unified force. Otherwise, the 

forces between electrically neutral particles are left out 

after the grand unification.  

3. According to the first and second principles, the only 

force qualified as the final unified force is the gravity. 

The next question is: In the grand unification, which force 

is one finally unified with gravity? The answer comes from 

the Random Walk Theorem. In Section 4, the ratio of 

electrostatic force to gravity for a pair of electrons is  

.                    (4.19)                           

In which, electron converting factor  is interpreted as the 

ratio of long path to short path defined according to the 

Random Walk Theorem. It is natural to start with  to 

explore grand unification. According to SQS theory, grand 

unification happens at: 

.                        (15.8)                              

Substituting (15.8) into (4.19) yields: 

.                                             (15.9)                                       

In (15.9), the fine structure constant  as a running constant 

varies with energy. The closest value available at such high 

energy level from 2010-PDG (p.126) is: 

 .                    (15.10)                          

 is the value of  at  around . 

Substituting (15.10) as  into (15.9) yields the converting 

factor at grand unification scale: 

.  (15.11)                        

Corresponding length is the grand unification length scale: 

. 

 (15.12)      

The mass of the scalar boson  for grand unification is: 

.    (15.13) 
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For comparison purpose, the suppression factor  and 

 for grand unification are reversely calculated from 

 as: 

,  (15.14a)                 

.             (15.14b)                                                    

Table 15.1 listed the calculated parameters for three types 

of unifications proposed by SQS theory. 
 

Table 15.1: The Parameters for Three Types of Unifications 

 
*Note:  and  are reversely 

calculated from . 
 

It is interesting to find out that, the mass ratio of  to 

is very close to : 

.                  (15.15)                              

The number  is so close to the medium value of 

 cited from 2010-PDG (P.126) data with 

a relative deviation of . Another way to check is 

to combine (15.13) and (5.15): 

 .            (15.16)                     

The relative deviation is reduced to . With such 

high accuracy, it is very unlikely that (15.15) and (15.16) are 

by coincidence. In other words, these correlations are real and 

mean something worthwhile to dig in.  

From theoretical perspective, (15.15) is an important 

finding, which has the following significances. 

1. The parameters of grand unification and electroweak-

strong unification are correlated with the fine structure 

constant .  as a running constant, its 

reversed value varies from  

to , a decrease of  for  

increase of energy scale. In the next  increase of 

energy scale to , the value of  is only 

decreased . It shows a typical asymptotic 

behavior toward saturation: . 

In other words, the majority of  relative 

deviation is not necessarily caused by error.  

2. Combining (15.15) and (15.16) and replacing  

with  yields the correlation of three masses: 

.  (15.17)    

Due to the asymptotic nature of fine structure constant, 

the replacement of  with  in (15.17) 

only has a minor effect. 

3. More importantly, the finding proves an important 

evidence for the consistency of two very different 

methods used to deal with unifications for SQS theory. 

 is calculated according to the suppression factor 

from (15.6) and formula (15.7) as a borrowed formula, 

 is originated from the S-equation. On the other 

hand,  is determined by the equality of static 

electrical force and gravity along with the converting 

factor  originated from Random Walk Theorem. 

These two very different methods are consistent with a 

discrepancy less than . It gives the 

legitimacy for both methods. After all, the borrowed 

formulas (15.3), (15.5) and (15.7) are legitimate; and the 

ways to determine suppression factors by  and 

 are legitimate as well. It gives more credit to the 

theoretical results listed in Table 15.1. 

4. It proves a way to convert proton mass  and 

converting factor  to the Planck mass . 

Substituting  of (15.7) into (15.17) yields: 

,              (15.18a)                                    

.           (15.18b)                               

Proton is not an elementary particle. It composed of three 

quarks and many gluons. For such a complex system, its 

mass and converting factor can be derived from three 

mathematic constants, , ,  and a running constant 

 by (15.18). It is a surprise. This correlation is 

important in two senses. First, SQS theory is based on three 

physics constants, , ,  and in principle no other 

physics inputs. The  in (15.3), (15.5), (15.7) is 

exceptional. With the help of (15.18a),  is replaced 

by , proton mass is no longer a physics input for SQS 

theory. Second, most formulas and equations in this paper 

can be traced directly or indirectly back to the first principle 

of SQS theory. (15.3), (15.5), (15.7) are exceptions, which 

are borrowed from other theory. With the help of (15.18), 

the problem is solved. For instance, 
 
and are 

expressed as: 

.     

(15.19)         

GUTSF

)( GUTx

GUTM

73

4

18

4

1070759593.5
1007948213.1

938272013.0 


















GUT

p

GUT
M

M
SF

58672847.41
4

)ln(
)(  GUT

GUT

SF
x

58672847.41)( GUTx 73107076.5 GUTSF

GUTM

GUTM

ewsM
1)( 

ZM

1)(79353.127  Z

ews

GUT M
M

M


79353.127

916.127)( 1 

ZM
410574.9 

83433738.127
2

)(

3/2

1 









ews

Planck
Z

M

M
M




410384.6 

)(M )(M

035999084.137)( 1 

eM

916.127)( 1 

ZM %655.6 510~
1610

GeV1810 1)( M
410384.6 

)()( GUTZ MMM  

410384.6 

)( ZM

)( GUTM

Planck
GUT

GrandGUTews M
M

MMM





2

)(
)(

2/3



)( ZM )( GUTM

ewsM

)( ax

GUTM

GUTN

410384.6 

)( ax

)( bx

protonM

protonN
PlanckM

ewsM

Planck

x

GUTproton MeMM a )(2/3)(
2

1 





)(2/3)(

2
ax

GUTproton

Planck
proton

eMM

M
N








 e
ax

)( GUTM

h c G

protonM

protonM

PlanckM

ewsM
ewM

G

hc
MM

M
MMM GUTPlanck

GUT
GUTGUTews









2
)(

2

)(
)( 2/3

2/3





1272                                 Z.Y.SHEN 
 

Copyright © 2013 SciRes.                                                                                                                                                                         JMP 

.

                                                                       (15.20)      

Only mathematic constants and basic physics constants 

appear in (15.19), (15.20).  

The value of converting factor  given by (15.11) is 

twenty one orders of magnitudes less than electron 

converting factor:  

.        (6.16)                              

The tremendous reduction of converting factor is the nature 

of random walk. As shown in Section 4, when the distance  

of two electrons is equal or greater than its Compton 

wavelength , its converting factor is fixed at 

, which is represented by a flat 

straight line on the  versus diagram shown in Fig. 4.1. 

This is the macroscopic scenario. When the distance of two 

electrons is reduce to , the converting factor  

starts to vary. According to Random Walk Theorem, the 

number of steps along the random walk path  is  

                   .                                               (15.21)              

 is the number of steps along the straight line distance 

between two electrons. The ratio of random path length and 

straight line distance is: 

.                      (15.22)                            

 is linearly decreases with decreasing . In this region, 

 has a linear relation with , which is represented by a 

straight line with  angle to the l-axis in  versus  

diagram shown in Fig.4.1. The line stops at the grand 

unification length scale given by (15.12): 

. This process has its 

deeper meanings, which will be discussed in Section 16.  

As a summary of this section, let’s look at the process of 

unifications. 

1. The electrical force and magnetic force are unified by 

Maxwell equations with no specific length scale. 

2. At the length scale , weak force 

joints with electromagnetic force to unify as electroweak 

force. 

3. At length scale , strong force 

joints with electroweak force to unify as electroweak-

strong force. 

4. Finally, at length scale , 

electroweak-strong force is unified with gravity, and all 

four forces become one.  

In the consecutive stages of the unifications process, the 

electromagnetic force, acting as the carrier, picks up other 

forces at different length scales and carries them to the final 

stage. At the final stage, all forces are united to gravity. This 

process follows the principles described at the beginning of 

this section. 

The electromagnetic force acting as the carrier has a deep 

reason. It is the force has direct connection with gravity via 

the random walk process. This is another example to show 

the importance of the Random Walk Theorem and its origin, 

the SQS theory Fundamental Postulation of Gaussian 

Probability. 

In some other source [17], the fine structure constant at 

 has a value  different from 

PDG-2010 . The discrepancy 

indicates a different asymptotic path from  towards 

. It does not change the conclusion of the 

intrinsic link between  and .  

In Section 22, the unification length scales  and 

 serving as milestones play important roles in cosmic 

history.  

In Section 23, a universal formula for the fine structure 

constant  will be given. 

 

Section 16: Logistic Equation and Grand Numbers  

 

In this section, an equation is discovered by 16-digit 

numerical calculation. It reveals the connections among 

logistic recurrence process, converting factor, Gaussian 

probability, random walk, S-equation and grand number 

phenomena. It also provides important clues related to 

vacuum structure, cosmic history and finite sporadic Lei 

group. 

In Section 15, the converting factor of the scalar boson 

 representing the grand unification is:   

.                     (15.11)                        

An equation is discovered by using 16-digit numerical 

calculation, which provides connection of the electron 

converting  to other constants:  

. 

(16.1) 

Equation (16.1) is not derived from the first principle. It is 

necessary to provide information in details. On (16.1) right 

side, the number  is restricted by the 

resolution of 16-digit numerical calculation. It actually equals 

to zero. The values of two terms on left side of (16.1) are: 

,                  (16.2a) 

.   (16.2b)                           

.                             

It proves the right side of (16.1) actually equal to zero, which 

serves as one of evidences that equation (16.1) is not by 

coincidence. 
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In (16.1), the following constants are cited from the 

medium value of 2010-PDG data, or derived from the S-

equation. 

Electron converting factor: ,            (16.3a)                                                         

Planck mass: ,                              (16.3b)                                                         

Planck length: ,                      (16.3c) 

Electron mass from 2010-PGD data: 

,                         (16.3d) 

Planck constant from 2010-PDG data: 

,                               (16.3e) 

Speed of light in vacuum from 2010-PDG data: 

,   (16.3f)  

From 2010-PDG data (p.126):  

,                        (16.3g)         

From S-equation solution for electron: 

.            (16.3h) 

In Appendix 5, a brief introduction of logistic equation is 

presented.  is a parameter of the logistic equation: 

, .         (A5.3)                                                                        

Logistic equation represents a recurrence process with close 

connection to chaos theory.  as a function of  

demonstrates different behaviors in different regions of r 

shown in Table 16.1. 
 

Table 16.1: The Typical Behaviors of  in Different Ranges of 

 Values 

 
 

In (16.1), the logistic parameter is: 

.  (16.4)                                         

,                                                (16.5a)                            

.                                    (16.5b)                                

 is the threshold of parameter . When , the logistic 

recurrence process becomes chaotic. 

In the equation (16.1), as shown by (16.5), the difference 

between parameter  and  is . The 

relative deviation is: 

.                                    (16.6)                               

The value of  just a litter bit more than the threshold of 

. At that point and beyond, the logistic 

recurrent process becomes chaotic.  

It is important to point out that,  

does not all contribute to the error of (6.1). In fact,  could 

be interpreted as the logistic recurrent process going into 

chaotic region a coup of more steps. The error of (16.1) is 

less than   . With such high accuracy, 

equation (16.1) cannot be by coincidence. We should take it 

seriously and dig in deeply.  

The second term on the left side of (16.1) is: 

.              (16.2b)                                     

Obviously, (16.2b) is the electron version of (15.11) with the 

 replaced by  at electron mass scale as it 

should be. 

Let’s look at the logistic equation (16.1) as a progressive 

process with  as a variable. To show  as a function of 

. Rewrite (16.1) as:  

.                (16.7)                                    

In (16.7),  is a running constant. The problem is that 

 value varies with mass scale M. The experimental 

data of  are available only at a couple of discrete 

points. 2010-PDG (p.126) data provides: 

.                  (16.3g)                                           

In Section 15, the value of  is cited from 2010-PDG 

(p.126) data as: 

.                   (15.10)                                                                                              

Fortunately, as shown in Section 15, above  mass scale 

the value of  asymptotically approaches 

saturation. Table 16.2 lists the related parameters as a 

function of . In which,  is used at  energy 

scale and  medium value is used for at and beyond 

 energy scale and its variation is ignored. 
 

Table 16.2：Parameters of Electron Logistic Process 

 
 

In Table 16.2, the logistic recurrent process belongs to the 

variable parameter type, in which parameter  varies. It 

starts at  and stops at . In the 

process, besides the three mathematical milestones, , 

, , the other milestones correspond to electro-

weak, electroweak-strong and grand unifications are also 

listed. The term with  corresponds to 

electron’s intermediate state, the e-boson state, related to 

cosmic inflation will be explained in Section 22. 

Table 16.2 clearly demonstrates the dynamic nature of 

electron converting factor . It provides a convincing 
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interpretation of  as a running constant. In essence, the 

variation of  is a random process originated from two 

correlated sources. One is the random walk process described 

in Section 4 and the other is the logistic recurrent process. In 

fact,  and  of (A5.3) can be interpreted as binary 

probabilities. In some way,  and  are related to the 

probabilities in the random walk. The details of the 

correlation are up to further exploration.  

With the help of logistic process, the peculiar behavior of 

 in Section 4 is understood now. Why  is a 

running constant? Because its logistic process belongs to the 

varying  parameter type. Why  does not show 

asymptotic behavior? Because the logistic process abruptly 

stops at  and becomes chaotic. 

This is the hidden scenario revealed in this section. 

Logistic recurrent process not only provides reasonable 

explanation for the peculiar behaviors of the converting 

factor , but also links it to other constants such as  

and .  

In Table 16.2, at the starting point of logistic process,  

.       (16.8)                             

It is the same as:  

.  (15.11)                            

 is the converting factor for scalar 

boson  representing grand unification, while 

 
is electron’s converting 

factor at GUT scale. Why are these two numbers equal? The 

apparent reason is that they use the same . 

The deeper reason is that, at the  energy 

scale, electron mass is in the same order of  mass, which 

far exceeds . According to Rule 6.1, such heaver 

fermions must appear in pair; and a pair of fermions is a 

boson. It demonstrates the consistency of (15.11) from grand 

unification and (16.8) from logistic process of electron. 

Equation (16.1) is for electron. The corresponding taon 

version is:   

. 

(16.9)             

The data in (16.9) are from the following sources: 

From 2010-PDG data:  

 .          (16.10a)                     

From 2010-PDG data: ,  take 

 .               (16.10b) 

From S-equation: 

.

 (16.10c)        

The numerical solution of (16.9) for 
 
is: 

,                                               (16.11a)                                     

,               (16.11b)                                           

.                                    (16.11c)                                        

Comparing to the electron case, the value of  is 

increased. It means that for taon the logistic recurrent process 

goes further into the chaotic region before it stops.     

Consider electron macroscopic converting factor  and 

its square root  in orders of magnitude: 

,                     (16.12a)               

.                                           (16.12b)             

and  are grand numbers representing typical 

hierarchy phenomena, which deal with the ratio of two 

quantities having many orders of magnitude difference. There 

are other phenomena related to great numbers. For example, 

the total number of stars in a galaxy is close to ; the total 

number of galaxies in the visible universe is close to . 

More examples will be given in later sections. 

Definition 16.1: The rank-G grand number is defined as: 

.                                            (16.13)                  

A system consists of  elements is defined as a 

rank-G grand system. A grand system subjects to the 

following conditions: 

1. The elements in the system belong to the some type; 

2. The interaction of elements in the system is weak; 

3. The elements in the system behavior stochastically; 

4. The interaction of elements is nonlinear in nature, 

and it provides a growth mechanism with negative 

feedback. In fact, in (A5.1) and (A5.3), 0r   

represents growth and 0  represents negative 

feedback to suppress growth. 

Explanation: The grand number defined by (16.13) is based 

on decimal for convenience, which is not natural. The 

natural way to define it is:  

,                                                       (16.14a)                                  

.              (16.14b)                                             

The relations between  and  are: 

,    (16.15a)                             

.     (16.15b)                              

For practical reasons, definition (16.13) is introduced 

and used throughout in the paper. Definition (16.14) 

serves as its natural origin. It is interesting to notice that, 

2 and 37 both are prime numbers. 
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According to Definition 16.1, galaxy is a  grand 

system with  stars and the visible universe is a  

grand system with  stars. 

The common feature of grand systems containing grand 

number of elements is related to the logistic recurrence 

process. When the random process in the system reaches the 

critical point , the system becomes chaotic 

and stops growing. It can only grow further by organizing a 

next higher level, such as the visible universe on top of 

galaxies.  

Since  is close to a  grand number, a 

natural question is: What is the electron’s  grand 

system with ? This is an important question, 

which will be discussed in Section 22.     

Notice that,  deviates from a 

prime number 71 with a relative deviation of . It 

is not by coincidence. In fact, it provides a clue with 

important physics and mathematics significances, which will 

be discussed in later sections. 

The equation of (16.1) is correlated  to 

other mathematic constants. It has important significance, 

which will be discussed in Section 20.  

The only thing left unexplained is the numerical factor

 in equation (16.1) and (16.9). It turns out that the factor

 provides an important clue for the structure of space and 

much more. The details will be discussed in Section 21. 

In summary, equation (16.1) is an important discovery. It 

reveals many important correlations including logistic 

recurrence process, converting factor, Gaussian probability, 

random walk, S-equation and grand number phenomena. 

Some of them are worthwhile to explore further.  

 

Section: 17 Neutrinos 

 

Neutrinos are puzzling particles with peculiar behaviors. 

Despite extensive efforts in recent years tried to find out 

neutrinos’ properties, some of them are still not clearly 

known. In this section, only a framework is presented, in 

which many issues remain open.  

Let’s start with known facts. 

Fact-1: Neutrinos have tiny mass evidenced by oscillations 

among three different types. 

Fact-2: Neutrinos only have left-handedness and anti-

neutrinos only have right-handedness. 

Fact-3: Neutrinos have no electrical charge or tiny remnant 

electrical charge. 

The main focus of this section begins with anti-neutrinos, 

because anti-neutrinos are the ones companioned with their 

changed leptons and play a pivotal role in most weak 

interactions.  

Rule 17.1: According to the Leptons Pairing Rule in Section 

14, each charged lepton is paired with its companion 

anti-neutrino: , ,  with combined 

numerical parameters , ; each charged 

anti-lepton is paired with its companion neutrino: 

, ,  with combined numerical 

parameters , . The n-parameters 

matching rules are:  

, or , , , ; 

          (17.1a)  

, or ,   ,,el , .  

  (17.1b)  

Take electron anti-neutrino  as an example. As listed in 

Table 12.3, electron’s after reduction n-parameter is 

. According to (17.1a), the n-parameter of  is 

, to make the match: 

 .         (17.2)                               

The  as an anti-fermion, according to Definition 11.2, its 

m-parameter must have opposite sign of its n-parameter: 

.         (17.3)                                                               

Because of ,  must have  

corresponding to  right-handedness. The argument is also 

applicable to the other two types of anti-neutrinos,  and 

. It shows that, anti-neutrinos unique handedness is hidden 

in Rule 17.1 and originated from mathematics.  

In reference [1] by the author, neutrinos were treated 

based on their companion leptons and the  boson. The 

mass values of three types of anti-neutrinos were given as: 

,    (17.4a)                                                                       

,    (17.4b)                           

.   (17.4c)                            

In (17.4), the mass values, , , ,  and the value 

of fine structure constant  are cited 

from 2010-PDG. , ,  are the mass values of 

three flavored anti-neutrinos , , , respectively, which 

are in principle different from the eigenstate neutrinos , 

, . The difference will be discussed later in this section. 

According to (17.4), the mass ratios of three anti-

neutrinos to their companion charged leptons are: 

,             (17.5a)                    

,             (17.5b)                 

.             (17.5c)                    
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The three ratios are identical, which indicate that three anti-

neutrinos are closely related to their companion charged 

leptons as well as among themselves.  

To determine anti-neutrinos models and parameters, two 

issues must be dealt with. One is mass and the other is 

electrical charge, which are very different from their 

companion charged leptons. 

Let’s start from electron torus model and look for the 

ways to transfer it into the model of its companion anti-

neutrino . According to SQS theory, the mass  of  

is related to its model and numerical parameters in two ways.  

1. According to (6.18) in Section 6, the distance between 

 and  on x-axis for  is related to its mass  

and electron mass  as: 

.                        (17.6)                              

According to (17.5a) and (17.6):  

.              (17.7)                       

It indicates that,  and  are separated by a vast 

distance alone x-axis. The values of  and  

are determined by  and  according to S-equation.  

2. The numerical parameters m, n, p and the mass 

oscillation term in AT-, PS-equations are related to the 

mass ratio. The mass ratio is defined as:   

,                (17.8a)                                              

The mass oscillation term is: 

   .     (17.8b)                     

According to (17.8) and , , the 

way to reduce mass  from  is to reduce the value 

of the magnitude of p-parameter: 

. (17.9)                  

The numerical parameters of  and  can be 

determine by the same way. The results are summarized as: 

Electron anti-neutrino :    

, , ;        (17.10a)    

Muon anti-neutrino :     

, , ;     (17.10b) 

Taon anti-neutrino :        

, , .     (17.10c) 

For the electrical charge difference, the key is to let the 

electrical charge to vanish for  and keep all related rules 

valid. As discussed in previous sections, particle’s electrical 

charge  is related to Weinberg angle  as 

. Let Weinberg angle  or , 

the electrical charge follows  or .  

Based on these considerations, SQS theory provides two 

options for neutrinos model. The process starts from torus 

model and followed by trefoil model for easy to understand. 

Option-1: For Dirac Type Neutrinos 

In the electron’s torus model, move point  and point  

to coincide with point . As results, the torus model and 

trajectory for  are shown in Fig. 17.1.  

When point  and  coincide with point , , 

, , , and , . In the 

outer half of torus cross section, according to (8.8a),  and 

 coincided with point  make   and 

,    (17.11a)                        

.                                                (17.11b)               

In the region  of x-axis, the S-equation of (3.21) has 

only one solution at :  

.                                            (17.12)                  

According to  function’s periodicity of (2.12) and 

symmetry of (2.13), (17.12) is extended to the entire x-axis as:  

,  ;   (17.13a)                

, .              (17.13b) 

 

 
Fig.17.1: Torus model and trajectory for  according to Option-1. 
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According to (17.7) and (17.13), there are two ways to 

determine  and  for .  

Way-1: , ; , 

;                                        (17.14a) 

Way-2: , ; ,

.       (17.14b) 

In both ways,  and , which are 

required by probability matching.  means that, as 

point  and point  coincided with point , point  and 

 also coincide with point E as shown in Fig.17.1. The 

trajectory shown in Fig.17.1 is for . The trajectory for  

has the same projections as the trajectory for  with 

opposite direction along the switched solid line and dashed 

line on the x-y plane. The differences of two ways are: 

For Way-1: 

 integer,          (17.15a)                                    

For Way-2: 

 non-integer.  (17.15b)               

Unfortunately, the accuracy of available data is not sufficient 

to choose which way to go. In the meantime, let’s take Way-1.   

In the above discussion,  serves as an example. The 

same principles are applicable to   and  based on the 

models of nuon and taon. Neutrinos , ,  share the 

some models as anti-neutrinos , ,  respectively with 

different trajectories’ directions.  

Theorem 17.1: The Dirac type neutrino only with left 

handedness and the anti-neutrino only with right 

handedness must have zero electrical charge: 

. 

Proof: Let’s starts from the opposite. If  and , 

then points  and points  are not exactly coincided 

with point G; point  and point  are not exactly 

coincided with point E. In such case, there are four 

possible trajectories, in which two trajectories for  

with right and left handedness and two trajectories for 

 with right and left handedness. This scenario violates 

Fact-2, which must be not true. Then the opposite 

 must be true.                                     QED 

The above discussions are based on torus model. The real 

model for , ,   and  , ,  are trefoil model 

with three branches. The way for three torus models 

combined into a trefoil type model is the same described in 

Section 12 for charged leptons. Fig.17.2 shows the trefoil 

type model and trajectory for .   

The calculated parameters based on Option-1 trefoil type 

model are listed in Table 17.1, 17.2, and 17.3 for , and 

, respectively. The listed data are based on
 .

 The 

after f-modification parameters are marked with ‘. 

The torus model and the trefoil type model provided by 

Option-1 are only valid for Dirac type neutrinos and anti-

neutrinos with two components. There is a reason to 

introduce Option-2 to provide a Majorana type model with 

only one component, because eigenstate anti-neutrinos 

belong to Majorana type as shown later in this section. 

  

 
Fig.17.2: Trefoil type model and trajectory for  according to 

Option-1. 
 

 

Table 17.1: Parameters for Electron Anti-Neutrino Based on 

Option-1 
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Table 17.2: Parameters for Muon Anti-Neutrino Based on 

Option-1 

 
 

Table 17.3: Parameters for Taon Anti-Neutrino Based on 

Option-1 

 
 

Option-2: For Majorana type Neutrinos 

Start from Option-1 torus model for  with . Let 

loop-2 center  on right and center  on left move toward 

loop-1 center  and coincides with . The torus surface 

becomes spherical surface for  or elliptical surface 

for . In the new model, loop-2 is integrated into 

loop-1. It fits the one component Majorana type naturally. 

Spherical and elliptical surfaces belong to genus-0 

topological manifold. The trajectory on torus surface is 

degenerated into a circle on the spherical surface or elliptical 

surface with points G on its right and points E on its left as 

shown in Fig.17.3.  

The trajectory on trefoil type model is degenerated on 

sphere surface or elliptical surface as shown in Fig. 17.4. The 

model is degenerated from genus-3 to genus-0 without 

branches but the degenerated trajectory still retains its 3-

branch trefoil type with loop-2 integrated into loop-1. 
 

 
Fig 17.3: Torus model and trajectory degenerated to sphere for  

according to Option-2.  
 

 

 
Fig 17.4: Trefoil type model and trajectory degenerated to sphere for 

 according to Option-2.  
 

In the process of weak interaction such as , 

an anti-neutrino is created with a definitive flavor. The new 

born anti-neutrino flies with speed very close to the speed of 

light in vacuum. During it flying journey, the anti-neutrino is 

oscillating among different flavors. In other words, the flying 

anti-neutrino lost its flavor identity and becomes an 

oscillating system of eigenstate anti-neutrinos. When it is 

caught by a detector, the eigenstate anti-neutrino gets its 

flavor identity according to probability. The oscillating 

behaviors were found by experiments as the Fact-1, which 

serve as the evidence for anti-neutrinos having tiny mass. 

It is important to point out that, during their free flying 

journey, the oscillation is among the members of eigenstate 

version, and the members of flavored version only show up at 

their birth or been detected. As soon as they start to fly, the 

flavored version converts to the eigenstate version. 

Fine structure constant  is a running constant depending 

on energy scales. In (17.4) and (17.5), the  value is based 

on the 2010-PDG (p.126) data: 

.        (17.16)                           
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Take (17.4c) for 
 
as an example, there are three different 

energy scales involved. If  is treated as a running constant, 

(17.4c) probably should be rewritten as:  

 . 

(17.17)                                                

In (17.17), 2010-PDG (p.126) data medium values are used: 

,                   (17.18a)                                           

.                                  (17.18b)                                     

The difference between (17.4c) and (17.17) is . 

The mass data listed in Table 17.1, 17.2 and 17.3 did not take 

 as a running constant into account, which may have up to 

errors. 

According to 2010-PDG data, three charged leptons have 

a mass relation: 

.                               (17.19)                                          

According to (17.4) and (17.19), if ignore the effect of  as 

a running constant, three anti-neutrinos have a similar mass 

relation: 

.                          (17.20)                                             

(17.19) and (17.20) indicate that, three types of neutrinos and 

anti-neutrinos are closely correlated. 

The neutrino models and parameters proposed by SQS 

theory can be verified by checking on eigenstate neutrinos 

mass values. 2010-PDG provides the experimental data for 

the differences of eigenstates mass squares: 

,   (17.21a)                            

.  (17.21b)                             

Which are based on 2010PDG assumption:  

.                                  (17.21c) 

According to (17.4), the SQS theoretical values are:  

,         (17.22a)                           

,          (17.22b)                      

. (17.22c)                             

The  theoretical value of (17.22a) is close to the 

experimental  value of (17.21a). The other two are off 

by a factor of ~9 for mass square; for mass without square, 

they are off by a factor of  ~3. The assumption  

of (17.21c) also fits (17.22b) and (17.22c) well. But they are 

not fair comparisons. In principle, , ,  as 

flavored anti-neutrinos mass are different from eigenstates 

mass , , . Nevertheless, the 2010-PDG data 

provided some tentative information. For instance, one 

possible interpretation of experimental data given by (17.21) 

is: 

,                                             (17.23a)                                   

,                                           (17.23b)                                   

.                                        (17.23c)                                    

Future experiments will check the interpretation.    

In this section, so far the focus is on anti-neutrinos. Now 

is the time to deal with neutrinos. Let’s do it by the logical 

way to start from facts and to treat according to rules. The 

facts are Fact-1, Fact-2 and Fact-3. The rules are Rule 17.1 

and Rule 17.2. 

Rule 17.2: The right and left handedness defined by 

Definition 11.2 is universally valid for all fermions 

including two versions of neutrinos and anti-neutrinos.  

According to Fact-1 and Fact-2, there is a paradox. A 

chaser is chasing an anti-neutrino with a speed slightly faster 

than its speed. It is possible, because anti-neutrino has mass 

and its speed must be less than the speed of light in vacuum. 

The chaser behind it sees an anti-neutrino with right 

handedness. When the chaser gets ahead of it, he or she sees 

a neutrino with left handedness. This scenario is impossible. 

An anti-particle cannot turn into a particle by just looking at 

it in different ways. The “chaser’s paradox” must be 

eliminated. It serves as the key concept to introduce 

Hypothesis 17.1. 

Notice that, the chaser’s paradox is not applicable to 

flavored version neutrinos and anti-neutrinos, because they 

never fly. To avoid the paradox, the target is the flying 

eigenstate version.  

Hypothesis 17.1: After their birth, the flavored neutrinos 

convert into corresponding eignstate neutrinos. The 

eigenstate neutrinos , ,  are Majorana type 

fermions with only one component and the anti-particles 

is the same as itself:  

, .                               (17.24)                                   

After their detection, the eigenstate neutrinos convert 

into corresponding flavored neutinos. The flavored 

neutrinos are Dirac type fermions with two components 

and have anti-particles: 

, .                          (17.25)                                 

Explanation: Hypothesis 17.1 suggests that, eigenstate 

neutrinos , ,   are Majorana type. SQS theory is 

not the first one to do so. Similar ideas were proposed 

earlier. But there are differences.  

1.  Hypothesis 17.1 is based on mathematics.  

2.  Hypothesis 17.1 clearly points out that, flavored 

version neutrinos and anti-neutrinos are Dirac type. 

This is necessary to avoid contradiction with 

experimental facts. According to 2010-PDG data book, 

muon decay mode  has ; taon 

decay modes  has  and 

 has . Their charge 

conjugates and  have corresponding decay 
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modes. These facts clearly show that, the flavored 

version must have all flavored version neutrinos , 

,  and anti-neutrinos , ,  Therefore, three 

flavored neutrinos  must be Dirac type fermions and 

have corresponding anti-particles.   

Hypothesis 17.1 eliminates the chaser’s paradox. For the 

frying Majorana type eigenstate anti-neutrino, when the 

chaser gets ahead of the anti-neutrino, he or she merely sees 

the anti-neutrino changed its right handedness to left 

handedness as it should be. The chaser’s paradox is gone. 

Rule 17.3: The conversion between the flavored version , 

, , , ,  and the eigenstate version , , 

 are governed by converting probability matrixes: 

,                     (17.26a)                                   

.  (17.26b)          

, (17.27a)                         

. (17.27b)                       

In the subscripts,  and  represent flavored version 

neutrinos and anti-neutrinos, respectively;  represents 

eigenatate version neutrinos; the  and  represent 

right handedness and left handedness, respectively.    

Explanation: The distinctive feature of Rule 17.3 is that, in 

the converting process, the handedness does not change 

evidenced by the non-diagonal sub-matrixes all equal to 

zero as shown by (17.26a) and (17.26b). According to 

Rule 17.3, the flavored anti-neutrinos only convert to 

the eigenstate neutrinos with right handedness, the 

flavored neutrinos only convert to the eigenstate 

neutrinos with left handedness, and vice versa. 

According to (17.24), when flavored neutrinos convert 

to eigenstate neutrinos, the particle versus anti-particle 

distinction is no longer valid. Nevertheless, the original 

distinction for flavored neutrinos and anti-neutrinos 

leave marks on their eigenstate version by different 

types of handedness. A new born flavored neutrino 

immediately converts to an eigenstate neutrino 

according to (17.26a), When caught by a detector it 

converts back to the flavored version according to 

(17.26b). The off-diagonal sub-matrixes equal to zero 

guarantee that, as the net result of two processes, the 

lepton numbers are conserved.  

Conclusion 17.1: Eigenstate neutrinos , ,  have no 

electrical charge. 

Proof: Assuming  has charge  and  has 

charge . According to Hypothesis 17.1, 
ii  ~~  , 

then  and .                             QED  

According to Hypothesis 17.1, the flavored neutrinos 

include six members , , , , ,   and the 

eigenstate neutrinos include three members , , . The 

flavored anti-neutrinos and neutrinos are different particles. 

Their model is Option-1 type. The eigenstate neutrinos have 

no counter-particles, their model is Option-2 type. These two 

models look very different. In essence, they are closely 

correlated by degeneration as described previously.   

According to Conclusion 17.1, the eigenstate neutrinos 

have no electrical charge. According to Theorem 17.1, it 

seems that the flavored neutrinos and anti-neutrinos also have 

no electrical charge. Look at it closely, there is an uncertainty. 

Theorem 17.1 is based on geometry of Option-1 model and 

Fact-2. The unique handedness stated in Fact-2 corresponds 

to particle’s spin orientation with respect to its momentum. 

But the flavored neutrinos and anti-neutrinos never fly. Only 

the eigenstate neutrinos fly and have persist momentum. 

Therefore, the unique handedness stated in Fact-2 cannot 

refer to the flavored version. Whither the flavored version 

neutrinos and anti-neutrinos have remnant electrical charge or 

not, it cannot be determined by Theorem 17.1 along. On the 

other hand, the eigenstate version neutrinos are without 

electrical charge for sure according to Conclusion 17.1. 

Based on conservation of electrical charge, should the 

flavored version neutrinos and anti-neutrinos also have no 

electrical charge? Consider all these facts and factors, SQS 

theory intends to favor no remnant electrical charge for the 

flavored version neutrinos and anti-neutrinos as well.  

On the experimental side, neutrino electrical charge data 

are not officially listed in 2010-PDG. Instead, it cites data 

from seven authors for the neutrinos charge upper limits 

ranging form  to . Neutrinos magnetic 

moment upper limit data from three authors are listed in 

2010-PDG ranging from  to . 

These experimental data are not conclusive. More 

experimental works are needed. 

In the visible universe, matters overwhelmingly dominate 

antimatters. On the other hand, when the universe was born, 

the big bang should produce equal amount of matters and 

antimatters. Over the years, physicists were puzzled by the 

“missing antimatters” question: Where are these antimatters? 

Hypothesis 17.2 may provide the answer.  

Hypothesis 17.2: The eigenstate neutrinos , ,  flying 

around in the universe provide a possible solution for 

the “missing antimatters”. 

Explanation: Hypothesis 17.2 is based on two conditions:  

Condition-1: 2010-PDG data book stated that, the “baryon 

density of the universe” is  and “neutrino 

density of the universe” is . If 
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further observations confirm , 

it will serve as the foundation of Condition-2.  

Condition-2: If condition-1 is confirmed, then the question 

becomes: Are all these flying around eigenstate 

neutrinos with right handedness? Since the handedness 

of eigenstate neutrinos are not directly measurable, an 

indirect way is suggested to detect the cosmological 

originated neutrinos and measure the converted flavored 

neutrinos’ handedness. According to Rule 17.3, the 

handedness of eigenstate neutrinos can be determined. 

There are three possible outcomes: 1, All anti-neutrinos 

have right handedness, the “missing antimatters” are 

found; 2, More than 50% of anti-neutrinos have right 

handedness, part of the “missing antimatters” are found. 

3, Less than 50% of anti-neutrinos have right 

handedness, Hypothesis is disproved. 

In this section, SQS theory provided a framework with the 

potential to explain neutrinos peculiar behaviors based on 

mathematics. Because of the complexity of the topic and 

limited available experimental data, some parameters haven’t 

nailed down yet and many issues remain open. Some of them 

will be discussed in later sections. 

 

Section 18: Elementary Particles Table 

 

Elements periodic table not only is useful for 

understanding chemical elements but also valuable for 

exploring what’s behind scene and for predicting new 

elements. Elementary particles table should do the same for 

physics at a deeper level.  

For comparison purpose, Table 18.1 shows the Standard 

Model (SM) Elementary Particles Table.  
 

Table 18.1: Standard Model (SM) Elementary Particles Table  

        

In Table 18.1, there are 12 fermions and 12 bosons plus 

the higgs boson. The total number of elementary particles is 

25 in which anti-particles are not included.  

After introduced almost all elementary fermions and 

bosons in previous sections, SQS theory is ready to introduce 

the Elementary Particles Table as Table 18.2.   

Table 18.2 does not list the six flavored neutrinos , , 

 and anti-neutrinos , , , instead the three eigenstate 

neutrinos , ,   are listed. It is an important issue. The 

eigenstate version , ,  and the flavored version , 

, , , ,   are equivalent. SQS theory Elementary 

Particles Table must choose one version to list not both 

versions. The question is: Which version should be chosen? 

As indicated in Section 17, the flavored version exist only in 

an extremely short time at their birth or been detected. On the 

other hand, the eigenstate version are flying in the universe 

all time, some of them since the big bang 13.7 billion years 

ago. Look at this way, the choice is justified.   
 

Table 18.2: SQS Theory Elementary Particles Table   

 
Notes: 1. The particles marked with * are hypothetic particles. 

2. Number in parenthesis is original m-parameter, number after 

parenthesis is effective m-parameter.  
 

In previous sections, close correlations were established 

between bosons and fermions. The 8 gluons are made of 8 

pairs of quark-antiquark shown by (13.1). The 8 hypothetic 

massons are made of the other 8 pairs of quark-antiquark 

shown by (14.6). These 16 bosons fit into 16 cells in the 

boson row of Table 18.2. On the upper left corner, the 

hypothetic graviton  fits into the cell correlated to ; on 

the upper right corner, the  boson fits into the cell 

correlated to .  

On the top row of table 18.2, three scalar bosons , ,

 fit into the cells correlated to three eigenstate neutrinos 

, , , respectively. In the next row, photon  and 

gauge boson  fit into the two cells correlated to leptons  

and , respectively. Another hypothetical neutral gauge 

boson  fits into the middle cell correlated to lepton , 

which will be introduced later in this section. 

Comparing these two Tables, there are some similarities, 

but the differences are obvious. 

1. The major difference is the numbers of quarks. In the 

SM table, the number is 6. In the SQS table, the number 

is 18. The key is Postulation 11.1 based on Postulation 

11.2 and Rule 11.1, which recognize quarks with the 

same flavor and different colors as different particles. It 

is a major step to open doors for new opportunities. It 

gives the hint that lepton has three branches to form the 

trefoil model. More importantly, it provided more cells 

for bosons. Otherwise, there is no room for 13 

hypothetic bosons.   

2. In the SM table, graviton is not included, because SM 

theory does not include gravity. The SQS table includes 

graviton  g, because SQS theory aims at the grand 
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unification for all four types of interactions, which 

should include graviton as the mediator of gravity. 

3. In addition to graviton, the SQS table includes twelve 

other hypothetic bosons, in which , ,  and 

 are scalar bosons, is a gauge boson. 

These hypothetic bosons are not included in the SM 

table. 

4. SM theory includes the higgs boson. SQS theory does 

not need it. 

5. In the SM table, there is no clear correlation between 

fermions and bosons. In the SQS table, the correlation 

between fermions and bosons is clear, which is 

important for predicting new particles.  

In SQS theory, elementary particles are categorized into 

three types: particle, antiparticle and neutral (not necessary 

electrical neutral) particle. The neutral particle  is defined 

as:  

.                                       (18.1) 

According to (13.2), gluons are neutral particles. 

According to (14.7), massons are neutral particles. According 

to SQS theory, photon is  and graviton is : 

,        (18.2)                                

guuuuuug rrrrr  ,                              (18.3)                            

, ,  are scalar bosons with mass and without charge, 

which also have no separate anti-particles:  

, .                                      (18.4)                

Therefore, photons , gravitons 
 
and , ,  

 
are 

neutral particles. 

There are three gauge bosons left: ,  and the 

hypothetic . According to PDG data, all properties of  

and  are the same except charge. Even the decay modes 

and branching ratios  of  and  are charge 

conjugates. These experimental data clearly show that,  

and  are a pair of particle and anti-particle. According to 

SQS theory, all neutral elementary bosons , , , , , 

, , , , , , , , , , , , , , 

,  made of a pair of fermion and the same type anti-

fermion have no separate anti-particles.  and are 

different, because they are made of a pair of fermion and 

different type anti-fermion. According to Table 14.2 and 

(18.12), they have separate anti-particles: 

                (18.5)                               

. (18.12b)                       

In the SQS theory Elementary Particles Table, the three 

scalar bosons , ,  for unifications are the heaviest 

particle in each column of the table. The three eigenstate 

neutrinos  , , 
 
correlated to , , 

 
 are the 

lightest fermion in each column of the table. Why is the 

lightest correlated to the heaviest? Because the mass of , 

,  is in the same order as the mass of , , , 

respectively. Let’s look at the formulas derived from (17.5) 

for orders of magnitudes comparison:  

,     (18.6a)                         

,            (18.6b)                       

. (18.6c)                        

In which , ,  are the mass of , , 
 

, 

respectively. It is interesting to notice that, the numbers of 

second and third formulas for ,  versus ,  are 

 grand numbers, while the number of first formula for 

 versus  is close to  grand number. The apparent 

reason for such difference is that,  is  orders 

lighter than . The mechanism of such difference is an 

open issue. Despite this difference, (18.6) implies that, the 

reason for the lightest correlated to the heaviest has 

something to do with grand numbers related to random walk. 

It usually is the origin of hierarchy phenomena.  

If “the heaviest” is really made of a pair of “the lightest”, 

massons may play the role to fill the tremendous mass gaps 

between ,  ,
 
and , , .  After all, the 

arrangement for ,  ,
 
correlated to , ,  in the 

SQS Elementary Particles Table is justified.
 
 

Table 18.3 shows the numbers of three types particles in 

SQS theory. 
 

Table 18.3: Three Categories of Elementary Particles in Table 18.2 

 
 

The three types particles are: 

1. Particles: This type includes 18 quarks 
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gd , 
bd , 
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bs , 
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gt , 
bt , 

3 leptons , , , and 3 gauge bosons , , . 

2. Antiparticles: This type includes 18 anti-quarks 
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bt , 3 anti-leptons , , , and 3 anti-gauge-

bosons , , .  

3. Neutral particles: This type includes 3 neutral leptons , 

, . 9 neutral gauge bosons , , , , , 
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, , , , and 12 neutral scalar bosons ,
1G , 

2G , 
3G , 

4G , 
5G , 

6G , 
7G , 

8G , , , . 

Definition 18.1: Graviton is a scalar boson with spin 0.  

Explanation: In other quantum gravity theories, graviton is 

assigned with spin . Since graviton has not been 

found, there is no experimental confirmation. In the 

SQS theory Elementary Particles Table, there is no 

place for graviton as a tensor boson with spin . 

According to the Random Walk Theorem in Section 4 

and the discussion regarding electromagnetic force and 

gravitational force in Section 15, photon and graviton 

are two sides of the same coin. It is also shown in their 

models. According to SQS theory, photon model is a 

closed single loop with circumferential length of  

corresponding to spin ; while graviton model is a 

cutoff loop with length of . In essence, a graviton is 

a cutoff photon. A cutoff loop has zero spin. In terms of 

number parameters, as  with , there is no way 

for  to make graviton with  required by 

spin . In short, graviton with spin  does not fit 

into SQS theory framework. There is also a 

philosophical reason. As shown in Section 15, gravity is 

the force to unify all forces. Gravity as the only force 

exerts to everything with mass or energy. In essence, 

gravity is the most fundamental and universal force, and 

so is graviton. According to natural philosophy, the 

most fundamental and universal thing should be the 

simplest one. Obviously, 0 fits this argument much 

better than . Is a scalar boson qualified as the 

mediator for interaction? Why not?  with spin 0 is 

different from , ,  and  with 

spin . It just means  is unique. Let’s face it, gravity 

is unique in the first place. After all, there is no law 

forbidding the unique scalar boson  serving as the 

mediator for the unique force gravity. Look at it the 

other way. A graviton center is at a discrete point , 

the two ends stretch to  and . This scenario is 

closely related to the Random Walk Theorem. Starting 

from  along the x-direction, the random walk has 

equal chance moving to  or  as the next step. 

The same is for y-direction and z-direction. In fact, there 

is a hidden question in the Random Walk Theorem: 

Why the step length is 1 not 2 or 3 etc? The graviton’s 

cutoff model provides the answer: Because the length of 

graviton only allows each step moving to . 

Otherwise the Random Walk Theorem is in trouble. 

Graviton as a cutoff loop with length of  fits the 

Random Walk Theorem naturally. Assume that, the 

middle point of three orthogonal straight lines each with 

normalized length  is attached at each discrete point 

 with their six ends reaching to , 

,  along , ,  directions, 

respectively. This arrangement not only fits the random 

walk process but also forms a network serving as the 

spatially quantized gravitational field. The three 

orthogonal straight lines represent three gravitons 

serving as the quanta of gravitational field. This 

scenario is much more natural than what graviton with 

spin  can offer. Moreover, a topological theorem 

provides a definitive support for graviton having spin 0 

as the only option, which will be given in Section 25, 

Most theories recognized graviton with spin . SQS 

theory probably is the only one recognizes graviton with spin 

0. It is a bold and risky undertaking. But within SQS theory 

framework there is no alternative. From SQS theory 

perspective, graviton with spin  is a misunderstanding. As 

shown in Fig. 18.1(a), two head-to-tail connected gravitons 

form a closed loop with loop length  corresponding to 

spin , which might be mistakenly recognized as graviton. 

Actually it is merely a composite state made of two gravitons. 

Moreover, as shown in Fig. 18.1(b) and Fig. 18.1(c), when 

the loop area increases, the trajectory angular momentum 

increases in step of  not in step of . So graviton with 

spin  is a misunderstanding. Of cause, the final proof has 

to wait until the discovery of graviton. 

Definition 18.1 serves as a prediction of SQS theory. 

Let’s wait for graviton show up to say the final word. 
 

 
Fig. 18.1: Closed loops made of “head-to-tail” connected gravitons: 

(a) two gravitons, (b) three gravitons, (c) four gravitons. 
 

There are thirteen hypothetic bosons listed in Table 18.2, 

in which twelve of them are introduced in previous sections. 

The only one left is the neutral gauge boson . 

Like the  and , according to SQS theory, the gauge 

boson  is also involved in weak interactions. As shown in 

Section 14,  and  are made of two fermion states  

and , which share the same m-parameters with two top 

quarks , :  and . Similarly, 

the two fermion states  and  to make the  boson 

share the same m-parameters with two charm quarks  and 

:  and . It is interesting to 

find out that, these two sets of m-parameters have something 

in common: 

, , (18.7a)                                 

, . (18.7b)                                  
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In fact, there are more similarities, which will be shown in 

Section 23.  

The mass of  boson is determined by the values of its 

 and  on the x-axis. Let’s look at the special points on 

x-axis. The special point  is a magic 

point. It is originated from the S-function of (2.11) and sets a 

slight deviation of anti-symmetry of  with respect to 

the center  of region . Point sets the 

boundaries of the gauge boson region , 

and it sets a mass upper limit  for 

standalone fermions. Moreover, 
 
defined other two 

characteristic points  and , which determined the mass 

of two scalar bosons  and  for electro-weak and 

electroweak-strong unifications. As shown in Section 15, this 

approach is closely related to the other approach based on 

random walk and unification of electrostatic force with 

gravity. It provided the legitimacy of both approaches. Point 

 and point  succeeded for finding two scalar bosons 

owe gauge boson a favor. It is the time for them to pay back.  

Definition 18.2: Based on , 

 and the S-function of 

(2.11): , define two characteristic 

points  and 
 
on the x-axis.  

,  

,                      (18.8a)         

.            (18.8b)                    

The summation index in 
 
is truncated at , 

which is sufficient for convergence. 

Notice that,  and both are in the gauge boson 

region: 

,     (18.9a)                                         

.          (18.9b)                                   

According to (6.18), the mass of two X-fermion states , 

 with ,  is: 

.     (18.10)         

Because  and are in the boson region and 

 , the X-fermion states  and  must appear 

in pair as a gauge boson  with mass : 

.           (18.11)                                     

The gauge boson  is made of two fermion states  

and , which have the same mass and different before 

reduction numerical parameters. The gauge boson  has its 

anti-particle  different from . 

,                                             (18.12a)                                 

.         (18.12b)                        

In the gauge boson region ,  boson has  

and :                  

,   (18.13a)                      

.        (18.13b)                          

It indicates that, the torus based model for  boson is 

spindle type with two branches like  bosons model.  

Look it closely,  and  having mass around 

 are originated from  and  having mass 

around  and , there is a mass gap 

between them. The gap is filled by massons.  

The parameters of electroweak interaction are represented 

by the GWS -triangle in charged particles’ model as shown by 

Fig. 8.4. Fig. 18.2 shows the GWS -triangle in extended 

region including the CKM-triangle. Besides the GWS-triangle 

of , there is another triangle similar to . 

It is called the S-triangle for SQS theory. The similarities of 

GWS -triangle and S-triangle are:  

1. They both are compounded right-angled triangles 

including two small similar right-angled triangles.  

2. They both share the common side , which 

represents the -type weak interaction. 

3. They both have a long side:  for SWG-triangle 

and  for S-triangle.  

The similarities imply that the S-triangle also involves in 

some type of weak interactions.  and  serve for 

electroweak interactions represented by GWS -triangle. It is 

natural to assume that,  boson serves for the weak 

interactions represented by S-triangle. The S-triangle joints 

GWS -triangle on its right and links to CKM-triangle on its 

left. Noticed that, the  and  in the first integral term of 

(18.8a) served as two characteristic points to define  and 

 for electro-weak unification and electroweak-strong 

unification, respectively. Consider these factors as the clues 

to guess its function,  boson is probably involved in some 

type of weak interactions responsible for hadrons decay. Of 

cause, more supportive evidences are needed for sure.   

As shown in Fig. 18.2, besides the common side 

shared with GWS -triangle, S-triangle has two other sides: 

 labeled  represents a g-like weak interaction and  

labeled  represents a charge of some kind.  

According to trigonometry, the relations among , , , 

 and angle ,  are: 
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,     (18.14a)                                    

,    (18.14b)                                             

.                             (18.14c)  

   

 
 

Fig.18.2: The S-triangle between GWS-triangle and CKM-triangle. 
 

                                            

Based on the SQS theory Elementary Particles Table, the 

total number of particles and anti-particles is 72. Are all these 

particles elementary? At this level, yes! Is this the deepest 

level? It is a good question.  

Look back to history, in the early twenty century, only 

four “elementary” particles were known, i.e. electron, proton, 

neutron, and photon. Since then, so many particles showed up; 

the numbers of particles kept growing. People started to think 

that so many particles cannot be all elementary; at a deeper 

level things could be simplified. The quark model was 

introduced, which reduced the numbers of elementary 

particles by more than tenfold at that time. Now, we probably 

are in the same situation.  

Suppose there is a deeper level. What is it? To answer this 

question, let’s go back to the fundamentals. As indicated by 

the name: Stochastic Quantum Space. SQS theory is a theory 

of space. Vacuum is the ground level of space. According to 

SQS theory, everything including all particles and 

interactions are originated from vacuum. Particles are 

excitations of vacuum, interactions are ripples through 

vacuum. In short, there is nothing but different states of 

vacuum. As emphasized in Section 3, SQS theory treats 

vacuum as a continuum with Planck scale grainy structure. 

Now let’s take a step further to introduce the third 

fundamental postulation of SQS theory. 

Postulation 18.1, The Vacuon Postulation: Vacuum is a 

quantum field. All different fields for particles and 

interactions are originated from this Mother Field. 

Ultimately, vacuum field is the only field, vacuon as the 

particle of vacuum field is the only elementary particle 

at the deeper level. 

Explanation: Vacuon as the ultimate elementary particle has 

no dimension, no structure, no model, no mass, no spin, 

no charge of any kind, no anti-particle, no interaction, 

and no parameters except its location and movement. In 

short, vacuon is nothing but itself. Yet everything in the 

universe ultimately is made of vacuons. Vacuon creates 

everything from nothing. It is the ultimate elementary 

particle of SQS theory. 

The closest thing for vacuon is a geometrical point. There 

are uncountable infinite numbers of it in the space continuum. 

Vacuons are free to move without interaction. It can be traced 

back to the first fundamental postulation of SQS theory, the 

Gaussian Probability Postulation. Gaussian probability is 

based on the precondition that, the events must be statistically 

independent. Otherwise, the probability is not Gaussian. 

Vacuons create events serving as the carriers of Gaussian 

probability. The events of Gaussian probability are 

independent, so are vacuons. 

Models and trajectories of all elementary particles are 

different patterns of moving vacuons. Vacuon movement is to 

reach evenness. In Section 2, Gaussian probability function is 

assigned to each discrete point . The superposition of all 

these probabilities is not evenly distributed. It has peak at  

and trough in between peaks. The unevenness drives vacuons 

moving from peak to trough for temporally even distribution. 

But the momentum keeps vacuons going and the temporally 

even distribution becomes uneven again. Like a pendulum, 

the vacuons oscillation goes on and on.    

Is the unevenness acting as an interaction for vacuons? 

For particle physicist, interaction is synonymous to force. 

The tendency for vacuons reaching evenness is not an 

external force per se. But if one like to call it force, that is the 

only one. 

Vacuon is the simplest thing you can think of, yet it has 

the capability to make all complex things in the universe. The 

key is Gaussian Probability Postulation, which laid the 

foundation. 

Table 18.4 is the SQS theory Elementary Particle Table at 

the vacuon level. It serves as the foundation for all particles 

listed in the high level Elementary Particles Table of Table 

18.2. 
 

Table 18.4: Elementary Particle Table at Vacuon Level 
 

 

 

Vacuon 

  

With the help of vacuon, SQS theory reduced the numbers 

of elementary particles from 72 to 1 at a deeper level. 

Theorem 18.1: For a point particle such as vacuon moving 

with non-infinite speed, it has only 1-dimensional 

trajectories. 

Proof: Assume that, a point particle moving with a non-

infinite speed has a trajectory other than 1-dimensional 

such as a 2-dimensional surface. A surface, no matter 

how small it is, contains uncountable infinite 1-

dimensional lines. For the point particle with non-

infinite speed to go through all lines on the surface, it 

requires infinite time to do so. That is impossible. Then 

the opposite must be true.                                      QED 

Lemma 18.1: Theorem 18.1 is also valid for a set of point 

particles as long as all point particles in the set moving  
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along the same trajectory. 

Proof: For a set of point particles moving in the same 

trajectory, the proof is the same as Theorem 18.1. QED  

Lemma 18.2: The 1-dimensional trajectory for point 

particles can only change its location by discrete steps. 

In other words, trajectories are quantized in the space. 

Changing course is only allowed by jumping trajectories, 

continuously shifting trajectory is prohibited.  

Proof: If the 1-dimentional trajectory were allowed to shift 

continuously, the shifting trajectory is no longer 1-

dimensional. It violates Theorem 18.1.                    QED 

Theorem 18.1, Lemma 18.1 and Lemma 18.2 are based 

on geometry and point particle with non-infinite speed, which 

are universally valid. They serve as guidelines for vacuons  

movements, which have important implications shown in 

later sections. 

In summary, SQS theory Elememtry Particles Table did 

its job. It provides a vacant cell for the gauge boson  

related to the S-triangle for some type of weak interaction. It 

confirms the eight massons and their scalar boson status. It 

reveals the correlations between fermions and bosons in 

general. In particular, without the table, the correlation of 

three scalar bosons , ,  to three eigenstate neutrinos 

, ,  is not so obvious. It helps to define graviton with 

spin 0 instead of . It counts the total numbers of 

elementary particles at this level to be 72, no more and no 

less. Because 72 elementary particles are too many, it leads to 

the concept of vacuon at a deeper level.  

 

Section 19: Proton Neutron and Composite Particles 

 

In this section, proton, neutron and some simple 

composite particles such as helium nucleon, deuterium 

nucleon and tritium nucleon are discussed based on quarks 

models introduced in Section 11 and strong interactions 

introduced in Section 13.  

Proton, neutron and some simple composite particles such 

as helium nucleon etc are made of up quarks and down 

quarks. According to the values listed in Table 11.2, the 

numerical parameters of up quarks and down quarks are 

summarized in Table 19.1.  
 

Table 19.1: Numerical Parameters of Up Quarks and Down Quarks  

 
* Note: In the u  and d  columns, the numbers are the sum of three numbers 

in the same row.   
   

A proton is made of uud  and a neutron is made of udd  

and each flavored quark composed of three colored 

constituents with red, green and blue colors. The gluon 

connections diagrams of proton and neutron are shown in Fig. 

19.1 and Fig. 19.2, respectively. The up quark and down 

quark with three colors are treated separately serving as the 

first level—colors level. The lines represent gluon 

connections for the regular type strong force. As shown in 

Fig.19.1, proton has 40 connections for 9 colored quarks 

corresponding to 
9
44  connections per colored quark. As 

shown in Fig.19.2, neutron has 32 connections for 9 colored 

quarks corresponding to 
9
53  connections per colored quark. It 

is a fair comparison for proton and neutron, because they 

contain the some number (9) of colored quarks. Under these 

conditions, the number of connections per constituent serves 

as an index for the relative strength of the strong force to bind 

constituents. So proton is more tightly bound than neutron.  

 

 
Fig.19.1: Gluon connections inside a proton at the first level.  

 

 
Fig.19.2: Gluon connections inside a neutron at the first level. 
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Helium nucleon is made of two protons and two neutrons, 

which include 36  quarks with tree different flavors and three 

different colors. The gluon connections diagram of helium 

nucleon is shown Fig. 19.3. To avoid over crowd lines, it 

only shows 86 connections for 6 different quarks as one sixth 

of total 516686   connections. 

As shown in Fig.19.3, 
ru  has 24 connections, 

gu  has 

1+29 connections, 
bu  has 1+47 connections, 

rd  has 1+29 

connections, 
gd  has 6 connections, 

bd  has 1+29 connections. 

The first number is for self-connection counted only once and 

the second number is for connections between two quarks 

counted twice. The total number of connections and 

connections per constituent for helium nucleon are:    
 

 

5166
2

29629472924
)1111( 





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







 
 ,  (19.1a) 

Connections per constituent: 
3

1
14

36

516
 .                   (19.1b)    

                                                         

 
Fig.19.3: The 86 connections as one sixth of 516 total gluon 

connections inside a helium nucleon at the first level.  
 

The connections per constituent 
3
114  for helium nucleon 

cannot directly compare to those for proton and neutron. It is 

not a fair comparison, because helium nucleon contains 36 

colored quarks while proton and neutron each contains 9 

colored quarks. In the case of gluon connections reaching the 

particle’s entire region, the more constituents involved, the 

more are the number of connections per constituent. For fair 

comparisons, the number of connections per constituent for 

helium nucleon should be weighted lighter than proton and 

neutron. Assuming the weighted factor is inversely 

proportion to the number of constituents. The weighted 

binding strengths (BS) of proton, neutron and helium nucleon 

for the first level are as follows. 

Proton: 494.0
81

40

9

1

9

40









pBS ,                           (19.2a)                                                  

Helium nucleon: ,398.0
1296

516

36

1

36

516









HeBS    (19.2b)                                        

Neutron: 
395.0

81

32

9

1

9

32









nBS

,                           (19.2c)                                                           

Comparison: 
nHep BSBSBS  .                                  (19.2d)       

The first level comparison of (19.2) shows the right order 

of binding strengths: Helium nucleon is weaker than proton 

and stronger than neutron. 

Let’s consider the second level—flavors level, which 

treats flavored quark as a whole entity. As shown in Table 

19.1, the corresponding numerical parameters are 

9,21  nm  for u-quark, 9,19  nm  for d-quark. The 

second level gluon connections diagrams of proton and 

neutron are shown in Fig. 19.4. In which, proton has 5 

connections for 3 quarks corresponding to 
3

21  connections 

per quark; neutron has 3 connections for 3 quarks 

corresponding to 1  connection per quark.  
 

 
Fig.19.4: Gluon connections inside a proton and a neutron at the 

second level.  
 

The corresponding gluon connections diagram of helium 

nucleon is shown in Fig. 19.5. There are 57 gluon 

connections for 12 quarks corresponding to 
4

3412/57   

connections per quark. Using the same weighted method as 

the first level, the weighted binding strengths (BS) of proton, 

neutron and helium nucleon for the second level are as 

follows. 
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Fig.19.5: Gluon connections inside a helium nucleon at the second 

level.  
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Helium: 396.0
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Neutron:,  
333.0

9

3

3

1

3

3
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






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,    (19.3c)                                                                 

Comparison: 
nHep BSBSBS  .      (19.3d)    

  

The results of (19.2) and (19.3) both show the right orders: 

nHep BSBSBS  , which indicate that, the binding strength 

of helium nucleon is weaker than proton and stronger than 

neutron. In reality, proton and helium nucleon are stable, 

while neutron in stable nucleons is stable and freestanding 

neutron is unstable with a mean life of s8.07.885  . The 

results at two levels are quite reasonable. Both show that 

helium nucleon is a very tightly bound composite particle. 

Proton, neutron and helium nucleon also contain many 

gluons. These gluons m-parameters and n-parameters are not 

included in the diagrams. To ignore them is based on 

Theorem 13.2. It greatly simplifies the treatment for the 

numerical parameters of composite particles. The two level 

comparisons both make sense to explain proton, neutron and 

helium nucleon behaviors in terms of strong force binding 

strength, which serve as evidences to support Theorem 13.2.  

Let’s consider the third level—elementary particles level, 

which treats elementary particles such as proton and neutron 

as a whole entity serving as the constituents of the composite 

particles such as the helium nucleon, deuterium nucleon, 

tritium nucleon etc.  

Proton is made of three flavored quarks  duu  and 

neutron is made of three flavored quarks  udd . The “+” 

and “-”represent the sign of their numerical parameters. The 

numerical parameters are 9999,23192121  nm  

for proton, and 9999,17211919  nm  for 

neutron. Fig.19.6 shows the gluons connections diagrams for 

helium nucleon, deuterium nucleon and tritium nucleon. For 

helium nucleon, there are 7 connections for 4 constituents 

corresponding to 
4

314/7   connections per constituent. For 

deuterium nucleon, there are 2 connections for 2 constituents 

corresponding to 12/2   connections per constituent. For 

tritium nucleon, there are 3 connections for 3 constituents 

corresponding to 13/3   connections per constituent. In 

case for the third level, the weighted method is different 

from the first and second levels. The difference is that, the 

nuclear force among protons and neutrons has limited range, 

which does not reach all constituents in the composite 

particles. As a first try, assuming the weighted factor for the 

third level is inversely proportional to the square root of 

constituents’ number. The weighted binding strength (BS) 

for helium nucleon, deuterium nucleon and tritium nucleon 

for the third level are as follows. 
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DetBS ,           (19.4b)                                                  

Tritium nucleon: 577.0
3

1

3

3









TriBS ,   (19.4c)                                                        

Comparison: 
TriDetHe BSBSBS  .    (19.4d)                                                                      

The results of (19.4) shows the binding strengths are in 

the right orders: 
TriDetHe BSBSBS  , which indicate 

deuterium nucleon is weaker than helium nucleon and 

stronger than tritium nucleon. In fact, helium and deuterium 

are stable, while tritium is unstable with a fairly long lifetime 

of 12.32 years. The results make sense. It shows that, 

Theorem 13.2 also valid for the third level composite 

particles. 
 

 
Fig.19.6: Gluon connections inside helium nucleon, deuterium 

nucleon and tritium nucleon at the third level.  
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The assumption of weighted factor for the third level used 

for (19.4) can be generalized as follows. 

Helium nucleon: 
rHeBS

4

1

4

7










,    (19.5a)                                                                    

Deuterium nucleon: 
rDetBS

2

1

2

2











,     (19.5b)                                                              

Tritium nucleon: 
rTriBS

3

1

3

3











,        (19.5c)                                                               

Comparison: 
TriDetHe BSBSBS   for 5.00  r .       (19.5d)                                             

For the generalized formulas (19.5), as long as 

5.00  r , the results for these three composite particles all 

make sense. More examples of elements and isotopes are 

needed to narrow down the value of r in formulas (19.5). 

The reasonable results of binding strengths at three levels 

serve as strong supportive evidences for Theorem 13.2. 

Moreover, the different type of weighted factor used for the 

third level indicates that the binding strength is different from 

the first and second levels. It clearly shows the restrict range 

of nuclear force among protons and neutrons in a composite 

particle comparing to the strong force among quarks. It is 

well known in nuclear physics that, nuclear force is the 

fringing effect of strong force with exponential decay 

behavior from the edges of protons and neutrons. 

Theorem 13.2 directly refers to m-parameters and n-

parameters. Since gluons also contribute to composite 

particles’ mass, quarks’ np /  ratio is no longer directly 

related to the mass of a composite particle. But quarks’ p-

parameter may play some other roles. It is the reason for the 

sum of p values over three colors listed in the u  and d  

columns of Table 19.1. Let’s take a step further to see how it 

behaviors for composite particles.   

Let’s treat proton and neutron. According to Table 19.1, 

the mp /  and mp /2  ratios of proton and neutron are: 

For proton )(  duu :       

1

1

23

23

192121

835353







m

p
,  2

2


m

p ;  (19.6a)                          

For neutron )(  udd :   

17

113

211919

538383







m

p
, 

17

2262


m

p .         (19.6b)                      

It shows that, the reduced m-parameters and p-parameters for 

proton and neutron are: 

For proton: 1m , 1p ;         (19.7a)                                                                                

For neutron: 17m , 113p .      (19.7b)                                                                            

The next step is to treat the composite particle the same 

way with proton and neutron as constituents. 

For helium nucleon )(  pnpn : 

1

7

32

224

117117

11131113







m

p ,  14
2


m

p ;   (19.8a)                                                         

For deuterium nucleon )(  pn :     

1

7

16

112

117

1113







m

p
,  14

2


m

p ;                  (19.8b) 

For tritium nucleon )(  pnn :    

11

75

33

225

11717

1113113







m

p
, 

11

1502


m

p .      (19.8c)   

For comparison, the 2p/m value of electron is: 

Electron:  1
1

)2/1(22





m

p ,         (19.9)                                      

Summarizing the data of (19.7) and (19.8) seemingly 

implies a rule: Simple composite particles with mp /2

integer are stable and with mp /2 integer are unstable. 

Which it valid for complex composite particles or not is an 

open issue. The rule is also valid for electron. However, it is 

not valid for other leptons and some quarks. Table 11.4 

provides some clues for its selectivity. 

The different behaviors of proton and neutron are 

originated from their difference in numerical parameters, 

which determine the gluons connections between them. 

For )(   np :   

  
1426

612

40

18

)17(23

)9(9











m

n , 
35 gg  ;    (19.10a)                            

For )(   pp :     

6104

244

46

18

)23(23

)9(9











m

n
, 

124 gg  ;   (19.10b)                       

For )(   nn :    

  
14262

6230

34

18

)17(17

)9(9











m

n , 
38 2gg  ;           (19.10c)                     

It clearly indicates that,   np  and   pp  are tightly 

bound, while   nn  is loosely bound with weakened 

gluon connections indicated by the minus sign in 
38 2gg  . 

Dig it deeper, the difference is originated from the fact that, 

the up and down quarks have the same n-parameter, but they 

have different m-parameters. The sum of m-parameters is 

211371   for up quark and 191153   for down 

quark. (19.10) shows that, the m-parameters difference 

weakens the binding of   nn . Therefore, ultimately the 

different behaviors of proton and neutron are originated from 

mathematics.  

Based on (19.10), some facts in nuclear physics can be 

explained. For instance: (1) Why proton is the most tightly 

bound particle? (2) Why helium nucleon is the most tightly 

bound composite particle? (3) Why the strong force bindings 

for   np  and   pp  are tighter than   nn ? (4) 

Why proton is stable, free neutron is not stable? (5) Why 

neutrons in some nucleons are stable, in other nucleons are 

not stable? (6) Why deuterium is stable, tritium is not stable? 

(7) Why nucleons with Z indexes equal to multiples of 4 have 

more binding energy than others? Of cause, these are the well 

known facts observed in experiments and explained by 

various nucleon theoretical models. SQS theory contribution 

is to provide a simple and clear explanation based on 
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mathematics. Theorem 13.2 plays a pivotal role for the 

simplicity and clearness demonstrated in this section.  

Gluons contribute to hadron’s mass evidenced by proton 

and neutron. Does gluon also contribute to hadron’s spin? It 

is an interesting question. According to Theorem 13.2, the 

two gluons sequences sent by a pair of quarks (a pair of anti-

quarks or a quark and an anti-quark) 
aq  and 

bq  are identical. 

In case of two gluons sequences sent by 
aq  and 

bq  

simultaneously, their two aligned momentums with opposite 

directions cancel out and two opposite spins cancel out as 

well. So in this case, gluon does not contribute to hardron’s 

spin. On the other hand, in case of two gluons sequences sent 

by 
aq  and 

bq  at different locations, the displacement of 
aq  

and/or 
bq  between the two events causes the two gluons 

sequences’ momentums no longer aligned, which produce a 

net angular momentum. It might contribute to a part of spin 

for the hadron. 

Nuclear physics is very complicated. Whether SQS 

approach can make more contributions or not, it remains to 

be seen. What presented in the section is just a start. More 

work along this line is needed.  

 

Section 20: Basic Constants and Parameters  

 

SQS theory is a mathematic theory with physics 

significance. In principle, all equations, formulas and 

parameters are based on three fundamental Postulations and 

derived from mathematics. The mathematical results are 

interpreted by three basic physics constants, Planck constant 

h , speed limit of light in vacuum c , and gravitational 

constant G . To reach this goal takes steps. 

Initially, SQS theory had two other physics inputs: 

electron mass and proton mass. In Section 15, a connection 

between proton mass and Plank mass via unified interactions 

was discovered. Proton mass as a physics input for SQS 

theory is no longer needed. In Section 16, a connection 

between electron mass and Plank mass via logistic equation 

was discovered. Electron mass as a physics input for SQS 

theory is no longer needed. After these two discoveries, SQS 

theory only needs three basic physics constants h , c , G  and 

in principle no other physics input is needed.  

The three basic physics constants h , c , G  are related to 

Planck length 
PL , Planck time 

Pt , Planck energy 
PE  or 

Planck mass 
PlanckM  as: 

 
32 c

hG
LP


 , 

52 c

hG
tP


  , 

G

hc
EP

52
  , 

G

hc
M Planck

2
 ; 

      (20.1) 

P

P

t

L
c  , 

PPtEh  , 
2

3

4

5 22

PPlanck

P

PP

P

tM

L

tE

L
G


 .  (20.2)                                                  

These two sets of basic constants are equivalent. From 

SQS theory standpoint, the set of 
PL , Pt  , 

PE  or 
PlanckM  is 

preferred, because they are directly related to space, time, 

energy or mass. In fact, the Planck constants 
PL , Pt , 

PE  or 

PlanckM  are the basic length, basic time interval, basic energy 

or basic mass at Planck scale, respectively.  

Besides three basic physics constants, there are other 

physics parameters such as the mass of elementary particles 

and various coupling constants etc. SQS theory standpoint is 

that, in principle all these physics parameters can be derived 

from particle’s model and traced back to mathematic 

parameters with three basic physics constants as interpreters. 

So far, SQS theory did part of them, the others are still open 

issues. 

The mass of a fermion is determined by its p/n ratio based 

on electron mass. The interaction parameters are related to 

the CKM-triangle, GWS-triangle and S-triangle of the 

particle’s model, which are determined by characteristic 

points on the model. The characteristic points are determined 

by )( 1x  and )( 2x  traced back to S-equation originated 

from Gaussian Probability Postulation. The derivation for 

other physics parameters from mathematical parameters is 

just a matter of time. The faith of SQS theory comes from 

this argument: If the geometrical models for elementary 

particles are real, everything should be derived from these 

models with characteristic points and triangles attached to 

them. If the physics parameters cannot be derived from these 

models, they are useless.  

SQS theory introduced three sets of numerical parameters 

m , n , p  for elementary particles. The numerical parameters 

of elementary fermions are listed in Table 20.1. According to 

SQS theory, elementary bosons are made of pairs of 

elementary fermion and anti-fermion, their numerical 

parameters are derived from these fermions as shown in 

previous sections.  
 

Table 20.1: The Numerical Parameters of Elementary Fermions 

 
*  11

/ 103996.8 lR
. 

 

The total numbers of numerical parameters listed in Table 

20.1 is 72. In which the 9 numerical parameters of neutrinos 

is the same as those of their companion leptons except the 

some sign changes and the constant 11

/ 103996.8 lR
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multiplication to p-parameters for neutrinos. The reduced m-

parameters of leptons all equal to 1 for spin 2/ . Substrate 

9+3=12 from 72, the number of independent parameters is 

reduced to 60. For the quarks, their 18 m-parameters are 

uniquely determined by a set of 18 least odd prime numbers; 

their n-parameters are selected from prime numbers and 

subject to the tight constrain set by strong interactions leaving 

almost on room for alternative. Substrate 18+18=36 from 60, 

the number of independent numerical parameters is reduced 

to 24. In addition, according to definition 
eMMnp //  , 

electron’s p-parameter must equal to its n-parameter. The 

number of independent numerical parameters for the current 

version of SQS theory is reduced to 23. It is interesting to 

notice that, the number 23 is close to the number of 

handpicked parameters in the standard model. But there is a 

difference. The twenty some parameters in standard model 

are physics in nature cited from experimental data, while the 

23 left numerical parameters of SQS theory are mathematics 

in nature. 

One of the final goals of SQS theory is to derive all 

physics properties of elementary particles and interactions 

from the first principle based on three fundamental 

postulations and three basic physics constants. We haven’t 

got there yet. The major obstacle is the p-parameters. In the 

current version SQS theory, an elementary particle’s p-

parameter is determined by its mass. In principle, it should be 

the other way around: p-parameter determines mass. It 

indicates that, there is a rule missing in the current version of 

SQS theory, which is an important open issue. 

Actually in the current version SQS theory, some particles’ 

mass values are derived from the first principle already. In 

Section 15, the mass value of two scalar bosons 
1U  and 

2U  is 

derived from points 
ax  and 

bx  from special point 
cx  

originated from S-equation based on Gaussian Probability 

Postulation. The mass value of the scalar bosons 
3U  is 

derived from the converting factor at the grand unification 

scale, which is originated from the Random Walk Theorem 

based on Gaussian Probability Postulation. More importantly, 

the results of these two methods are correlated to fine 

structure constant )( ZM , which gives legitimacy to both 

methods. In Section 17, the mass value of the gauge boson 

X  is derived from points 
ax  and 

bx  also originated from 

special point 
cx .    

Is there a way to trace the mass value of other two gauge 

bosons W  and 0Z  back to the special point 

73026452499871562.0cx ? Let’s try: 

 
01

25.0

0

)(

25.0

)( 22



























  








 dxedxe
c

f

x N

Nn

xn

x

N

Nn

xn  , (20.3a)          

474772499988898.0fx ,  (20.3b)                                                                        

25.0 fc xx .                      (20.3c)                                                                        

Point 474772499988898.0fx  is used to determine two points 

on x-axis:  
474772499988898.01  fxx  (20.4a)                                                   

525232500011101.05.02  fxx .                       (20.4b)                                          

Using the points 
1x  and 

2x  to define a fermion state f, 

according to (6.18) its mass is:           

 2

12

/5370162.57
4

cGeV
xx

M
M e

f 


 .               (20.5)                 

2/611049.1723 cGeVM f  .                                 (20.6)                                                              

2/3696287.812 cGeVM f  .                    (20.7)                                                             

To compare 2/611049.1723 cGeVM f   with top quarks 

mass cited from 2010-PDG data 2/)9.00.172( cGeVM qt  , 

the 
fM3  value is within its error range, and the relative 

deviation of 
fM3  from 

qtM  medium value is 310553.3  . 

According the correlations of W , 0Z  and 
tq  given by (14.2) 

and (14.3), the mass values of gauge bosons W , 0Z  can be 

calculated from the value of 
fM3  and Weinberg angle 

W  as: 

2/7320308.91
cos1

3
cGeV

M
M

W

f

Z 





,     (20.8a)                       

2/879018.80cos
cos1

3
cGeV

M
M W

W

f

W 


 


,  (20.8b)               

2/611049.1723 cGeVMMM fWZ  ,   (20.8c)                     

15335581.28cos 















dataPDGZ

W
W

M

M
ar

.       (20.8d)                   

The values 
ZM , 

WM  given by (20.8a), (20.8b) compare 

to 2010-PDG data, 2/)0021.01876.91( cGeVMZ  , 
2/)023.0399.80( cGeVMW  , both have relative deviation 

of  31097.5   from medium values. Comparing  
2/3696287.812 cGeVM f   to 2/)023.0399.80( cGeVMW  , 

the relative deviation from its medium value is 2102.1  . 

Notice that, 
fM  and  

WM  are the mass of a fermion state f 

and gauge boson W , respectively; while 2  is the 

numerical factor left unexplained in Section 16. It implies 

that, 2  may have something to do with the relation between 

fermions and bosons, which will be discussed in Section 21. 

In the meantime, it serves as a check point.  

Prediction 20.1: There is an electrically neutral scalar boson 

as a composite state of 
ffS MMM   with mass: 

22 /074032.115/)5370162.572( cGeVcGeVM Ms   (20. 9) 

If all of these are not by coincidence, the special point 

73026452499871562.0cx  did it again. It not only determined 

the mass value for two scalar bosons W , 0Z , but also for the 

top quark 
tq . It is the first quark with mass value traced back 

to the first principle. The three colored top quarks have 

slightly different mass values from their average value as 
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listed in Table11.2, which are caused by color symmetry 

broken.  

If the 3 colored top quarks’ mass values are indeed traced 

back to the first principle, then the independent numerical 

parameters left is reduced from 23 to 20. In which there are 

15  p-parameters of 15 quarks plus 2 p-parameters of muon 

and taon, the rest 3 parameters are the n-parameters of 3 

leptons.  

Why does the special point 
cx  determine top quark’s mass 

not other type quarks? Because top quark with mass 

Maxqt MM  , it must appear with top anti-quark as boson state. 

Apparently the special point 
cx  works only for bosons or 

boson states. 

The remaining question is: for 
qtf MM 3 , where does 

the factor 3 come from? It is worthwhile to give a thought. 

 

Section 21: Space Structure and Symmetries 

 

The first fundamental postulation of SQS theory, 

Gaussian Probability Postulation, assigns Gaussian 

probability at each discrete point separated by Planck length, 

which makes continuous space with grainy structure. In 

previous sections, the Planck cube as the building block of 

space is based on 3-dimensional Cartesian coordinate. The 

adoption of Cartesian coordinate system implies a hidden a 

priori assumption: Space has cubic lattice structure, which 

has no proof. What is the real structure of space? What are 

the inherent symmetries of space? These are the two basic 

questions of this section.  

  To answer the first question, let’s go back to the 

fundamental postulation. The 3-dimensional Gaussian 

probability distribution function has spherical symmetry like 

a ball with blurred boundary. The Gaussian probability 

distribution function converges rapidly toward zero with 

distance from its center. Let’s ignore its blurredness and treat 

the 3-dimensional Gaussian distribution function as a hard 

ball called “Gaussian sphere” with definitive boundary. In 

Section 2, the radius of Gaussian sphere is defined as:  

.  (2.9b)                                           

From SQS viewpoint to consider the structure of space, 

the question is: What is the preferred way for Gaussian 

spheres to arrange themselves? As the Gaussian sphere 

treated as hard ball, the question becomes: What is the most 

compact packing for balls? It is a classic topic known as 

Kepler conjecture. Kepler conjectured that, the face-centered 

arrangement is the most compact packing for balls, which has 

an average density: 

 .             (21.1)  

Kepler conjecture was proved by Thomas Hales in 1998 

using the exhaust method with extensive numerical 

calculations. For comparison, the cubic arrangement for balls 

has an average density: 

.     (21.2)                          

Nature has a tendency to reach the lowest energy for 

stability. As gravity dominates, the most compact packing is 

the one with lowest potential energy. The face-centered 

lattice is the preferred one for the space structure. This is the 

first supportive evidence for the face-centered lattice 

structure of space.  

The ball packing argument is only a simulation. In reality, 

the spherical Gaussian probability distribution is not a hard 

ball with definitive boundary. Keep this in mind; let’s take a 

close look at face-centered lattice structure.     

Fig.21.1 shows a sketch of the face-centered lattice 

structure within a Planck cube. It shows that, the face-

centered lattice can be viewed as an octahedron embedded in 

a cube. The lattice length of cube and octahedron are 

 and , respectively. The lattice lengths 

ratio of cube to octahedron is: 

.                               (21.3)  

In (21.2) and (21.3), the number  looks familiar. It 

appeared in front of electron converting factor  of equation 

(16.1) in Section 16. The definition of electron converting 

factor is: 

.                                              (6.10)    

   
 

Fig.21.1: Face-centered lattice structure as an octahedron embedded 

in a cube. 
                                                        

According to (6.10), multiplying  to   is 

equivalent to redefine Planck length  based on the 

octahedral lattice length  as:  

.   (21.4)                                         

The  factor appeared in equation (16.1) is not by 

coincidence. It can be interpreted as . This is the 

second supportive evidence for the face-centered lattice 

structure of space. 

Moreover, in Section 15 and Section 16, there are two 

related converting factor formulas: For the scalar boson of 

grand unification:  
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,    (15.11)                                              

For electron as a fermion in Section 16, letting  in 

equation (16.1) yields:   

.     (21.5)                                

Despite the difference of  verses  

representing the difference of energy scales, the notable 

difference between (15.11) and (21.5) is the factor . (15.11) 

is for boson and (21.1) is for fermion. Notice that, in (21.4), 

under the square root sign,  in the redefined  is the 

basic spin for fermions, while  in the original  definition 

is the basic spin for bosons. These comparisons imply that, 

the difference between fermions and bosons may have 

something to do with  and the difference between 

octahedral part and cubic part of the space face-centered 

structure. It serves a possible explanation for the difference 

between (15.11) and (21.5). It also serves as the third 

supportive evidence for the face-centered lattice structure of 

space. 

Postulation 21.1: Space has face-centered lattice structure as 

shown in Fig. 21.1. It contains two parts: the cubic part 

with unit length of  and the octahedral part with unit 

length of .   

Explanation: Normalized to , . 

According to (2.9b): 

.   (21.6)                                                    

 It explains the mathematical reason for the definition of 

the radius of Gaussian sphere . In reality,  is 

determined by the balance of attractive force and 

repulsive force. 

According to Postulation 21.1, space has crystal 

structure. It is well known in crystallography that, 

symmetry play an important rule to explain crystal 

properties. Let’s try to answer the second basic question.  

Definition 21.1: In the space with face-centered lattice 

structure, symmetry  is defined as a set of vertexes 

on the spherical surface centered at an octahedral vertex 

with radius ; symmetry  is defined as a set of 

vertexes on the spherical surface centered at a cubic 

vertex with radius . 

According to Definition 21.1, there are 18 symmetries for 

 with  and 18 symmetries for  with . 

The parameters of 36 symmetries of  and  with 

 are listed in Table 21.1 and Table 21.2, respectively. In 

these tables, three sets of numbers are listed. In the column of 

“No. of vertexes ”, “  and ” are 

the numbers of octahedral and cubic vertexes in the 

symmetry, respectively. In the column of “No. of equilateral 

triangles ”, “  and ” are the 

numbers of connected and separated equilateral triangles in 

the symmetry, respectively. In the column of “No. of squares 

with center ”, “  and ” are the numbers 

of squares with center vertex of the symmetry on and off the 

square surface, respectively. 
 

Table 21.1: Symmetries Centered at an Octahedral Vertex in the 

Face-centered Space 

 
       Note: The symmetries marked with * are the 6 essential symmetries. 
 

Table 22.2: Symmetries Centered at a Cubic Vertex in the 

Face-centered Space  

 
       Note: The symmetries marked with * are the 6 essential symmetries. 
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Let’s start from the octahedral part listed in Table 21.1. 

is a basic symmetry represented by a single vertex, 

which has a rotational symmetry with any angle. It seems 

reasonable to identify  related to the  group. In the 

standard model,  represents electromagnetic interaction 

mediated by photons. From SQS theory viewpoint, photon 

and graviton are two sides of the same coin. So  is also 

related to graviton. In fact, the single vertex of  has dual 

identity like two sides of the same coin. It is the vertex on its 

shrunk sphere surface and it also is the center vertex. It seems 

reasonable to identify the former with electromagnetic 

interaction and the letter with gravitation. In fact, all 

symmetries have center vertex not included in Table 21.1 and 

Table 21.2, which corresponds to gravity’s universality.  

Symmetry  is an important basic symmetry 

having 12 vertexes located at following Cartesian coordinates 

with origin at the center vertex. 

Cube vertexes:  

, , , ,     (21.7a) 

Octahedral vertexes:   

, , ;       

, , , .   (21.7b) 

In which 4 vertexes are cubic type and 8 vertexes are 

octahedral type. The hybrid of octahedral and cubic vertexes 

in  may serve as a link between fermions and bosons. 

The 12 vertexes form 8 connected equilateral triangles, in 

which the 4 connected equilateral triangles in  part are 

shown in Fig.21.2.  has 9 squares, in which 3 

squares with center vertex on square surface and the other 6 

squares with center vertex off square surface. The meaning of 

the equilateral triangles and the two types of squares will be 

given later in this section. 

In essence, symmetry  is an enlarged version of 

. All symmetries are the same for  and 

.The only difference is the linear scale of  is 

enlarged by a factor of 2 comparing with . 
 

 
 

Fig.21.2: The vertexes of  with 4 vertexes located at  

not shown. 

 

 is an important basic symmetry. As shown in Table 

21.1 and Fig. 23.3,  has 6 octahedral vertexes, The 6 

vertexes form an octahedron, which is one of two parts of the 

face-centered lattice structure of space with elongated length 

scale. The 6 vertexes are paired to form 3 orthogonal axes 

with  span angles at center. It is identified as  

group.  is closely related to the  group. The 

elements of  and the elements of  are described 

by three parameters corresponding to the three Euler angles 

of a three dimensional rotation. The relation between  

and  is that, each rotation in three dimensions of 

 corresponds to two distinct elements of . In 

some sense,  is a dual version of . It seems 

reasonable to relate  with the  group. The 6 

vertexes of  form 3 squares with center vertex on square 

surface. A square with center vertex on square surface is a 

part of  and serves as a part of  representing 

weak interaction. 

 As shown in Table 21.1 and Fig. 21.3,  has 8 

connected equilateral triangles. The simplest representation 

of  group is a triplet. It seems reasonable to relate the 

equilateral triangles in  with  triplets such as 

 
and .  

 
 

Fig.21.3: The 6 vertexes of . 

SQS theory searching for the  group comes from a 

long way. The first clue came from the 3-dimensional 

Gaussian probability standard deviation, . Its 

three roots provide one real number and two complex 

numbers, which define three axes separated by  on a 

complex plane as shown in Fig. 3.2. The second clue came 

from the transportation route of electron moving in the 

zigzagging path named “zitterbewegung” having  

angle with  x-axis on a complex plane shown in Fig. 3.4. The 

third clue is the fermions’ loop-2 tiny tilt angle deviated from 

. Now, all these clues point at one origin, which is 

the triplet symmetrical structure in the face-centered lattice. It 
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could serve as the geometrical explanation for  group 

in the real space.  

In essence, the  is related to three groups , 

,  plus gravitation as the center vertex, which 

represent all four types of interactions. As shown in Section 

15, all four types of interactions are united into one. So it 

should not be a surprise to find out that,  related 

to all four types of interactions. 

As shown in Table 21.1, symmetry  has 8 

octahedral vertexes in which 4 of them in  region are 

shown in Fug. 21.4. The 8 vertexes of  form a cube, 

which is one of the two parts of face-centered lattice space 

structure of space with elongated length scale. The 8 vertexes 

of  form 8 connected equilateral triangles and 6 

squares with the center vertex off surface. Since the  

group has an eight-fold representation, octet, it seems 

reasonable to relate  to the eight-fold. The 6 off center 

squares represent strong interaction to hold the 8 equilateral 

triangles representing 8 fermions. A possible physics 

interpretation is: The octet of  represents the baryons 

octet as shown in Fig. 21.5. It includes 8 baryons: , 

, , , , , , 

, in which each baryon is made of 3 quarks in the 

first and second generations.   
 

 
Fig. 21.4: The vertexes of  with 4 vertexes located at  

not shown. 
 

 
Fig. 21.5: The baryons octet represented by . 

There is a difference between two different types of 

squares. The squares with center vertex on square surface 

such as those in  are related to part of  representing 

weak interaction. The squares with center vertex off square 

surface such as those in  are related to a part of  

representing strong interaction. The ratio of center to square 

distance  over square edge  is defined as . 
 

For squares with center vertex on surface:  

.                                         (21.8a) 

For the squares with center vertex off surface: 

 .                                          (21.8b) 

Back to the  symmetry, it has 3 squares with 

center vertex on surface and 6 squares with center vertex off 

surface. It seems that, both weak interaction and strong 

interaction are involved with its 8 equilateral triangles. A 

possible physics interpretation is:  represents 8 

fermions, , , , , , , ,  and their anti-

particles of the first generation. The weak interactions among 

8 fermions represented by 3 squares with center vertex on 

surface are understandable. The strong interactions among 6 

quarks represented by squares with center vertex off surface 

are also understandable. But there are squares with center 

vertex off surface connecting to equilateral triangles 

representing leptons and quarks. What does such type 

connection mean?  

Fig.21.6 shows the “Symmetries Family Tree” for  

symmetries. It includes all 18 octahedral symmetries with 

radius .  

In Fig.21.6, symmetries are illustrated by squares with 

names. The vertical location of the square is raised according 

to increasing  values of . Inside the square from top 

down, the numbers in three rows, , 

,  are cited from Table 

21.1. In Fig. 21.6, there are three types of connecting lines: A 

vertical single solid line indicates that the connected two 

squares have the same type symmetry with different scales. 

The forked solid lines indicate that the top symmetry is a 

combination of two symmetries below. The dashed line 

indicates that the two connected symmetries are somehow 

correlated.  

In Table 21.1 and Fig. 21.6, the 6 symmetries marked 

with * belong to the essential type. In which, ,  

 are basic symmetries as mentioned previously. The 

other three, , , , are the lowest 

symmetries having vertex numbers 24, 48, 72, respectively.   

As shown in Table 21.1, Fig. 21.6 and Fig. 21.7, 

symmetry  is the lowest one has 24 vertexes. The 24 

vertexes of  form 8 separated equilateral triangles 

and 18 squares all with center vertex off surface, which 
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indicate that the 8 triplets interact to each other via strong 

interactions.  

 

 
 

Fig. 21.6: The Symmetries Family Tree for  with . 
 

 
 

Fig. 21.7: The vertexes of   with 12 vertexes located at 

 not shown. 

 

As shown in Table 21.1, Fig. 21.6 and Fig. 21.8, 

symmetry  is the lowest one has 48 vertexes. In 

, the 48 vertexes form 36 squares all with center 

vertex off surface and no equilateral triangle.  

As shown in Table 21.1, Fig. 21.6 and Fig. 21.9, 

symmetry  is the one has most vertexes for . 

The 72 vertexes of  form 54 squares, in which 6 

squares are with center vertex on surface and 48 squares are 

with center vertex off surface.  has no equilateral 

triangle. In the Elementary Particle Table, the total number of 

elementary particles is 72, which is relate to the vertex 

number 72 of . 
 

 
Fig. 21.8: The vertexes distribution of . 

In the Symmetries Family Tree shown by Fig. 21.6, there 

are five columns; the vertical line connections indicate their 

heritage, which is originated from the bottom symmetry of 

each column. Out of five, two columns are significant. The 

one called “interactions column” is made of , , 

 and ; The other one called “basic Fermions column” 

is made of ,  and . 

The foundation of the interactions column is the  

symmetry representing gravitation and electromagnetic 

interaction as mentioned previously. As shown in Section 15, 

all interactions are finally unified to gravitation. The  

deserves to be the foundation of interactions column. From 

the foundation up, the next symmetry is . As mentioned 

previously,  represents gravitation,  

electromagnetic, weak, and strong interactions. Fig. 22.6 

clearly shows that, all four types of interaction are in this 

column. Up further, there are two more symmetries, , 
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. In which  is an enlarged version of . As 

shown by the forked line, , the 

combination nature of  is due to the fact that, its radius 

 is sufficiently large to accommodate the additional 24 

vertexes in the enlarged version of . But the core 

of  is an enlarged version of . 
 

 
Fig. 21.9: The vertexes distribution of . 
 

Overall, , , and  are the interaction 

symmetries for the 1st,  2nd, and 3rd  generations, respectively. 

It implies that, the radius values, 1, 2, 3 are related to the 

orders of three generations.  is related to all symmetries 

corresponding to gravity’s universality, which was mentioned 

previously from another perspective. 

The foundation of basic fermions column is , as 

mentioned previously,   are related to the first 

generation 8 fermions of , , , , , , ,  

and their anti-particles. Since , , and 

, it seems natural to relate  to the second 

generation 8 fermions of , , , , , , ,  

and their anti-particles; to relate  to the third 

generation 8 fermions of , , , , , , ,  

and their anti-particles. The arrangement confirms the 

correlation between the values of  and the orders of 

generations. 

The column made of ,  and  is 

based on .  and  have similar 

properties as . They all have the same vertexes 

number 24, the same structure of 8 separate equilateral 

triangles and 18 squares with center vertex off surface.  

The column made of  and  is based on 

. They all have 24 vertexes, and 18 squares in which 

6 with center vertex on and 12 off surface. They have no 

equilateral triangle. 

The column made of  and  are based 

on . They all have 48 vertexes, 36 squares with 

center vertex off surface. They also have no equilateral 

triangle. 

The three columns based on , , 

 with foundations all start from the second 

generation. As shown in Fig.21.6, the columns based on 

, , and  have 2, 1, and 1 

symmetries in the third generation, respectively. 

The equilateral triangle and the square are two basic 

elements of the face-centered space lattice. The symmetries 

in columns based on ,  and symmetry 

 have no equilateral triangle. But the symmetry 

with a definitive radius is not alone. The eighteen symmetries 

in the Symmetries Family Tree live together as a family. 

From family perspective, more equilateral triangles can be 

found. For instance, in the combined symmetry 

 as shown in Fig. 21.10, besides the 8 

equilateral triangles of , the combination adds 32 

more equilateral triangles.  as a whole 

has 40 equilateral triangles. The same is true for some other 

symmetry. For instance, the combined symmetries of 

, ,  

and  all add 8  more equilateral 

triangles. The numbers listed in Table 21.1 and Table 21.2 

only count the equilateral triangles for each symmetry alone. 

Actually, the total number of equilateral triangles in  

and  for  as two families are far more than the 

listed grand total of . 

The symmetries of 
 
centered at cubic vertex have the 

same type of symmetries as . In fact, an  shifting its 

center along two orthogonal directions by  for each 

direction become a  and vice versa. ,  have the 

same “ ” and “ ”. The 

difference is that, in the “ ”column, the 

numbers of “ ” and “ ” vertexes may change for  

from those of  and keep the number of “ ” 

unchanged. Therefore, the Family Tree for  is the same 
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type for  except the two numbers different in the 

“ ”.  
 

 
 

Fig. 21.10: Additional equilateral triangles of . 
 

The real difference between  and  is their physics 

interpretations. As mentioned previously,  based on the 

octahedral part is related to fermions and  based on the 

cubic part is related to bosons. This may provide a clue for 

the physics interpretation of  symmetries. For instance, 

the “basic fermions column” of , ,  is 

interpreted to represent the basic fermions of three 

generations. Likewise, the column of , , 

 is the “basic bosons column” of three generations. The 

 are related to , , , , , , ,  of 

the first generation bosons. The  are related to , , 

, , , , ,  of the second generation bosons. The 

 are related to , , , , , , ,  of the 

third generation bosons. As  is related to the baryons 

octet, likewise  is related to the mesons octet of 

, , , , , , 

,  as shown in Fig. 

21.11.  

In the  system, there are also 6 essential symmetries: 

,  , , ,  and , in 

which ,  ,  are basic symmetries. 

Notice that, in Table 22.1 and Table 21.2, the number 163 

is total number of vertexes in the 6 essential symmetries of 

 as well as the 6 essential symmetries of : 

. In number theory, the number 

163 has very special properties [18].  

1. Number 163 is a prime number. 

2. Number 163 is the number of columns in the Monster 

group’s character table to give the independent mini-j-

functions.  

3. Number 163 is related to an irrational number very close 

to an integer:    
 99259999999999.407687432625374126163e .   (21.9)             

4, It was noticed by Euler that, the number 163 is in the 

solutions of an equation:  with 

solutions: 

.                            (21.10)                                                                               

The values of  for  give 

prime numbers. 
 

 
 

Fig.21.11: The mesons octet represented by . 
 

Moreover, as shown by Fig. 21.12, the Number Tower, 

163 is intrinsically related to the m-parameters of the first 

generation particles including 7 elementary fermions , , 

, , , ,  and 7 elementary bosons, , , , 

, , , .  

The number of vertexes in the 6 essential symmetries in 

 system or  system equals to a very special number 

of 163 sitting on top of the Number Tower. It has important 

implications. 

1. The set of 6 essential symmetries is not an arbitrary 

selection. It is based on mathematics.  

2. The total number of elementary particles is 72. It is the 

number of vertexes in  or . It 

also is the largest vertexes number in any symmetry of 

 or  with radius . The number 72 close 

relation with the magic number 163 is based on 

mathematics shown by the Number Tower. The SQS 

theory Elementary Particle Table given in Section 18 

is based on mathematics. It contains 72 elementary 

particles including 24 particles, 24 anti-particles, 24 

neutral particles. Notice that, 24, 48=24+24, 72 are the 
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number of vertexes for , ,  

and their counterparts in the  system, respectively. 

3. There are only three generations of elementary 

particles. It was supported by Prime Number 

Postulation in Section 11 and Conclusion 12.1 in 

Section 12, which are based on the prime numbers 

property in number theory. Here we have the second 

independent support from number theory and space 

symmetry. As the number 72 backed by the magic 

number 163, there is no room left for more generation 

beyond the existing three generations. Otherwise, the 

total number of elementary particles would exceed 72, 

which is not supported by the Number Tower and the 

magic number 163 sitting on top of it. 

4. As shown in the Number Tower, the first generation is 

the base of all three generations. This is also supported 

by the two basic columns in the Symmetries Family 

Tree, in which the first generation particles and 

interactions serve as the foundations. The second and 

the third generations are the extensions of the first 

generation. This is also supported by Standard Model. 

SQS theory provides the mathematic interpretations 

based on number theory and symmetries of space.  
 

 
 

Fig. 21.12: The Number Tower. 
 

According to the above discussion, the 18+18=36  

and  symmetries with radius  cover all elementary 

particles and interactions for three generations. What about 

the symmetries with radius ? The answer will be given 

in Section 23. 

Ideally, symmetries ,  all are perfect. In reality, 

the physics groups corresponding to ,  are not 

perfect caused by symmetry broken for particles to obtain 

mass. Take  as an example. In its perfect symmetry 

form, the 8 fermions , , , , , , ,  all 

are mass-less to start with. Each of them obtains mass by 

broken symmetry in different ways.  

The 12 vertexes of 
 
are shown in Fig.21.13.  

 
Fig. 21.13: The two triplets for  and  to demonstrate the 

retained symmetries and broken symmetries. 
 

The equilateral triangle  representing electron 
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. There are three squares , , 

with center vertex on surface representing weak 

interaction connect to , ,  respectively. There are 

three squares , ,  with center 

vertex off surface representing strong interaction connect to

71 & pp , ,  respectively. For electron to 

obtain mass, the symmetrical triplet  must break under 
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squares , , 
 
with center vertex 

on surface must retain because electron has weak interaction. 

There are two possible scenarios to meet these requirements. 
 

Scenario-1: For an electron alone. Two vertexes ,  

shift angles to break the triplet  for electron to 

obtain mass. The results are: (1) All three squares 

, ,  with center vertex 

off center are broken for no strong interaction. (2) One 

square  with center vertex on center retains for 

weak interaction.  

Scenario-2: For electron and electron anti-neutrino  as 

a matched pair. Equilateral triangle  

representing  includes a cubic vertex  and two 

octahedral vertexes , . There are three squares 

, , 
 
with center vertex 

on surface representing weak interaction connect to , 

,  respectively. There are three squares , 

,  with center vertex off surface 

representing strong interaction connect to 
64 & pp , 

,  respectively. Two vertexes ,  

shift angles to break the triplet  for electron to 

obtain mass. At the same time, two vertexes ,  

shift the same angles with opposite directions to break 

the triplet  for   to obtain mass. The results 

are: (1) All six squares , , 

, , ,  with 

center vertex off center are broken for no strong 

interaction. (2) All three squares , , 

 
with center vertex at center retain for weak 

interaction. This scenario shows that, besides their 

mathematical correlation of n-parameter matching, there 

is a geometrical correlation between electron and its 

anti-neutrino .  

It is conceivable that, Scenario-2 is for regular type weak 

interactions with electron and  as a matched pair. 

Scenario-1 is for rare type weak interactions with electron 

acting alone without . Since Scenario-1 has only one 

square retained with center vertex on surface and Scenario-2 

has all three squares retained with center vertex on surface, 

which serve as an explanation for the rarity of the rare type 

weak interaction for electron without . 

The similar scenarios are also valid for  and 

 which belong to the second and third generations, 

respectively.  

In Fig. 21.13, the other two triplets  and  

represent up quarks , ,  and down quarks , , 

. For them to break symmetries to obtain mass and keep 

strong interaction as well as weak interaction , the way to 

shift angles is under the conditions: (1) At least some of the 

six squares , , , , 

,  with center off surface must retain 

for strong interaction. (2) At least some of three squares 

, ,  with center on surface 

must retain for weak interaction. The same requirements are 

also valid for triplets representing strange, charm, bottom and 

top quarks. 

These arrangements show the versatility and richness of 

the theory.  

In the meantime, the above discussions regarding to the 

correlations of the symmetries in  and  systems to 

physics groups of elementary particles are hyperbolic. The 

real correlations between the symmetries listed in Table 21.1, 

Table 21.2 and the particles’ groups such as , , 

 require mathematical proof and more physical 

verification. But one thing is clear. If the face-centered space 

structure is the real space to accommodate all elementary 

particles and interactions, their symmetry groups must be 

originated from it.  

It is important to point out that, all symmetries in the face-

centered space structure are represented by real numbers. On 

the other hand, most of particles’ groups are represented by 

complex numbers. This is a major difference. But the 

difference is only superficial. So far, SQS theory hasn’t 

introduced intrinsic time as a variable yet. In essence, the 

intrinsic time can be represented by the phase angle of 

complex numbers. Once the intrinsic time variable is 

introduced, the major difference between these two systems 

will be resolved. In fact, intrinsic time represented by 

complex numbers’ phase angle is the key to understand the 

relation between symmetries ,  in space and groups 

in particle physics. 

Postulation 21.2: All elementary particles’ groups are 

originated from the symmetries in  and  

systems of space structure with face-centered lattice.  

Explanation: Lack of mathematical proof, this is the best 

thing one can offer. Table 21.1, Table 21.2 and the 

Symmetries Family Tree are useful for further 

investigations on this topic.  

From SQS theory viewpoint, the physics groups of basic 

fermions and bosons are presented in Fig 21.14. Quarks with 

different colors are treated as different particles. Leptons are 

presented as trefoil model with three branches combined. The 

elementary fermions are represented by 12 equilateral 

triangles. The 22 elementary bosons except  and  are 

represented by 8 equilateral triangles, in which the 6 
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equilateral triangles are combined into 2 hexagons.  and  

are located at the center of equilateral triangle representing , 

, . Fig. 21.14 is useful to identify the correlation between 

the symmetries in ,  systems and the groups in 

particle physics. 

Postulation 21.1 and Postulation 21.2 are here to stay for 

SQS theory. Hopefully mathematic proofs and more physics 

evidences will follow. In fact, they have supports already. 

One is the Gaussian sphere and the Kepler-Hales theorem. If 

gravitation dominates in the Planck scale microscopic space, 

the face-centered lattice structure along with its symmetries is 

the only logical choice. The other is that,  and  

symmetries with  fit physics groups well.  
 

 
Fig.21.14: Elementary particles organized in groups. 
 

 

Inherited from the face-centered lattice structure, space 

has intrinsic symmetries, which serve as the origin of all 

groups of elementary particles. Postulation 21.2 is waiting for 

proof. From SQS theory standpoint, it is the way Mother 

Nature selected.  

In essence, space is like a crystal, but the macroscopic 

space is not a single crystal. Otherwise, the single crystal 

space with face-centered lattice is macroscopically 

anisotropic with preferred directions. That is impossible. 

Because theoretically space cannot be in such highly 

organized state with extremely low entropy; experimentally 

there is no evidence for such macroscopic space anisotropy. 

In fact, space is amorphous in large scale with single-crystal 

or poly-crystal domains. The system containing enormous 

identical Gaussian spheres with relative weak interactions fits 

well for the conditions of grand number phenomena. The 

number of Gaussian spheres in a typical domain can be 

estimated according to (16.13) as:   

.                                   (21.11)                               

In which  is the rank number. The  Gaussian 

spheres fit in a volume with length scale of 

,   (21.12a)                                             

For : ,         (21.12b)                                          

For : ,    (21.12c)                                             

For : .     (21.12d)                                            

Such amorphous space is isotropic with grainy structures on 

top of the Planck scale grainy structure. In the multi-layer 

grainy structure, the lowest layer with Gaussian sphere as 

basic building block is single-crystal or near single-crystal, 

which serves as the home for elementary particles with their 

interactions. We will come back to this topic in later sections.  

The sum of 3-dimensional Gaussian probability 

 for the cubic part alone was introduced by (2.24) 

with subscript changed for identification: 

.  

  (21.13)         

The octahedral part lattice can be treated as three 

Cartesian systems with 0.5 shifts along two orthogonal axes. 

In such coordinate system, the sum of the 3-dimensional 

Gaussian probability of the octahedral part alone is:  

. 

(21.14)     

In which, the numerical factor 1/3 is for unitarity.  

According to (21.13) and (21.14), the overall sum of 

Gaussian probability for the 3-dimensional space with face-

centered lattice structure is  

 
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 .  (21.15) 

In (21.15), the first term represents the cubic part and the 

other three terms combined represent the octahedral part. The 

numerical factor  for unitarity has a deep meaning. In a 

Planck cube with the face-cantered lattice structure, there are 

8 Gaussian spheres centered at 8 cubic vertexes at 8 corners 

and another 6 Gaussian spheres centered at 6 octahedral 

vertexes at 6 face centers. For the cubic part, the 8 spheres at 

corners each one sharing with 8 cubes contribute 1 Gaussian 

sphere to the Planck cube. For the octahedral part, the 6 

spheres at 6 surface centers each one sharing with 2 cubes 

contribute 3 Gaussian spheres to the Planck cube. Therefore, 

the filling ratio for cubic part versus octahedral part is 1:3 

corresponding to the unitarity factors  and . 

It confirms the reason for selecting the numerical factor  

for unitarity in (21.15). 

Actually formula (21.15) serves as a checkpoint for the 

consistency of the face-centered space structure. The face-

centered structure is based on the most compact packing of 

Gaussian spheres. A hidden assumption is that, all Gaussian 

spheres in the space must be identical. In terms of profile and 

size, they are identical evidenced by  and 
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 for all Gaussian spheres. The four identical 

numerical factor  in (21.15) proved that, all Gaussian 

spheres also have the same vacuons density. It shows that, no 

matter where they are located, all Gaussian spheres have the 

same profile, the same size and the same vacuons density. In 

short, they are identical. Moreover, the four identical 

numerical factors also make the  symmetry 

with respect to interchanges of three variables , which 

is required by the geometrical symmetry of the face-centered 

lattice structure. So everything is consistent. 

According to Postulation 21.1, space has face-centered 

lattice structure, in which the cubic lattice structure serves as 

one of its two parts. The sums of probability data listed in 

Table 2.2 are based on of (2.24) for the cubic lattice 

structure. For the space with face-centered lattice structure, 

the sum of Gaussian probability formula is (21.15). The 

calculated sums of probability data are listed in Table 21.3.   

 As shown in Table 21.3, the and 

 are:   

,         (21.16a)               

594919993753280.0)5.0,5.0,5.0(),,( ,3min,3   cfcf SzyxS .  (21.16b)          

The difference between  and  

is in  order. Compare to the values listed in Table 2.2:  

,  (21.17a)                          

. 
(21.17b)                 

The difference between  and  

is in  order. The comparison shows that, the sums of 

probability for the face-centered lattice structure are more 

evenly distributed due to more Gaussian probability 

distribution functions added at octahedral vertexes.  
 

Table 21.3:  Values at 125 Points in a Planck Cube 

Based on (21.15)* 

 
* The summation index in (21.15) is truncated at a sufficient large number 

 . 

 

Theorem 21.1: In the face-centered space structure, the 

Random Walk Theorem is valid only for the cubic part 

of face-centered structure. It is not valid for the 

octahedral part and the face-centered structure as a 

whole. In other words, all steps of the random walk 

zigzagging path only stop at the cubic vertexes. 

Proof: As shown in Section 4, the key to prove Random 

Walk Theorem is based on the fact that, the numerical 

factor in front of the exponential part of (4.3) and (4.4) 

is 1. Otherwise, the proof does not hold. The numerical 

factor in front of the exponential part in of (21.13) is 1 

for the cubic part, which fits the requirement for random 

walk theorem proof. On the other hand, the numerical 

factors in front of the exponential part in  of 

(21.14) for the octahedral part and  of 

(21.15) for the face-centered structure as a whole are 1/3 

and 1/4, respectively, which do not fit the requirement 

for the random walk theorem.                                  QED 

Theorem 21.1 has important physics significance. It 

reveals more insights from the Random Walk Theorem. The 

random walk process is the mechanism for interactions 

between particles mediated by bosons without mass, i.e.  

and . Moreover, as shown in Section 4 and Section 15, 

gravitational force and electrostatic force are related to the 

long path and short path, respectively, which are based on the 

converting factor originated from the Random Walk Theorem. 

These two forces belong to the long range type with strengths 

inversely proportional to the square of distance. The 

tremendous difference between these two forces’ strengths is 

also originated from the difference between long path and 

short path. All of these features are originated from the 

Random Walk Theorem, which is only valid for the cubic 

part of space. The adding of octahedral part in face-centered 

space structure does not make difference for these two long 

range forces.  

Theorem 21.1 provides additional supports for Postulation 

21.1 and to some extent for Postulation 21.2 as well. It 

indicates that, the theory based on face-centered space is 

consistent. 

 

Section 22: Cosmology 

 

Particle physics and cosmology are closely related. The 

topics of this section are cosmology and its correlation with 

particle physics based on prime numbers and the space 

structure introduced in Section 21. 

Let’s start from some related questions. 

According to prime numbers table and the Prime Numbers 

Postulation, there are only three generations of elementary 

particles in the current period of universe. Is it the only 

period? This is the first question.  

The electron converting factor  is close 

to a  grand number. Is there a  grand number 

related to electron? This is the second question. 

In Table 15.1, the mass or energy gap between 

 and  is 

thirteen orders of magnitude. Is this tremendous gap really 

empty?  This is the third question. 

)22/(1R

4/1

),,(,3 zyxS cf 

zyx ,,

),,(3 zyxS

max,3 ),,( zyxS cf 

min,3 ),,( zyxS cf 

40660006652203.1)0,0,0(),,( ,3max,3   cfcf SzyxS

max,3 ),,( zyxS cf 
min,3 ),,( zyxS cf 

410

59462823631158.1)0,0,0(),,( 3max,3  SzyxS cube

985627624976706.0)5.0,5.0,5.0(),,( 3min,3  SzyxS cube

max,3 ),,( zyxS cube min,3 ),,( zyxS cube

110

 zyxS cf ,,,3 

1000,, kji

 zyxS oct ,,,3

 zyxS cf ,,,3 



g

2310501197.1 eN

2G 1G

2/7547.152 cGevM ew  215 /1044708.8 cGevM ews 



1303 

Z.Y.SHEN 

Copyright © 2013 SciRes.                                                                                                                                                                     JMP 

Let’ start from the first question. The way to search for 

other periods is to look at the prime numbers table. The odd 

prime numbers less than 1000 is listed in Table 22.1. 

To identify possible other periods and generations in a 

legitimate manner, the rules used to determine the three 

generations in the current period are summarized in a 

definition. Then a postulation is introduced to make the 

connections between generations of elementary particles and 

cosmic periods as well as space dimensions. 
 

 

Table 22.1: The Odd Prime Numbers Less Than 1000* 

 1     3  5     7  11  13  17  19  23  29  31  37  41  43  47  53  59  61 67 

71  73   79 79 83   89 89 97 101 103 107 109 113 127 131 137  139 149 151 157 163 

  167  173    179 181 191 193 197 199  211 223  227     229  233 239 241 251 257   263 269 

271 277   281 283  293 307  311 313  317 331  337 347  349   353 359  367 373  379 383 

  389 397   401 409  419  421 431 433 439 443  449 457  461   463 467  479 487  491 499 

  503 509   521 523  541 547 557 563 569 571 577  587 593  599 601  607 613  617 619 

  631 641   643 647  653 659  661 673 677 683 691   701  709   719 727  733 739  743 751 

  757 761   769 773  787 797  809 811  821 823 827 829 839   853 857  859 863  877 881 

  883 887   907 911  919 929  937 941 947 953 967 971 977 983    991   997    

*Note: The prime number pairing is for quarks only. 1 for  is included and 2 for  is excluded. 

 

Definition 22.1: A set of three consecutive even pairs of 

prime numbers is defined as one generation. A set of six 

consecutive even pairs of prime numbers is defined as 

two generations. A set of nine consecutive even pairs of 

prime numbers is defined as three generations. This 

definition is also valid for other possible periods. 

Postulation 22.1: The number of generations is intrinsically 

related to elementary particles, cosmic periods and 

space dimensions. The first cosmic period has one 

generation of elementary particles in 1-dimensional 

space. The second cosmic period has two generations of 

elementary particles in 2-dimensional space. The third 

cosmic period has three generations of elementary 

particles in 3-dimensional space.  

Lemma 22.1: In case the number of consecutive even prime 

numbers pairs is not a multiple of 3, it is defined as a 

period having fractional generations of elementary 

particles in the space with fractional dimensions.  

Explanation: According to Definition 22.1 and Postulation 

22.1, the current period is the third cosmic period, in 

which there are three generations of elementary 

particles in 3-dimensional space. The other periods are 

hypothetical and subject to verification and 

confirmation.  

With the help of Definition 22.1 and Postulation 22.1, 

let’s look at the prime numbers table and search for other 

possible cosmic periods. 

In Table 22.1, the m-parameters of 18 quarks started from 

 ended at  are listed in the first row. Since the 

before reduction m-parameters of leptons and bosons are 

related to their companion quarks’ m-parameters, the 

meaning for numbers of even prime numbers pairs is not just 

for quarks. In fact, the nine even pairs of prime numbers 

represent three generations of elementary particles for the 

current period in 3-dimensional space. It is defined as the 

cosmic third period.  

In the second row of Table 22.1, a set of six even pairs of 

prime numbers started from  ended at is 

found to represent two generations of elementary particles. 

According to Definition 22.1 and Postulation 22.1, the two 

generations of elementary particles belong to the second 

cosmic period in 2-dimensional space. 

In the third row of Table 22.1, a set of four even pairs of 

prime numbers started from  ended at 197&199 is 

found. According to Postulation 22.1 and Lemma 22.1, it is 

defined as the first period with  generations of elementary 

particles in -dimensional space.  

In the third and fourth rows of Table 22.1, another set of 

nine even pairs of prime numbers started from  

ended at  is found to represent three generations of 

elementary particles. The newly found three generations are 

different from the three generations of current period. They 

belong to the pre-big-bang period in 3-dimensional space.  

The reason for the name of cosmic periods will be given 

later. 

In Table 22.1, the odd pair immediately before and after a 

set of even pairs are underlined. They serve the function to 

start and to stop the set of even pairs. It is interesting to 

notice that, a single prime number, the special prime number 

163, separates two sets of even prime number pairs 

representing the first and second cosmic periods.  

All pairs of prime members representing four periods are 

even pairs. The prime numbers in between periods are either 

a single prime number or pairs not qualified to form 

generation(s) represented by at least three consecutive even 

pairs.  

The newly found three cosmic periods along with their 

generations meets all rules. It is legitimate in mathematic 

sense.  

In the first cosmic period, the one generation is identified 

as the first generation including six quarks , , , , 

ru re
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,  , two leptons ,  and their anti-particles along with 

eight bosons , ,  and .   

In the second cosmic period, the two generations are 

identified as the first generation and the second generation 

including twelve quarks , , , , , , , , , 

, , , four leptons e, , ,  and their anti-particles 

along with sixteen bosons , , , , 

 and , .  

In the third cosmic period, the three generations are 

identified as the first generation, the second generation and 

the third generation including all elementary particles listed 

in the Elementary Particles Table. 

This serves as an introduction for the first question, the 

details will be given later. 

Let’s turn attention to the second question, which 

concerns electron converting factor  as  grand number. 

In essence, it is to search whether there is an electron 

intermediate state in existence corresponding to  grand 

number . Let’s go back to the logistic equation of 

(16.1). Substituting  to replace  and  to 

replace , a numerical calculation found: 

 (22.1)                                   

,    (22.2a)                                                                          

, (22.2b)                                                    

 200378771029244.3)125.0()( 1  x . (22.2c)                                                   

The  value given by (22.2a) falls into the range of 

. According to Table 16.1, for  value in this 

range, the logistic recurrent process oscillates and converges 

to: 

. (22.3).                                             

This scenario fits the intermediate state well, in which the 

logistic recurrent process is in progress and about half way 

through toward the threshold.  

The  given by 

(22.2b) is a  grand number. The mass of the electron 

intermediate state is: 

.  

(22.4)  

According to Rule 6.1, it cannot be a standalone fermion 

state, two intermediate states must appear in pair to form a 

scalar boson called “e-boson” with mass , converting 

factor  and length scale :  

28

int, /1095987106.32 cGeVMM ebe 
,           (22.5a)                                                 

,              (22.5b)                                         

.  (22.5c)                                               

Now the second question regarding electron intermediate 

state is answered. The mass of  and  fall into the 

middle of the tremendous gap between  and . The 

gap is not empty. So it answers the third question as well. 

Let’ turn attention to details of the first question.  

According to the cosmology standard model, the universe 

started from a big bang with extremely high energy 

corresponding to extremely high temperature. From SQS 

theory perspective, there was a “pre-big-bang period” 

represented by a set of 9 prime number even pairs started 

from  and ended at  found in Table 22.1 

as mentioned previously. The pre-big-bang universe was a 3-

dimensional “overheated liquid state”. Its details will be 

given later.  

The overheated liquid state is unstable, any random 

stimulation causes evaporation. The Gaussian spheres were 

evaporated and free to fly as 0-dimensional objects in space 

represented by the prime numbers 211, 223, 227, 229, 233 

between the two sets of prime number even pairs 

representing the pre-big-bang period and the first period. 

Let’s call it the “0-period”.  

The universe was born at the big bang. The cosmic time is 

set to zero: , and the new born universe started to 

evolve.  

During the 0-period, the flying around Gaussian spheres 

attracted each other by gravitational force and intended to 

gather as groups, which nurtured the first period.   

The first cosmic period started at time scale  with length 

scale : 

,    (22.6a)                                               

.   (22.6b)                                               

At time , the first cosmic period started. The flying 

Gaussian spheres were gathered and organized into 1-

dimensional array in 1-dimensional space.  

The 1-dimensional space was built as an array of Planck 

scale face-centered cubes. If the building block of array is a 

Planck cube centered at a cubic vertex including 12 

octahedral vertexes, according to Table 21.1 and Table 21.2, 

only three symmetries , ,  are fully 

effective. There is no fermion in the three symmetries. This 

scenario is not acceptable. If the building block of array is a 

Planck cube centered at an octahedral vertex including 4 

cubic vertex and 8 octahedral vertexes, according to Table 

21.1 and Table 21.2, three symmetries , , 

 are fully effective. It include 8 first generation 

fermions , , , , , , ,  and 8 anti-fermions 

in  and 2 bosons ,  in  responsible for 

electromagnetic interaction and gravitation. As shown in 

Section 15, the grand unification is to unify electromagnetic 
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interaction into gravity. In (22.6b),  is derived from  

originated from . At time , the reverse process of 

grand unification happened, electromagnetic interaction was 

separated from gravity. Therefore, in the first cosmic period 

after , the two bosons ,  in  showed up is natural 

and fully expected.  

For the symmetry  representing the other 6 first 

generation bosons   and , out of its 6 

vertexes, only 2 of them are in the array counting for one 

third of its constituents. It indicates that, 2 out of 5 gluons 

such as  and  would be in effect. According to Table 

13.2A and 13.2B , in the gluon links among , , , 9 

of the 12 links are made of  and ; in the gluon links 

among , , , 3 of the 6 links are made of  and . 

It means that strong interaction is partially in effect. 

Actually, the first cosmic period was in -dimensional 

space, which is a fractal space. The space dimension was not 

fixed, instead, it was a developing process from 1-dimension 

gradually toward 2-dimension. Accordingly, the cross section 

of the array gradually increases from  to . 

When the width number , the symmetry  has 4 out 

of its 6 vertexes in the wider array. As a result, 2 more gluons 

such as  and  would be in effect. According to Table 

13.2A ,13.2B and 13.2F, the gluon links among , , , 

all 12 links are made of , 
 
and ; the gluon links 

among , , , all 6 links are made of ,  and ; 

the 7 gluon links between , ,  and , ,  are 

made of , . It means that strong interaction for the first 

generation quarks is in effect.  

This scenario looks reasonable and is accepted by SQS 

theory. 

During the first period and other early cosmic periods, all 

particles are in their extremely high energy states 

corresponding to extremely high temperature, which are quite 

different from their ordinary states. For instance, according to 

Fig. 19.1 and Fig. 19.2, the gluon links binding quarks to 

form proton and neutron all are made of , ,  and . 

But it does not mean that, proton, neutron were formed 

during the first cosmic period after the array cross section 

increased to . Because of the extremely high 

temperature, it was impossible to form any hadron. Instead, 

“quark-antiquark liquid state” would be formed from these 

first generation quarks and anti-quarks bound by strong 

interaction mediated by these in effect gluons , ,  

and .  

The second cosmic period started at  with length scale 

: 

.  (22.7a)          

.     (22.7b)                                    

After , the second cosmic period started and the space 

became 2-dimensional, The 2-dimensional space is a 

membrane. In order to accommodate major symmetries of the 

first and the second generations, the thickness of membrane 

should be . As shown in Table 21.1 and Table 21.2, the 

2-dimensional membrane with  thickness centered at a 

cubic vertex accommodates 7 fully effective symmetries , 

, , , , , ,  which does 

not include the second generation fermions. This scenario is 

unacceptable. On the other hand, the 2-dimensional 

membrane with  thickness centered at an octahedral 

vertex accommodates 7 fully effective symmetries , 

, , , , , , which 

include the first generation 8 fermions , , , , , 

, ,  and their anti-particles represented by  

plus second generation 8 fermions , , , , , , 

,  and their anti-particles represented by . 

Symmetry  is not fully effective. Among its 6 vertexes, 

only 4 are included. The effective bosons for the second 

period are the first generation 8 bosons , ,  

,  plus second generation 6 bosons 

corresponding to two third of 9 bosons plus 1 anti-boson  

in second generation. The second period started at length 

scale , which is the characteristic length of 

electroweak-strong unification. The scalar boson  for that 

unification must be included. The strong interaction was 

separated and fully effective. All 8 gluons   

must be included. There are two additional second generation 

bosons as candidates selected from the remain second 

generation bosons: 3 massons  ,  and anti-

boson . Because ,  cannot be produced without its 

counterpart, there are only two possible selections. One is  
and , the other is  two massons.  

The second period include the first and second 

generations 16 fermions: , , , , , , , , 

, , , , , , ,  and 16 anti-particles along 

with 12 bosons for sure: , ,  , , , plus 

2 additional bosons or 1 boson and 1 anti-boson from one out 

of two choices. Either way sounds reasonable. This scenario 

is accepted by SQS theory.  

Conclusion 22.1: Weak interactions are not in effect in the 

second cosmic period with 2-dimensional space. 
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Proof: The reason for Conclusion 22.1 is that, the necessary 

mediators and intermediate states of weak interactions 

are not available in the second cosmic period.  and 

 as third generation gauge bosons are not available 

for the second cosmic period according to Postulation 

23.1.  and  or two out of three massons  

 are available depending on the choice. But 

the hypothetical gauge bosons  and  serving as the 

intermediate state for some type of weak interactions 

have similar behavior as their counterpart  and , 

they must have massons’ assistance to make the m-

parameters match and the n-parameters match as well as 

to fill the mass gap described in Section 14. 

Unfortunately, the two choices can only provide either 

and  or two massons but not both. The necessary 

mediators and interstates are not in existence, weak 

interactions cannot perform.                                   QED  

Conclusion 22.1 is important. It leads to a prediction 

given later. 

In the second comic period, all second generation 

particles except perhaps  and  are unstable. Under 

normal conditions, they are subject to decay via weak 

interactions. But the second cosmic period did not provide 

normal conditions, in which things turned out quite 

differently. According to Conclusion 22.1, weak interactions 

are not in effect in second cosmic period. The unstable 

particles in the 2-dimensional membrane cannot decay via 

weak interactions. They must hold until the third period, 

when the gauge bosons  , ,  and all massons are 

effective, then decay in the 3-dimensional space. Moreover, 

the big bang produced equal amount of elementary particle 

and anti-particles. Some of them remained in the second 

period. Whether they had the chance to annihilate in second 

cosmic period is an interesting question, which will be 

discussed later.  

In (22.5c), the length scale 
beL   is derived from the mass 

of e-boson originated from electron. As shown in Section 4, 

the factor 24/   is electrically originated. While the cosmic 

expension is driven by gravity. Take this factor into account, 

the third period started at
3t  with length scale 

3L : 

287

43 10211.610843.32



  Pbe LLL


  m,     (22.8a) 

 36

33 10072.2/  cLt  s .                                  (22.8b)                                                              

After , the space became 3-dimensional. All particles 

listed in the Elementary Particle Table showed up. All 

symmetries listed in Table 22.1 and Table 22.2 became fully 

effective. All four types of interactions were into full play. In 

fact, it is the universe started at 13.7 billion years ago we 

living in now.  

The transition from the 2-dimensional space to the 3-

dimensional space was a phase transition, which triggered the 

cosmic inflation.  

The e-boson played a pivotal role in the cosmic inflation. 

It sets the length scale  and time scales  of the cosmic 

inflation. In addition, the logistic recurrent processes started 

at time , they reached about halfway at , which 

corresponds to the birth of the e-boson. More importantly, the 

scalar e-boson with mass of  acted 

as the inflaton. According to the cosmology standard model, 

during the rapid expansion period, the inflation was driven by 

a scalar boson called inflaton. Physicists are looking for the 

inflaton for some time without satisfaction. Here is the e-

boson. It is a heavy scalar boson. It was born at the very 

beginning of the cosmic inflation and drove the space 

expansion to the very end of the inflation. More importantly, 

the e-boson serving as inflaton provides solution for a 

problem for cosmology standard model. The e-boson has 

extremely short life due to its heavy mass. After it decayed, 

the inflation lost its driving force and stopped, which resolves 

the troublesome nonstop inflation problem. The e-boson is 

not tailor made for cosmic inflation; instead, it is the 

requirement of logistic process, grand number, and Rule 6.1. 

In short, the e-boson fits the inflaton perfectly.  

The time scale of 36

33 10072.2/  cLt is roughly agreed 

with starting time of the cosmic inflation proposed by cosmology 

standard model. It is a good thing, but it raises questions. If  

corresponds the time of the cosmic inflation, what about  and 

? Were there two more inflations before the big one? These are 

very interesting questions. Space dimensions change is 

equivalent to phase transition, which releases energy causing 

inflation. The scale of inflation is determined by the amount of 

released energy. In this case, the released energy depends on 

three factors: the number of Planck cubes involved, the 

contraction depth of space elements, the total energy involved. 

The numbers of Planck cubes involved are 71, , and 

7

3 10483.3/ PLL  for the phase transitions occurred at , , 

and , respectively. The ratios of contraction depth are estimated 

as , ,     53/27

3 10067.1~10483.3~ R for the 

transitions occurred at ,  and , respectively. If the 

potential energy released is proportional to the square of 

, The ratios for the released energy is estimated as

102

3

2

2

2

1 10138.1:9082:1~:: RRR  , for the phase transitions 

occurred at ,  and , respectively. In terms of scales, it 

seems no comparison between the two inflations occurred at , 

 and the big one at . The two inflations at ,  were just 

mini rehearsals of the big show at . But there is another factor 

involved. According to the energy conservation law, the total 

energy of three cosmic periods and the 0-period should be the 

same. The big difference in the numbers of Planck cubes 

involved is partially compensated by energy per Planck cube. It 
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makes the released energy of three inflations quite different from 
102

3

2

2

2

1 10138.1:9082:1~:: RRR . According to this argument, 

the difference of three inflations’ scales could be closer. In other 

words, there were two comparable scale rehearsals before the big 

show.  

But the three inflations scenario has a glitch. Phase 

transition is an abrupt event occurred in an extremely short 

time interval. Noticed that, the 1-dimensional space actually 

is -dimensional, which has fractal behaviors. The 

transition from -dimensional space to 2-dimensional space 

is not necessarily corresponding to a violent phase transition 

happened suddenly at . Instead, it was a gradual process. If 

this argument holds, there were only two cosmic inflations 

occurred at  and .  

According to SQS theory, the phase transition happened 

at  corresponds to the big cosmic inflation proposed by 

cosmologist Ruth [19], which has been verified by astronomy 

observations. According to SQS theory, if there is one more 

phase transition happened at  corresponding to a cosmic 

inflation before the big one happened at . It should also 

leave some footprints somewhere. The most like place is the 

cosmic microwave background radiation (MBR). 

From SQS theory perspective, the early cosmological 

history is the natural evolution of the space structure with 

Gaussian spheres as building blocks. The results derived 

from it fit the cosmology standard model pretty well. SQS 

theory contributions are: (1) The cosmic periods and the 

generations of elementary particles are correlated to space 

dimensions; (2) It is determined by the prime numbers. In 

essence, everything is traced back to mathematics.  

Astronomical observations and measurements such as 

gravity lens effect and the cosmic MBR have found the 

evidence for dark matter. Astrophysics observations indicate 

that, the composition of universe is approximately 5% visible 

matter, 21% dark matter and 74% dark energy. What is dark 

matter made of? Physicists are looking for the answer for 

quite some time. The favorite candidates for dark matters are 

hypothetical particles such as the WIMP (Weakly Interacting 

Massive Particle), axion and heavy neutrino etc. These dark 

matter candidates are hypothetic elementary particles and 

only interact with visible matter via gravitation and weak 

interaction. Around the world, many underground 

experiments have been carried out to detect dark matter 

candidate particles rare interaction with visible matters. 

Despite the extensive efforts, so far, there is no confirmed 

positive result. It is the time for a second thought. 

Let’s look at the dark matter issue from SQS theory 

perspective. The Elementary Particle Table includes several 

undiscovered neutral heavy particles: , , , , 

, . But perhaps all of them are unstable particles, which 

do not fit the requirements for the dark matter. On the other 

hand, notice that, the reliable evidences for the existence of 

dark matter all are based on its gravitational effects. The idea 

for dark matter as elementary particle having weak 

interaction with visible matters is hypothetical without 

experimental support. There is no reason to reject other types 

of dark matter candidates interacting with visible matters 

only via gravity. Moreover, there is no reason to reject radical 

ideas such as: dark matter is made of something other than 

undiscovered elementary particles.   

Hypothesis 22.1: At least part of dark matters in the universe 

is the debris left over from the cosmos inflation. The 

dominate part of this type dark matters is 2-dimensional 

membranes, which interact with visible matters only via 

gravity. 

Explanation: The cosmos inflation was a gigantic violent 

event happened in an extremely short time interval with 

tremendous amount of energy involved. It is 

inconceivable to assume that, the phase transition only 

produced the 3-dimensional space out from a 2-

dimensional membrane. It is more natural to conceive 

that, the phase transition produced the 3-dimensional 

space along with many pieces of debris. Since the pre-

state of phase transition is a 2-dimensional membrane, 

the dominate part of debris is relatively small pieces of 

2-dimensional membrane. The phrase “part of dark 

matters” in Hypothesis 22.1 leaves room for other 

possible dark matter candidates. 

We haven’t found any dark matter, because we were 

looking for the wrong candidates. Dark matter may not be 

undiscovered elementary particles. According to Hypothesis 

22.1, dark matters are left over debris from the comic 

inflation and most of them are 2-dimentional membranes 

flooding around in 3-dimentional space. 

The new type experiments for searching dark matter 

should be based on its gravitation effects. Astronomical 

observations have found that, dark matter is mixed with 

visible matter all over the universe. Therefore, it is possible 

to design experiments for searching dark matter based on its 

gravitational effects. 

Suggestion 22.1: The new type of experiments for searching 

dark matter is to use extremely sensitive gravitation 

meter isolated from earthly interferences. As earth 

rotating around the sun, occasionally, a piece of 2-

dimensional membrane passes through the meter, which 

will produce a signal to indicate its gravitational effect 

as the evidence of its existence. The signal can be 

recorded by monitoring apparatus and analyzed by 

computer with recognition software. 

There is another possibility to verify dark matter. A piece 

of relatively large 2-dimensional membrane is capable to 

attract other membranes via gravity. When sufficient 

membranes get together in the right way, it is possible to 

trigger a mini-inflation type of phase transition to transfer a 

piece of 2-dimensional dark mater into a chunk of 3-

dimentional visible matter. From our perspective, the event is 

like that, a chunk of 3-dimensional visible mater suddenly 

appears from void. According to Conclusion 22.1, in the 2-
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dimensional membrane weak interactions are not in effect. 

The second generation unstable elementary particles such as 

muon, hadrons made of s-quarks, c-quarks and their anti-

particles in the membrane hold their decay and wait for the 

chance. Immediately after the mini-inflation, in the new born 

3-dimensional chunk, gauge bosons , ,  and massons 

become readily available and fully effective. These unstable 

particles are eligible to decay. As a result, a shower of high 

energy particles is released, which can be detected and serve 

as the evidence of the mini-inflation and dark matter. In 

addition, as mention previously, there were particles and anti-

particles left in the 2-dimensional membrane. If they did not 

have a chance to annihilate in the membrane, these particles 

and anti-particles should release at once at the mini-inflation. 

If they were annihilated in the membrane already, the 

annihilation products remained in the membrane should 

release also. Either way, showers of high energy -rays and 

other particles and anti-particles should be detectable.   

Suggestion 22.2: The way to verify the mini-inflation is to 

monitor the primary high energy cosmic rays. If the 

components fit the pattern of decay modes branching 

ratios of the second generation unstable particles or their 

annihilations products, these events serve as the 

evidence for the mini-inflation as well as for dark matter. 

Explanation: In fact, occasionally cosmic rays with 

extremely high energy has been observed coming from 

places such as the center of galaxy. If the branching 

ratios and products fit the right pattern, they can serve 

as the evidence of mini-inflation and dark matter. The 

key is to analyze the components whether fits the right 

pattern or not.  

So far, the cosmic history from big bang through inflation 

up to the current period is explained pretty well based on the 

prime numbers even pairs listed in Table 22.1 and the space 

structure and symmetries described in Section 21. It is natural 

to ask: What is the pre-big-bang history? What is the outlook 

for the cosmic future? The answers are also in the prime 

numbers table. 

As mentioned previously, in the third row and fourth row 

of Table 22.1, there is another set of 9 even pairs starting 

from  and ended at . According to 

Definition 22.1, it is qualified to be a 3-dimensional space 

corresponding to the pre-big-bang period. Its m-parameters 

are much larger than those of current 3-dimensional universe. 

It indicates that the elementary particles in the pre-big-bang 

period had extremely high energy to form the overheated 

quark-antiquark liquid state. More details will be given in 

Section 23.  

Now let’s look at the future destiny of universe. The 

cosmic history from pre-big-bang period through the 0-period, 

first period, second period and the current third period 

indicate that, in the cosmic scale, the direction of time arrow 

is from the set with larger prime numbers toward the set with 

smaller prime numbers. It means that, to read the sets of 

prime numbers listed in Table 22.1 corresponding to cosmic 

history should be from bottom up and from right to left. In 

other words, the cosmic time sequence is from the period 

with the set of larger prime numbers to the period with the set 

of smaller ones.  

Now we are in the current third period corresponding to a 

set of 18+1=19 prime numbers, in which 18 prime numbers 

for quarks is listed in the first row of Table 22.1 plus the even 

prime number 2 for electron not listed. In the set of 19 prime 

numbers, the smallest one is 1. At first glance, it seems no 

prime number smaller than 1. If that is the case, our universe 

eventually will come to an end. But Mother Nature always 

has her ways. The number axis centered at 0 has two wings, 

the right wing points toward positive numbers and the left 

wing points toward negative numbers. There is a set of 

negative prime numbers, which is exactly the same as 

ordinary prime numbers set with minus signs. Taking the 

negative prime numbers into account, there is a future for our 

universe. 

Definition 22.2: The negative prime numbers are defined as 

the negative value of the ordinary prime numbers, 

which correspond to the prime numbers listed in Table 

23.1 with minus signs. 

Hypothesis 22.2: In terms of cosmology and elementary 

particles, the negative prime numbers act the same way 

as their positive counterparts except that, all particle’s 

m-parameters and n-parameters change signs.  

 Definition 22.2 and Hypothesis 22.2 lay the theoretical 

foundation for the future and the pre-big-bang history of the 

universe.  

Astronomical observations found that, the universe 

currently is expanding with accelerating speed caused by the 

repulsive force of dark energy. Some cosmic models 

predicted that, the expansion will slow down and eventually 

turn to contraction. The contracting universe reverses its 

expansion process and finally back to a big crunch 

corresponding to the reverse of the big bang. Then the whole 

thing starts over again. The model is called “cyclic  model”. 

The universe cycles by itself over and over. Hypothesis 22.2 

supports the cyclic  model based on the negative prime 

numbers. The following is the scenario of universe future 

from SQS theory perspective based on Hypothesis 22.2. 

 The expansion of universe will slow down due to the 

dilution of dark energy density and eventually turn into a 

contraction. The evidence is in the extended prime numbers 

table. As time passing by, the corresponding prime numbers 

become smaller. Finally it reaches 1, which is marked as the 

end of the current third period. But the cosmic evolution does 

not stop. It continues its journey. The number passes through 

0, which is the m-parameter for the graviton. Then it enters 

into the negative territory. According to Hypothesis 22.2, the 

negative prime numbers correspond to the m-parameter 

changing sign. Theoretically, here are two ways for the n-

parameter to react: (1) The corresponding n-parameters also 

change its sign; (2) The corresponding n-parameters do not 

change sign. According to Definition 11.2, the second way 

means that all particles become anti-particles. All matters in 

W Z X
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the universe suddenly become anti-matters! This scenario is 

impossible. Then the only possibility is the first way as 

Hypothesis 22.2 stated. The simultaneously changing signs of 

both m-parameter and n-parameter indicate that, all particles 

change their handedness corresponding to change the 

direction of their momentum. This scenario is supported 

mathematically and physically. The mathematic support 

comes from prime numbers. At the time universe stop 

expansion, the prime number sequence passes 0 and enters 

the negative territory causing m-parameters and n-parameters 

both changing their signs. The physical support is that, as 

universe stops expansion and starts to contract corresponding 

to all particles’ momentum changing direction. This scenario 

is much easy to be accepted than the other scenario, all 

particles suddenly become anti-particles.  

Sine the negative prime numbers table is the same as the 

positive prime number table except the minus signs, as the 

universe starts to contract, it basically follow the reversed 

process of the expansion universe. It is like to play a video in 

the reverse order. The consecutive cosmic events sequence is 

like that, as the negative third period coming to its end, the 

universe enters to the negative second period, then the 

negative first period, the negative 0-period, the negative big 

bang, i.e. the big crunch, finally reaches the negative pre-big-

bang period, i.e. the post-big-crunch period, One cycle of 

universe oscillation is completed. The post-big-crunch period 

is the same as pre-big-bang period except that all m-

parameters and all n-parameters change signs corresponding 

to time arrow in the opposite direction. To start the next cycle, 

the post-big-crunch period must transfer into the pre-big-

bang period. This process can be realized through a “time 

tunnel”. Since both periods possess extremely high energy, 

according to general relativity, the space-time is extremely 

curved providing the conditions to form time tunnel. Fig. 

22.1 shows a diagram to illustrate the evolution of the cyclic 

universe.   
 

 
Fig. 22.1: Illustration of cosmic cycle based on prime numbers. 
 

The repetitive cycles of cyclic  model are in the 

cosmological sense. It does not mean that, everything in the 

universe will repeat exactly. In fact, according to SQS theory, 

space is stochastic in nature, which prohibits absolute 

determinism at the fundamental level and upper levels.  

The cosmic history described in this section is based on 

the prime numbers table and the Prime Number Postulation. 

It especially depends on the discovery of three sets of 

consecutive prime number even pairs serving as the 

mathematical bases for the first period, the second period and 

the pre-big-bang period. The correspondence of the original 

set of 18+1 prime numbers to the current third period is 

supported by many evidences. The question is: What is the 

mathematic relation between the newly found three sets of 

prime numbers and the original set of 18+1 prime numbers? 

Let’s start from the first prime numbers of the three sets, 

according to Table 22.1, which are 167, 101, and 239 for the 

first, second, and per-big-bang period, respectively. A simple 

arithmetical calculation found the following formulas. 

Period-I:  

, (22.9a)     

 Period-II: 

 ,    (22.9b)                                         

Period-III*: 

. 

       (22.9c)       

In which, Period-I, Period-II, and Period-III* are marked 

for first period, second period and pre-gig-bang-period, 

respectively.  

It is interesting to find some rules in (22.9). 

1. The first prime number 101 corresponding to Period-II 

equals to the sum of the ten consecutive prime numbers 

from 1 to 23 in the set of 18+1 prime numbers for the 

current third period.   

2. The first prime number 239 corresponding to Period-III* 

equals to the sum of the fourteen consecutive prime 

numbers from 1 to 41 in the set of 18+1 prime numbers 

for the current third period.   

3. The first prime number 167 corresponding to Period-I 

equals to the sum of the twelve consecutive prime 

numbers from 1 to 31 plus (1+2+3) in the set of 18+1 

prime numbers for the current third period. The repeat of 

three prime numbers (1+2+3) represents the fact that the 

space of Period-I is -dimensional, which is different 

from Period-II and Period-III*.  

The last prime numbers of the three sets corresponding to 

period-I, period-II, and period-III* are, 199, 157, 347, 

respectively.  

Period-I: ,   (22.10a) 

Period-II: ,                                    (22.10b) 

Period-III*: .   (22.10c) 

There are also some rules in (22.10). 

)321(3129231917131175321167 

231917131175321101 

41373129231917131175321239 

3
11

)321()7()13(535961199 

)37(5961157 

)43(414347535961347 
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1. The order of summation in (22.10) is backwards from the 

last prime number 61 of the 18+1 prime numbers set and 

consecutively takes the next one. 

2. After the backwards consecutive summation ended, it 

jumps to the prime number(s) shown in parenthesis.  

3. For Period-II, 37 is the prime number assigned to  as 

the up type quark of the 2nd generation. For Period-III*, 

43 is the prime number assigned to  as the up type 

quark of the 3rd generation. 

4. For Period-I, 13 and 7 are the prime numbers assigned to 

 and  as the up type quarks of the 1st generation. 

(1+2+3) indicates that the space of Period-I is -

dimensional, which is different from Period-II and 

Period-III*.   

The rest of prime numbers  in the three sets 

corresponding to Period-I, Period-II, and period-III* are 

expressed as follows. 

Period-I: ,     (22.11a)                                                                               

Period-II: ,   (22.11b)                                          

Period-III*: ,  (22.11c)                                          

In which  and  are two prime numbers selected from the 

set of 18 odd prime numbers from 1 to 61 corresponding to 

the current third period.  

These rules answer the question. There are mathematical 

correlations between the three sets of prime numbers and the 

original set of 18+1 prime numbers. It implies that, the three 

periods in cosmic history are closely related to the current 

periods. It also serves as another supportive evidence for the 

Prime Number Postulation and its roles in elementary 

particles and cosmology.  

Conclusion 22.2: Based on (22.9), (22.10), (22.11), the three 

sets of prime numbers even pairs corresponding to 

Period- I, Period-II, Period-III* are based on the original 

set of 18+1=19 prime numbers corresponding to the 

current Period-III.  

The selection of four sets of prime number pairs 

according to Definition 22.1, Postulation 22.1 and Lemma 

22.1 is based on the Prime Numbers Postulation and the even 

pairing rule. There are so many things depending on it. It is 

necessary to ask the question: Is it by coincidence? Let’s try 

to answer.  

The odd prime numbers are divided into two categories.   

The  category: ,              (22.12a) 

The  category:  ,  (22.12b) 

For a pair of two prime numbers, there are four possible 

combinations with average values as: 

,          (22.13a)                             

,          (22.13b)                             

,      (22.13c)                        

, (22.13d)                         

The distribution of prime numbers seems random. It is 

natural to assume that, the four combinations of (22.13) each 

has equal probability of occurrence. In other words, for two 

consecutive prime numbers being even pair or odd pair each 

has fifty-fifty equal chance. Based on this assumption, it is 

possible to give some estimation. As listed in Table 23.1, for 

the first set with 9 consecutive even pairs from  to 

 plus an odd pair  at end as a specific prime 

numbers sequence to occur randomly, the probability is 

. For the second set with 9 

consecutive even pairs from  to  plus two 

odd pairs  and  at both ends as a specific 

prime numbers sequence to occur randomly, the probability 

is . Likewise, for the two shorter 

sequences, the one with two generations has probability of 

, the one with one generation has 

probability of . In average, 

 means that the event only occurs once per 

1024 prime number pairs; for , it only occurs 

once per 2048 prime number pairs. These are the expected 

values according to statistics. But in fact, these two, not only 

one, sequences occurred in a set including only 71 odd prime 

numbers (35.5 pairs) from 1 to 353. The 71 odd prime 

numbers (35.5 pairs) also include the other two shorter 

sequences, and all four sequences are in the right order. Are 

all of these by coincidence? It is virtually impossible. 

Conclusion 22.3: The probability of four sets of prime 

number pairs occurred by coincidence in 71 least odd 

prime numbers sequence from 1 to 353 is in the order of 

. (22.14)              

The four sets of consecutive prime number pairs found 

in the prime numbers table shown in Table 23.1 based 

on the Prime Numbers Postulation and the even pairing 

rule are not by coincidence. 

Explanation: It is only a rough estimate. 71 divided by 2 is 

counting for prime number pairs.  

in denominator is for the 4 sets in the right order. 

The correlations of prime numbers to particle physics 

must have a deep origin. For instance, consider the question: 

Why the m-parameters and n-parameters of 18 quarks must 

be prime numbers? One possible reason is that, because 

prime numbers are not reducible, the 18 different prime 

numbers serving as m-parameters of 18 quarks prevent 

different quarks from mixed up by reductions; the n-

parameters of 18 quarks with prime numbers different from 

corresponding m-parameters prevent reduction with m-

parameters. In other words, the prime numbers serving as m-

parameter and n-parameter give each quark unique 

mathematical identity to avoid mixed ups by reduction.  

There is another stronger reason based on number theory. 

For the cyclic arithmetic theory, it is well known that, only 

the p-cyclic-arithmetic with p as prime number is self-

bc
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consistent for multiplication and division [18]. Since and 

 determines the lengths of loop-1 and loop-2, respectively, 

the m-parameter and the n-parameter equal to prime number 

have something to do with quark’s internal cyclic movements 

related to the p-cyclic-arithmetic.  

In terms of philosophy, prime numbers are the basic 

building blocks of numbers; likewise, quarks are the basic 

building blocks of matters. In fact, it was the author’s original 

intuition to purposely look into the prime numbers searching 

for possible physics significance. However, the deeper reason 

for the roles of prime numbers in SQS theory is still an 

interesting open issue worthwhile to dig in. 

In summary, the cosmic models and history provided in 

this section is based on prime numbers listed in Table 22.1 

and its extended version to the negative territory. The finding 

of three cosmic periods has its significance. It confirms the 

importance of the Prime Numbers Postulation for dealing 

with elementary particles as well as for identifying cosmic 

periods. It provides a chance to recognize the meaning of 

intrinsic symmetries based on the geometry of the two parts 

of face-centered space structure introduced in Section 21. It 

reveals cosmic history and links it to elementary particles. It 

provides natural explanations for the big bang, inflations, 

dark matters etc. It predicts the future destiny of universe. It 

also provides two suggestions for verification.   

The cosmic models and evolution according to SQS 

theory described in this section agreed with cosmological 

standard model pretty well. It serves as a supportive evidence 

of the face-centered space structure. Moreover, the 

classification of space symmetries as ,  and the 

Symmetries Family Tree provide the bases to identify the 

elementary particles and interactions in different cosmic 

periods, which are self-consistent and agreed well with 

particle physics and cosmological standard model. It cannot 

be by coincidence, which gives the credential for both. These 

agreements also serve as the supportive evidences for 

Definition 22.1 and Postulation 22.1 introduced at the 

beginning of this section.   

There is a pending issue to think about it. The expansion 

of universe corresponds to entropy increase. Then the 

contraction of universe corresponds to entropy decrease. Is it 

a violation of the second law of thermodynamics?   

 

Section 23: The Monster and Two Other Sporadic 

Groups 

 

The finite Lie groups are classified into two categories, 

the classical groups and the sporadic groups. There are 26 

sporadic groups in the second category [18]. Three sporadic 

groups M (Monster, E8) B (Baby monster) Suz (Suzuki) are 

closely related to the m-parameters and to some extent n-

parameters of three generation elementary particles. It is a 

finding with important impacts on particle physics and 

cosmology. 

The size of these three groups is factorized into prime 

numbers [18], which are listed in Table 23.1. The m-

parameters of 18 quarks are also listed for comparison. 

Let’s take a closer look of the comparison between the M-

group size factors and the m-parameters of 18 quarks. 

The size for M-group is factorized into 15 prime numbers 

with different powers, in which 1 is not included. From SQS 

theory standpoint, the prime number 1 must be included with 

power any integer: 

 . (23.1) 

 

Table 23.1: Factors of Three Sporadic Groups Size versus the 

m-Parameters of Quarks 

 
* The prime numbers marked with under line are missing in the factors 
sequence of corresponding group. 

 

Except the last prime number 71, which will be discussed 

later, there are 15 prime numbers left. In which 2 is the only 

even prime number assigned as the before reduction m-

parameter of electron red branch . To compare the 14 odd 

prime numbers with the 18 prime numbers assigned as the m-

parameters of three generation quarks, there are 4 prime 

numbers 37, 43, 53, 61 missing in the M-group factors 

sequence. At first glance, the missing prime numbers seem a 

defect for the correlation between these two sets of prime 

numbers. Actually, it is just the opposite. The missing prime 

numbers have deep meanings. The missing prime numbers 53 

and 61 are the m-parameters shared by ,  and , , in 

which  and  are the two components of gauge bosons 

 and . The missing prime number 37 is the m-parameter 

shared by  and , which is one of the two components 

for the gauge boson . So the three prime numbers 37, 53, 

61 all have the common reason for missing in . They are 

the m-parameters of quarks serving as the constituents of 

bosons for weak interaction. The missing prime number 43 

also has a meaning. The three prime number 43, 53, 61 are 

the m-parameters for three top quarks , , , which have 

mass heavier than . According to Rule 6.1, top quarks 

m
n

)(rO )(rC

n
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must appear in pair with anti-quarks as a boson state. 

Therefore, for the four missing prime numbers in the M-

group, they all are involved in something related to bosons or 

boson states with more than one quark (anti-quark) involved.  

The size for the B-group is factorized into 12 prime 

numbers: 

 . (23.2)                           

Except the last prime number 47, which will be discussed 

later, there are 11 prime numbers left. The 10 odd prime 

numbers compare with the 12 prime numbers assigned as the 

m-parameters of first and second generation quarks, there are 

two prime numbers 29, 37 missing in the B-group. According 

to the some rule, 29, 37 are the m-parameters shared by , 

 and , , which are the two components of gauge 

boson .  

The size for the Suz (Suzuki) group is factored into 7 

prime numbers:  

.           (23.3)                                              

In which the 6 odd prime numbers are the m-parameters of 

first generation 6 quarks. There is no missing prime number 

in . 

Rule 23.1: The prime number factors sequence of three 

sporadic groups M, B, Suz are closely related to the m-

parameters of three generation elementary particles. The 

correlation rules are:  

1. The even prime number 2 is the before reduction m-

parameter of electron red branch.  

2. The odd prime numbers are related to quarks’ m-

parameters of corresponding generations, all three 

generations, first generation plus second generation, 

and first generation for M-group, B-group, and Suz-

group, respectively. 

3. The missing prime number in the factors sequence 

corresponding to up type quark’s m-parameter is 

related to boson or boson state with more than one 

types of quark (anti-quark) involved. 

4. The missing prime number in the factors sequence 

corresponding to down type quark’s m-parameter ends 

the previous generation(s). 

Explanation: The rules from No.1 to No.3 have been 

explained. Let’s talk about rule No.4. The M-group 

prime number factors sequence missed two prime 

numbers 61, 67, between 59 and 71, in which the 

missing of 67 corresponding to the down type m-

parameter ends all three generations. The B-group prime 

number factors sequence missed three prime numbers 

37, 41, 43 between 31 and 47, in which the missing of 

41 corresponding to the m-parameter of a down type 

quark  ends two previous generations. The Suz-group 

prime number factor sequence ends at 13, the missing of 

17 corresponds to the m-parameter of a down type quark 

 ends the first generation. In summary, the missing 

prime numbers in three sporadic groups’ factored 

sequences are classified into two categories: (1) The 

missing prime number corresponding to the m-

parameter of up type quark is related to boson or boson 

state with more than one types of quark (anti-quark) 

involved; (2) The missing prime number corresponding 

to the m-parameter of down type quark ends the 

previous generation(s). The correlation is one on one for 

every one without exception, which cannot be by 

coincidence.  

Rule 23.1 reveals the intrinsic correlation between three 

sporadic groups and three generations of quarks and the 

electron red branch. It clearly shows that, the assignment of 

18+1=19 prime numbers as m-parameters of 18 quarks and 

electron red branch is supported by three sporadic finite Lie 

groups. More importantly, it provides the third mathematic 

evidence for the conclusion of only three generations of 

elementary particles. The first evidence is the Prime Numbers 

Postulation based on number theory. The second evidence is 

the magic number 163 also based on number theory. Here 

comes the third independent evidence based on group theory. 

The M-group is the largest group. Its correlation to all three 

generations leaves no room for more generation. No other 

group can change the conclusion, because no group is larger 

than the M-group.  

Moreover, the No. 3 rule of Rule 23.1 supports the 

assignment of up type quark’s m-parameter as m-parameter 

for the fermion constituents of gauge bosons W, Z and X. 

In addition, as shown in Table 23.2, the prime number 

factors of three sporadic groups also related to the n-

parameters of quarks.   
 

Table 23.2: Factors of Three Sporadic Group Size versus n-

Parameters of Quarks 

 
* The prime numbers marked with under line are missing in the factors 

sequence of corresponding group. 
 

As shown in Table 23.2, most quarks’ n-parameters are 

selected from the prime number factors sequence of 

corresponding sporadic group. There are exceptions marked 

with underline. The exceptions for up type of quarks , , 
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 and  can be explained with the some rule for the m-

parameters. There is one exception in a down type quark, 

which is  for . What’s the implication for this 

down type exception? It is an open issue.  

In Table 23.3, the products of factors in orders of 

magnitude for three sporadic groups are listed. For 

comparison, the products of quarks’ m-parameters for three 

generations along with the pre-big-bang period are also listed. 
 

Table 23.3: The Products of Factors for M, B, Suz groups and 

Products of m-Parameters 

 
Note:  is the rank of the grand number. 
 

In the 7 products shown in Table 23.3, the 6 products 

either are grand numbers or close to a grand number. The 

only exception is the first generation. It shows that, grand 

numbers are common phenomena. They can be found in 

particle physics and cosmology as well as in mathematics 

such as group theory and number theory.  

It is interesting to point out that, ,  and 

 are odd numbers, while  and  are even 

numbers. Moreover,  is the double of . It serves 

as a clue for the relation between these two periods. 

So far in this section, all prime number factors of three 

sporadic groups M, B, Suz are covered with two prime 

numbers 47 and 71 left, which are the last prime number after 

corresponded generation ended. Let’s look at them closely. 

For the largest prime number 71 in , the first clue 

comes from GUT: 

.    (15.11)                             

The relative deviation of 
 
 from the prime 

number 71 is 410845.8  . In (15.11),  is the converting 

factor for the grand unification scalar boson  with mass 

218 /1007948.1 cGeVM GUT  , while  is the fine 

structure constant at Z boson mass . The 

two very different energy scales do not match. Consider the 

asymptotic behavior of  as a running constant, it 

seems reasonable to use the prime number 71 to determine 

the value of : 

.                   (23.4)                                       

This is a new way to determine the value of  at a particular 

mass scale, which is independent of the method used in 

Section 9. More details will be given later in this section. 

Compare 6900169.127)( 

GUT

i M   with the 

experimental data from 2010-PDG (p.126): 

, the value given by (23.4) seems 

reasonable. In other words, the grand unification of all 

interactions to gravity actually occurred at characteristic 

length scale: 

mLL PGUT

33101475375.171  .     (23.5)                                 

This is the reason to use  as in (22.6a) for the 

length scale of first period. 

The prime number 71 serves as the characteristic length 

for the grand unification. It should also have other geometric 

and physics meanings.  

Definition 23.1: The M-sphere is defined as a sphere in space 

centered at a vertex with radius of: 

 .   (23.6)                            

It turns out that, the M-sphere is an important concept 

related to many issues. 

The spherical surface of M-sphere is the boundary 

between microscopic region and the transitional region. 

According to SQS theory, space is divided into three regions: 

Inside of the M-sphere is the microscopic region, which is the 

territory of elementary particles, composite particles and their 

different states. The region with linear scale between 

 and Compton scale MchC /  is 

defined as the transitional region, which is the playground of 

the random walk and the logistic recurrent process discussed 

in Section 4 and Section 16, respectively. The region with 

linear scale larger than Compton scale is the macroscopic 

region.  

Take  as radius and draw the M-circle on the 

surface of M-sphere at the same center. The circumferential 

length of the M-circle is: 

PPM LLL 10615681.446712   . (23.7a)                                

Taking  as basic length unit,  becomes a number: 

10615681.446712  ML . (23.7b)                                        

In the following discussions, all lengths are numbers with 

 as the basic length unit.  

In Fig. 23.1(a), the intersections of two adjacent Gaussian 

spheres to the M-sphere surface are shown as two circles with 

radius . The distance between the two centers is 

. The two circles are either centered at two adjacent 

octahedral vertexes representing two fermions or one 

centered at an octahedral vertex and the other centered at an 

adjacent cubic vertex representing a fermion and a boson. 

The span angle of  on the M-circle with respect to its 

center is: 

. (23.8)                
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As listed in Table 11.5, the average tilt angle for quarks and 

leptons from  is: 

.       (23.9)                                                        

Comparing  to , the relative discrepancy is 

. The near equality of  and  has deep 

meanings. The arc length of 53410359.0  on the M-circle 

is: 

.       (23.10)  

As shown in Fig. 23.1(a), the center of the right Gaussian 

sphere shifts towards left and brings the Gaussian sphere with 

it to a new location shown by the red circle.  is the 

distance between its original location and the new location 

after shifted. At its new location, the shifted Gaussian sphere 

overlaps with the Gaussian sphere at left. The distance 

between the centers of these two Gaussian spheres is:  

 .      (23.11)                                 

As shown in Fig. 23.1(a), these two Gaussian spheres are 

almost entirely overlapped. 

 
Fig. 23.1: Pairs of adjacent Gaussian spheres intersect with M-

sphere surface. 
 

Fig. 23.1(b) shows the case for two adjacent Gaussian 

spheres on the M-spherical surface centered at two adjacent 

cubic vertexes representing two bosons. The distance 

between them is . The right Gaussian sphere shifts 

towards left with a distance of . After 

shifted, its center is locates at a distance of  from the 

center of its neighbor:  

.       (23.12)                                         

As shown in Fig. 23.1(b), the center of shifted Gaussian 

sphere just gets into its neighbor’s boundary and overlaps 

with it about halfway.  

The overlap of two Gaussian spheres means that, the 

vertexes at the center of Gaussian spheres are statistically no 

longer clearly distinguishable. As shown in Section 21, 

vertexes serving as elements of symmetries represent 

elementary particles. The overlapping Gaussian spheres are 

interpreted as two elementary particles represented by two 

vertexes no longer clearly distinguishable, which causes the 

symmetry broken. 

In particle physics, at extremely high energy, particles are 

no long distinguishable. Quarks and anti-quarks with 

extremely high energy form the “quark-antiquark liquid 

state”. The phenomenon has been demonstrated by physicists 

working on RHIC at Brookhaven National Laboratories and 

LHC at CERN. They found that, the quarks and anti-quarks 

are bound relatively tight to form a liquid like state.  

The energy associated with particles increases rapidly 

with corresponding radius  in the symmetrical space. As 

shown in Section 21, the first generation quarks, u and d, 

with mass less than  correspond to vertexes in the 

region with radius . The top quarks t with mass of 

 corresponds to vertexes in the region with 

radius . The 3 times radius increase causes the particles’ 

mass more that  times increase. Now, the M-sphere has a 

radius of , comparing with  is more than 23 

times increase in radius. It pushes the energy well into the 

quark-antiquark liquid state territory. In fact, the energy scale 

of grand unification happened on the M-sphere surface is 

as listed in Table 15.1. 

Consider all of these facts, there are sufficient reasons to 

identify the region near the M-sphere inner surface as the 

region for the quark-antiquark liquid state.     

Now let’s deal with the largest prime number 47 in the B-

group factors sequence. 

Definition 23.2: The B-sphere is defined as a sphere in space 

centered at the same center of the M-sphere with radius: 

 .        (23.13)                                

Take  as radius and draw the B-circle on the B-

sphere surface with the same center. The circumferential 

length is: 

.        (23.14)                                   

The arc length of 
53410359.0  on the B-circle is: 

. (23.15)             

Using the same method for calculation, the results on the B-

spherical surface are: 

.     (23.16a)                                

.      (23.16b)                                      
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As shown in Fig. 23.2(a), the center of right Gaussian 

sphere is shifted towards left at 0.268979071  Bd from the 

center of its neighbor and overlapped with its neighbor about 

half way. As shown in Fig. 23.2(b), the center of right 

Gaussian sphere is shifted towards left at 

from the center of its neighbor, and two spheres are 

marginally overlapped. 

It seems reasonable to call the region between B-sphere 

surface and M-sphere surface as the “quark-antiquark liquid 

region” or “liquid region” for short. But as shown by Fig. 

23.2(b), the two Gaussian spheres are not detached yet. Inside 

the B-sphere, there are some liquid state remains left.    

To find a clear cut for the liquid state region, let’s search 

for another sphere. The M-sphere and B-sphere are defined 

by the prime numbers 71 and 47 of the M-group and B-group, 

respectively. The number 47 is the largest prime number in 

the B-group factors sequence corresponding to the m-

parameter  of  quark in the third generation. As 

shown in Table 23.1, for the Suz-group, there is no such 

prime number like 47 for the B-group. Look at it the other 

way, the first generation corresponding to Suz-group does 

relate to a prime number at similar location as 47. The 

number is  of  quark in the second generation. 

Comparing with  for the   quark in the third 

generation, they sit at similar locations with a generation 

difference. Before take  seriously, let’s look at the 

three prime numbers in another way: 

,   (23.17a)                                                      

,      (23.17b)                                                  

,                                  (23.17c)  
   

 
 

Fig. 23.2: Pairs of adjacent Gaussian spheres intersect with B-sphere 

surface. 
 

The three numbers on the right look familiar as shown in 

Table 18.3. And these three numbers also serve as building 

blocks of the Number Tower to raise the magic number 163 

to the top. The “ ” term in (23.17) can be interpreted as 

adding the graviton, which is included in the Elementary 

Particle Table. 

If the three formulas of (23.17) are not by coincidence, 

they provide two implications: (1) They serve as the second 

support for the Elementary Particle Table and its 

classification for particles; the first support is the Number 

Tower and the number 163 on top of it. (2) They provide the 

reason for using 23 to define a sphere like 47 to define the B-

sphere and 71 to define the M-sphere. 

Moreover, look closely at the factors sequence of size for 

other sporadic groups, there are three groups called Conway 

groups labeled Co1, Co2, Co3 with similar structure as the 

Suzuki group Suz. The factors sequences of Co1, Co2, Co3 

are: 

,     (23.18a)                                    

,   (23.18b)                                                       

.   (23.18c)                                                      

The prime number 23 appears in , ,  located at the 

right place corresponding to the down type quark  with 

. These facts serve as the additional reasons for 

using the prime number 23 to define a sphere. Finally, there 

is another supportive fact: 

.                 (23.19)                                                       

Definition 23.3: The S-sphere is defined as a sphere in space 

centered at the center of the M-sphere with radius of: 

 .        (23.20)                                 

Take  as radius and draw the S-circle on the S-

sphere surface with the same center. The circumferential 

length of S-circle is:  

.   (23.21)                                         

The arc length of 53410359.0 on the S-circle is: 

.       (23.22)                

Using the same method for calculation, the results on the S-

sphere surface are: 

,                          (23.23a)                                     

.    (23.23b)                                          

As shown in Fig. 23.3(a), the center of right Gaussian 

sphere is shifted towards left at a distance  

from its neighbor and two spheres are overlapped marginally. 

As shown in Fig. 23.3(b), the center of right Gaussian sphere 

is shifted towards left at a distance 0.785597082  Sd  from 

its neighbor and two spheres are detached.  

Definition 24.4: The three regions inside the M-sphere are 

defined according to their radius ranges: 
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The quark-antiquark liquid region:   

,                                (23.24a) 

The intermediate region:  4723 int  r  ,  (23.24b)                          

The particles region: .                    (23.24c) 

Explanation: In the quark-antiquark liquid region, the 

undistinguishable particles form the quark-antiquark 

liquid state having extremely high energy corresponding 

to extremely high temperature. In the transition region, 

individual particles are barely distinguishable, and some 

liquid states remains left near the B-spherical inner 

surface. In the particles region, most particles are clearly 

distinguishable. The detachment shown in Fig. 23.3(b) 

indicates that, the two Gaussian spheres centered at two 

adjacent vertexes representing two bosons are no longer 

mixed up. As shown in Fig. 23.3(a), the two adjacent 

Gaussian spheres with center to center distance 

 always have some chance to mix up. In case 

the two Gaussian spheres centered at different types of 

vertexes, one at octahedral vertex presenting a fermion 

and the other at cubic vertex representing a boson, the 

mix up does not blur their identity because they belong 

to different types. In fact, these two Gaussian spheres 

are touched at their boundary to begin with. Any shift 

no matter how tiny causes overlapping. It indicates that, 

fermions and bosons are intrinsically linked. In case the 

two Gaussian spheres centered at two adjacent 

octahedral vertexes represents two fermions, they have 

chance to mix up and to blur their identity.  
 

 

 
Fig. 23.3: Pairs of adjacent Gaussian spheres intersect with S-sphere 

surface. 
  

The Gaussian spheres shifting locations are caused by the 

tilt angle , which breaks the symmetry and 

provides mass for particles. It is possible to give some 

interpretations for the Gaussian spheres shifting. The two 

bosons represented by two detached spheres are interpreted 

as bosons without mass. The one sphere representing a boson 

overlapped with the other sphere representing a fermion is 

interpreted as the boson gained mass from its component 

fermions. The two overlapped spheres representing two 

fermions are interpreted as fermions with mass. In fact, all 

fermions have mass, while bosons such as , , 

 have no mass; bosons such as , , , 

, , ,  gained mass from component 

fermions. So the interpretations seem reasonable within the 

particles region inside the S-sphere.  

Let’s look at the scenario shown in Fig. 23.2 for the 

intermediate region. The overlapped spheres shown in Fig. 

23.2(a) are overlapped more, which means the particles with 

mass gained more mass. Since the intermediate region has 

much high energy than the particle region, the mass gain 

sounds reasonable. The detached spheres shown in Fig. 

23.3(b) are overlapped, which means the original massless 

boson gained mass. Is that possible? Recall the e-boson made 

of a pair of electron and positron having mass 

. Actually the e-boson is a “heavy 

photon” with zero spin. Why does the spin change? Because 

their numerical parameters combine in different ways.  

Regular photon: , , , 

; , 

.         (23.25a) 

Heavy photon: , , 

, ; 

, . 

 (23.25b) 

So the e-boson as heavy photon with zero spin is explained 

and consistent with the rules. This argument also explains the 

fact that, gluons have zero mass and spin , while , , 

 and massons have mass and spin 0. So everything is 

consistent. 

It is important to point out that, the e-boson as heavy 

photon is not another elementary particle. It is just a high 

energy state of the photon listed in the Elementary Particles 

Table, in which the heavy photon is not qualified to have its 

own seat.  

Inside  S-sphere, the number of vertexes is estimated as: 

,                         (23.26)                          

The volume of Gaussian sphere:    

,                       (23.27a) 

The volume of S-sphere:                 
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,                                (23.27b) 

The face-centered filling factor:     

.                                 (21.1)   

Substituting (23.27) and (21.1) into (23.26) yields: 

,                   (23.28a)                             

For comparison:        

,       (23.28b)                                                                 

.      (23.28c)                            

The S-sphere with  vertexes has sufficient 

room to accommodate all different types of elementary 

particles, composite particles and their different states.  

The term “liquid” of quark-antiquark liquid state is not 

just symbolic, it has real implications. As mentioned in 

Section 21, space has its crystal structure with face-centered 

lattice. In the particles region, space structure is either single-

crystal or poly-crystal akin to the solid. As energy and 

temperature rising, space in the intermediate region 

corresponding to very hot solid is starting to melt. After 

temperature rose to “melting point”, space becomes liquid. In 

the liquid region, even though temperature is extremely high, 

the binding force is strong enough to hold Gaussian spheres 

in the liquid state. It shows that, the term “liquid” is a good 

analogy to the space structure in quark-antiquark liquid 

region, which is also supported by experiments at RHIC and 

LHC.   

Let’s apply the analogy to the pre-big-bang period. As 

listed in Table 22.1, the pre-big-bang period prime numbers 

sequence starts at 239, which is about 3.366 times of 71. It 

indicates that the lowest energy corresponding to 239 for the 

pre-big-bang period is many orders of magnitude higher than 

the highest energy in the liquid region of the M-sphere. In 

other words, the entire pre-big-bang sphere is in over heated 

liquid state. Any random stimulation causes the overheated 

pre-big-bang sphere to evaporate into “gaseous state” with 

free Gaussian spheres flying around. This is exactly the big 

bang scenario described in Section 22. The 3-dimensional 

over heated liquid sphere serves as the origin of universe 

corresponding to the pre-big-bang period. Then the big bang 

consecutively developed into the first period, the second 

period, and the current third period as described in Section 22.  

It shows that, early cosmic history described in Section 22 

is not only supported by the prime numbers table and the 

Prime Number Postulation but also supported by the category 

of regions for space based on three sporadic groups.        

Back to the tilt angle of . The tilt 

angle  deviated from  is calculated according 

to (8.38) based on AT-equation and PS-equation with the data 

cited from particles’ parameters of their models. Since AT-

equation and PS-equation are not derived from the first 

principle, their ad hoc nature requires verification and 

accuracy needs to be determined. As mentioned previously, 

the relative discrepancy of  from 

 is .  is 

the angle for totally overlapping of two Gaussian spheres 

shown in Fig.23.1(a). Use it as a criterion, the relative error 

caused by AT-formula and PS-equation is estimated no more 

than  on the upside. On the down side, as 

shown in Fig.23.1(b), use the right sphere center just 

touching to the left sphere surface as the criterion. The right 

sphere shifting distance is  

corresponding to a span angle on the M-cycle of :  

.   (23.29)                                      

Compare to the tilt angle 53410359.0 , the down side 

relative error is estimated as . It seems 

safe to say that, despite its ad hoc nature, the AT-equation and 

the PS-equation provide results in the ballpark. In Section 8, 

the AT-equation and the PS-equation as two independent 

equations with only one variable are satisfied simultaneously. 

It indicated that, there is something in it. Now the AT-

equation and PS-equation have a second independent 

verification. These verifications are critical. Because so many 

things depend on it such as the f-modification, the effective 

parameters, and the significance of M-sphere, B-sphere, S-

sphere etc. In fact, the AT-equation and the PS-equation catch 

the essence of elementary particles to break symmetry, to 

acquire mass and other related effects. This seems not an 

over statement. 

So far the correlations and meanings of all prime numbers 

in the factors sequence of size for three sporadic groups are 

covered. There is one issue left. Besides electron’s red branch 

with m-parameter , the other leptons’ m-parameters 

are not related to the sporadic groups. The before reduction 

m-parameters for charged leptons are even numbers. Except 

 as the only even prime number, all others are not 

prime numbers. This is the reason for them not listed in Table 

23.1. But an even number can be factorized into prime 

numbers. The factorized prime numbers sequence of three 

charged leptons’ m-parameter with their branches as shown 

in Table 23. 4. The factors sequence  of the M-group is 

also listed at the bottom for comparison. 
 

Table 23.4: The Factors of the before reduction m-Parameters 

for Charged Leptons  
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In the nine sets of prime number factors for three charged 

leptons with branches listed in Table 23.4, there are 6 prime 

numbers involved. In which 2 appears 11 times as , 3 

appears 6 times as ,  5 appears 3 times as , and 7 , 13, 

17 each appears 1 time as , , , respectively. To 

inspect the prime number factors in a symmetric manner, 

some criteria are needed.  

The loose criterion: All prime number factors of charged 

leptons’ before reduction m-parameters must be 

included in the prime number factors in  of the M-

group.  

Notice that, 2, 3, 5, 7, 13, 17 all are included in the factors 

of . Apparently they meet the loose criterion.  

The strict criterion: All prime number factors of charged 

leptons’ before reduction m-parameters must be 

included in the prime number factors in  of the M-

group under the condition that, the number of times 

used for a prime number in the m-parameters of quarks 

and charged leptons does not exceed that prime 

number’s power number in  factors. 

In the  sequence, the 

power numbers for 2, 3, 5, 7, 11, 13 have sufficient room to 

accommodate  , , , ,  , in which “+1” is 

to count they used once for the m-parameter of quarks 

already. But 17 in is a problem, because 17 appears in 

 sequence only once and it has been used for the m-

parameter of strange red quark  already. It does not meet 

the strict criterion.  

There are ways to dealing with the problem. 

1. The before reduction m-parameter of  

is derived from the m-parameter of two quarks  and  

with m-parameters of , . To switch the 

m-parameters for  and , the new m-parameters of  

ad  becomes:  

,  (23.30a)               

.    (23.30b)                 

 If the n-parameters and p-parameters are switched with 

the m-parameters, nothing else is changed except the 

colors green and blue switched accordingly. The problem 

goes away. But it raises another question: Why switch 

number parameters for these two quarks? Besides, the 

switched m-parameters of these two quarks violate the 

order of prime number sequence. This approach is 

questionable.  

2. The problem is originated from only one 17 in the factors 

of . Multiplying 17 to the  sequence yields a new 

sequence  :  

 (23.31) 

 The problem goes away. Multiplying M-group with 

another prime number sounds like a wild idea. But there is 

an additional merit: 

.   (23.32)                   

  Back to Table 23.3, unlike the other two sporadic groups 

with  and  as  and  grand numbers, 

 is more than one order of magnitude away 

from  grand number.  is a  

grand number, which puts it in line with B-group and Suz-

group in terms of grand number ranks. The number 17 

also appears two times for the n-parameter of  and  

as shown in Table 23.2.  resolves the similar 

problem over there as well. So the multiplication of 17 to 

 for the M-group may have some hiding reason in it. 

After all, it seems not a waste effort for taking the strict 

criterion and deliberately looking for problems.  

There is something special for the M-group. It defined the 

M-sphere, which provided many physics insights. Its largest 

factor 71 is a special prime number with many physics 

significances. The number 71 defined the M-sphere radius. 

The prime numbers table alone is not sufficient to make the 

decision. The M-sphere with radius 71 provided the span 

angle of . This angle is checked with the 

average tilt angle  to verify the AT-

equation and PS-equation. Moreover, as shown by (15.11), 

the relative deviation of  from the prime 

number 71 is only , which leads to a important 

clue for a formula to define the fine structure constant at 

GUT scale: 

.     (23.4)                                        

The  as a constant in (23.4) is a special case for the boson 

 with extremely heavy mass . For other particles, the 

general form of  is defined differently. 

Definition 23.5: The  of a fermion or a fermion state 

with mass  is defined as: 

;     (23.33a)                                               

.       (23.33b)                                             

In (23.33),  is the fermion’s loop-2 length,  is the 

average value of  around loop-2, which is related 

to particle’s mass.  

Explanation: Definition 23.5 is a new way to define the fine 

structure constant based on a specific prime number 71 

and geometry. It serves as an example to trace the 

mathematic origin of a physics constant, which fits SQS 

philosophy.  

Formula (23.4) for  is a special case of the 

general definition (23.33).  is the 
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mass of  for grand unification. For the scalar boson  

made of two constituent fermion states with such extremely 

heavy mass, the value of  is extremely close 

to . The reason is that,  constituent’s spindle type torus 

model elliptic cross section on x-z plane with  is 

elongated so much to make  with 

negligible deviation. 

  serves as an example 

for the validity of Definition 23.5 at the heaviest mass of 

mass spectrum. 

Take electron as another example. As shown in Section 8, 

the electron torus model loop-2 circular cross section on x-z 

plane is divided into two halves. The outer half has positive 

curvature with ; and the inner half has negative 

curvature with . According to (23.31b),  is 

calculated using the following formulas. 

For outer half:  

,    (23.34a)                                     

For inner half: 

,   (23.34b)   

Overall average:  
2

io 



 .         (23.34c)                                                         

In (23.34), each of the cross section two halves is divided 

into  slices along y-axis and the values of  are 

calculated step by step. Then take a summation to get the 

average value of  and . (23.34c) is used for the overall 

average of . In (23.34b) for inner half, the term 

 is the variation amplitude in a circle on 

the saddle-shape surface with radius of , which is 

originated from (8.12a).  

The results of 16-digit numerical calculation based on 

(23.33) and (23.34) for the electron’s original version with 

 are listed in the first row of Table 24.5.  

As shown on Table 24.5 first row, the calculated value of 

 based on the original  and  is 

agreed with the 2010-PDG data  with a 

relative deviation . The agreement is an 

important verification in many senses.  

1. Definition 23.5 is verified not only for  but 

also for . The mass  of  and the mass 

 
of electron are at two ends of the mass spectrum. It 

is hopeful that Definition 23.5 is also valid for particles 

with mass in between.   

2.  as a physics running constant is originated 

from the mathematic running constant . It serves as an 

example to support SQS theory philosophy. Ultimately, 

a valid unified theory should have no more than three 

basic physics constants and no other physics inputs. To 

convert  from a physics running constant to a 

mathematic one is an important step toward the right 

direction. 

3. It confirms that, the prime number 71 originated from 

the M-group has many impacts on different issues. 

(23.33) is just one of them, but it is an important one. 

Because (23.33) is a very simple formula, it only has a 

prime number 71 and a geometrically originated 

mathematic running constant . 

4. It confirms that, the electron torus model is correct in 

terms of its shape, sizes and the characteristic points. 

Sine electron serves as the base for other elementary 

particles, this confirmation has its significance.    

To compare theoretical value of  

with  2010-PDG data (p.126) , 

the relative deviation of  is out of its error range. 

In the formulas of (23.34), except the summation index 

truncation determined by convergence, there is no adjustable 

parameter. The index truncated at  is sufficient for 

the converge with uncertainty less than . In fact, 

(23.34a) and (23.34b) are checked by taking integrals to 

replace the summations, which are agreed to each other with 

. Back to the electron model and parameters, there is 

no adjustable parameter either (for electron, before reduction 

number parameters , ,  are uniquely 

determined without alternative). Without adjustable 

parameter is a good thing for a theory. But it raises a 

question: Where does the  relative deviation 

come from? One possible clue is that, formulas (23.34a) and 

(23.34b) are based on the torus model; the real model for 

electron is trefoil type with three torus as branches. As 

shown in Fig. 12.2, a part of torus outer half is in the 

combined region, which may have some deformation. 

(23.34a) does not take it into account. It may cause minor 

error.  
 

Table 23.5: The Calculated  for Electron, Z and  

Bosons with * 

 
 * The results are based on 16-digit calculation, only 8 digits after decimal 

point are listed. 
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** Relative deviation for is based on 2010-PDG data: 

; Relative deviation for  is based on 

2010-PDG data: . 916.127)(1 

ZM . 

*** The electron orig. data are based on , ; the electron 

modif. data are based on f-modification with , 

. 

**** The data for are based on , 

.  

  

It must point out that, formula (23.34b) is valid only for 

torus model with circular x-z cross section. The inner half 

formula for elliptic cross section is complicated. The two 

equations (8.13a), (8.13b) with ,  have two 

unknowns , , which are solved numerically by trial and 

error method. A tailor made program for calculating  is 

not available in the meantime. When adequate numerical 

method is available, it can be used to calculate  for 

other particles as well.  

Fortunately, particles with mass  have 

spindle type torus model, its loop-2 cross section inner half 

does not have negative curvature. The problem with (23.34b) is 

irrelevant. For these particles, (23.34) is modified as: 

For outer half: 

 ,   (23.35a)                                   

For inner half: ,                    (23.35b)                                                                         

Overall average: .  (23.35c)                                                                     

The modified formulas of (23.35) is used to calculate 

 for Z boson with mass  

made of two fermion states  and . The results are listed 

in Table 25.4 third row. The calculated value of 

 is in between 
 

cited from 2010 PDG (p.126) and 
 
of 

reference [17] from Jegeriehner. It indicates that, the 

theoretical value is reasonable, which serves as the third 

checkpoint between  and . The results 

also serve as an indirect check for Z boson related data listed 

in Table 14.1 and Table 14.2. 

Since electron torus model cross section after f-

modification is only slightly deviates from its original 

circular shape, formula (23.34b) serves as an approximation. 

It is used along with (23.34a) and (23.34c) to calculate the 

data for electron f-modified version. The results are listed in 

Table 23.2 second row. The relative deviation from 2010-

PDG data is  with an opposite sign compared 

to the original version relative deviation of . It 

indicates that, the f-modification is in the right direction with 

overshoot. Since the calculation is based on approximate 

formulas, it is difficult to find the reason for the overshoot 

and to analyze the errors. But a rough estimate is possible. 

Because of the overshot, the error of AT-equation and PS-

equation used for the f-modification should be less than 

. It is less than the estimated 

errors  and  given 

previously. For ad hoc equations, to have multi-checkpoints 

on different bases is important. In fact, these are very 

important checkpoints for SQS theory in terms of symmetry 

broken and the origin of particles mass both based on AT-

equation and PS-equation. The estimated errors 

 and  are from the M-circle, 

which is defined based on a specific prime numbers 71. In the 

derivation processes, there is no adjustable variable. The 

estimate error of less than , is based on (23.33) 

and (23.34) according to electron parameters. As mentioned 

previously, there is no adjustment either. The results show 

that, despite their ad hoc nature, AT-equation and PS-

equation yield reasonable results within adequate error range. 

It proves that the approach and framework are correct. 

In summary, the three sporadic groups, M, B, Suz, provide 

important supports for SQS theory. The three groups’ size 

factors sequences , ,  give strong support to Prime 

Number Postulation. The correlations between
 

, ,   

and the m-parameters of particles of three generations not 

only enhance their legitimacy but also reveal something 

behind scene such as missing prime number factors 

corresponding to bosons and boson states, the grand numbers 

with different ranks, the hidden meaning of three prime 

numbers 71, 47, 23 and the definition for the M-sphere, B-

sphere, S-sphere etc. These types of information were 

discovered by the author after the third draft of this paper 

completed and this section was added after that.  

There are some issues worthwhile to think about. Since 

the M-group is the largest finite Lie group, with no group in 

that category has larger size and all 26 sporadic groups’ size 

factorized sequences have factors less than 71, the question is: 

What is the group or groups corresponding to the pre-big-

bang period? It is not just a mathematic issue; its answer 

might provide some insights for cosmology and particle 

physics like the three sporadic groups did. There is a clue in 

Table 23.3 to start with:  of the third periods is 

a  grand number, while 
 
of the pre-big-

bang period is a  grand number. Further discussions 

along this line will be given in Section 25. 

 

Section 24: SQS Theory Basic Equations 

 

General relativity theory is not compatible with quantum 

theory. General relativity theory is deterministic without 

uncertainty, whereas quantum theory is stochastic with 

uncertainty. This is the main reason for their incompatibleness. 

From SQS theory standpoint, introducing uncertainty to 

original Einstein equations is the way to make general relative 
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theory compatible with quantum theory. It turns out as the 

basic equations of SQS theory, which not only reveal some 

new insights for gravitation but also serve as the primary basic 

equations for elementary particles and all interactions as well 

as things on top levels. In essence, SQS theory basic equations 

serve as a new version of unified field theory.  

To reach the goal takes steps. 

Einstein field equations in different terms are shown as 

follows. 

The original with stress-energy term:  

ababab T
c

G
RgR

4

8

2

1 
 ,                              (24.1a)  

The original without stress-energy term for vacuum: 

,                                        (24.1b)  

With stress-energy and cosmological terms: 

abababab T
c

G
gRgR

4

8

2

1 
 .                       (24.1c)  

In which, , , , , , c,  are Newtonian 

gravitational constant, gauge tensor, Ricci tensor, Ricci scalar, 

cosmological constant, speed of light in vacuum, stress-

energy tensor, respectively. 

The parameters of Einstein equations (24.1) are: 

,                                                    (24.2a)                                                                         

                                                                    

(24.2b)         

 .        

                                                                     (24.2c) 

In which, the “g” in parenthesis indicates  serving as 

variables.  

Postulation 24.1: For a collection of Gaussian spheres each 

centered at a vertex point  in space with face-centered 

structure, gauge tensors ,  at point  are 

redefined as: 

  )(PpgG abab   ,                                     (24.3a) 
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);( ii PPL  is the geodesic length connecting point  and 

point 
iP  . 

Definition 25.1: The space-time variables of point  are 

defined as:  

,              (24.5a)                                        

010110 xNxctc    ,              (24.5b)                                    
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Explanation: The )(Pp  assigned to gauge tensors represents 

uncertainty. The )(Pp  in denominator of (24.3b) is to 

satisfy rule (24.3c). So (24.3b) is not a separate 

assumption. As shown in definition (24.5), all four 

space-time variables  are 

functions of intrinsic time c/0  .  and  are the 

standard parameters of special relativity.  is 

converting factor.  

According to Postulation 24.1, the parameters of (24.2) 

are redefined as: );( iPPp  

,                                                          (24.6a)                                                                                    

  , 
(24.6b)

  

 .    (24.6c)            

In which, the “G” in parenthesis indicates gauge tensors 

redefined according to (24.3).  

In the vacuum, there is no additional energy besides 

vacuum energy. Based on original Einstein equations (24.1b) 

for vacuum without the stress-energy tensor, , and 

according to Postulation 24.1, Einstein equations are 

redefined as: 

.                                 (24.7a)                                           

Auxiliary equation is to determine geodesic length );( ii PPL  

for );( ii PPp .   

,  to .                (24.7b)                                            

Substituting parameters of (24.6) into equations (24.7a), 

the derivation process is given in the Part A of Appendix 6. 

According to the derivative process in Part-A of 

Appendixes 6, the redefined Einstein equations (24.7a) are 

presented as follows: 
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Explanation: The left side of (24.8a) is the kinematic part, 
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Einstein field equation (24.1b). The  right side of 
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gauge tensors. The emerging terms 
abR


 and  Rg ab


2

1  

are originated from terms 
abR  and  Rg ab2

1  in the 

kinematic part, respectively. As shown in Part-A of 

Appendix 6, the kinematic part is deterministic, while 

the emerging part attached to probability is stochastic. 

Equations (24.8a) are hybrid stochastic differential 

equations. The mixed deterministic and stochastic 

nature has important physics implications, which will 

be explained later.  

According to (A6.6), the contains of 
abR


 and  Rg ab


2

1  for 

the emerging part are given as follows:
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                                                                         (24.9b) 

According to (24.4c), all ratios ppi /  in (24.9) are unitary 

weighted probability: 
22 )/()/(
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 ,         (24.10a)                                            

.           (24.10b)                                                      

SQS theory basic equations have three versions. One is 

for gravity, the other is for electromagnetic force, and the 

primary basic equation for all interactions and elementary 

particles as well as things on top levels.  

Step-1: SQS theory basic equations for gravity 

It starts from equation (24.8a): 

ababab ERgR
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The emerging part on right side of (25.8) is: 
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In which, G is the Newtonian gravitational constant,  
abT and  

  are the stress-energy tensor and cosmological constant 

respectively, which are generated from derivatives of )(Pp  

attached to redefined guarge tensor
abg . 

The question is: How to define the 
abT and   from the 

contains of the emerging part 
abE


? Since 
abT  is a tensor and 

  is a scalar, the natural way to define 
abT and   is: 
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The contains of 
abR


 and R


 in 
abT  and   are given by (24.8a). 

According to (24.10) (24.11) and (24.12), equation 

(24.8a) are presented as: 
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Auxiliary equations are to determine geodesic lengths 

 for :  

 to .              (24.13b)                                        

It is important to point out that, in terms of space-time 

variables equation (24.13a)  are inconsistent. On its right side 

the space-time variables are 

defined by (24.5) and the derivative process carried out 

accordingly, on its left side the space-time variables are not. 

The inconsistence will be dialed later in this section. 

To check the validity of redefined equation (24.13) is to 

convert into the form comparable to Einstein’s original 

equations. The way to do so is to take the average of 

variables in equations (24.13). The average process irons out 

irrelevant microscopic details and retains their macroscopic 

contributions for comparison. 

The redefined equations (24.13a) after average are 

presented as two equivalent forms:  

ababab ERgR 2
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The average process is taken on the elements of , , 

, ,  as shown follows:  

,                              (24.15a) 

,                                  (24.15b) 
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The average process is taken on individual particles. As 

show in Section 22 and Section 23, the three generations of 

elementary particles are represented by the activities in a 

sphere with radius 
PLr 3 . However, to cover all particles in 

the universe under some extreme conditions such as the center 

of a star etc. The average area should be extended to a sphere 

with radius 
PLr 71 and volume 3

3

43

3

4 )71( PLrV   .The 

temporal average process should be taken in the range of 

 Ptt 71  corresponding to  PcLx 710  . The 

average value is assigned to the center vertex of the 

sphere. For all spheres centered at every vertexes, these 

spheres have large overlapped areas, the average process 

must avoid redundancy, which means a particle only 
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counted once in a sphere centered at the particle’s center 

vertex. The average value is assigned to the center vertex of 

the sphere, which makes the space-time becoming discrete with 

discrete variables  o

iiii xxxx ;,, 321 .  

For the emerging terms  , 
abT , 

abE


of (24.15c), (24.15d), 

(24.15e), the )(ipw
 is the weighted probability for the i-term. It 

will be explained later in this section, a particle has many 

different states corresponding to interactions to other particles 

with occurrence probability )(ipw
. According to (24.4d), the 

weighted probability is unitary: 1)( 
i

w ip . The average 

process regarding )(ipw
 is to carry out the summation over all 

i-terms. After the average processes regarding )(ipw
 completed, 

all these emerging terms become deterministic without 

probability involved.  

The average process for the variables and terms in (24.15) 

are given as follows. 
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Space with face-centered lattice structure is symmetrical 

with respect to 1x , 2x , 3x  and ctx  0   axes. In the 

symmetrical space-time, integral of odd function over 

symmetrical range equals to zero by cancelation. Notice that, 

, ,  and their second order derivatives with respect 

to the same variable are even functions; their first order 

derivatives and second order derivatives with respect to 

different variables are odd functions. For integral over 

symmetrical range in symmetrical space-time, after average 

process only even functions retain and all odd functions equal 

to zero:  
,                           (24.17a)                                        

, ,           (24.17b)                         

                                 (24.17c)                                          
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According (24.15), (24.16), (24.17), after average process, 

equations (24.14a) are presented as: 
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Stress-energy term: 
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The Auxiliary equations (24.13b) are no longer needed, 

because the probabilities are averaged out.  

The “bar” on top of parameters in equations (24.18) is 

omitted for simplicity. It is important to notice that, the 

differential derivatives in (24.13a) become differences in 

(24.18) evaluated at discrete cubic vertexes separated by 

Planck length.                                                                                                                  

As shown in formulas (24.19), the emerging terms 
abc

G T4

8  

and  contain  factor. It makes speeds  in 

the emerging terms superluminal, which is not acceptable for 

macroscopic equations. Both sides of equations (24.18) are 

divided by  222 / PC LN    factor. As results, the  factors 

in emerging part responsible for superluminal speed are 

canceled out and the separation between discrete points of 

difference equations (25.18) changes accordingly from 

Planck length 
PL to Compton length 

C . In fact, this is a 

second average process and a transition. The second average 

process is taken in a cube with edges  
CCC LLL   centered at 

each cubic vertex separated by a distance from neighboring 

cubic vertexes. Then it takes the summation of all relevant 

parameters assigned to the center vertex after the first 

average process over all vertexes in a cube divided by the 

cube volume 3

CL . The transition is to convert the Planck scale 

parameters to corresponding Compton scale parameters 

according to the converting rules given in Section 4. For 

instance, 
PC NLL  ,  

PC Ntt  , Nmm PC / , NEE PC / . 

Definition 24.1: SQS theory macroscopic basic equations 

for gravity are defined as the following difference 

equations with parameters evaluated at cubic vertexes 

separated by Compton scale 
PPC NLLL   and. 

PPC Nttt   . 
abg

abg
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          The Auxiliary equations are no longer needed, 

 Explanation: Basic equations (24.20) are converted from 

equations (24.13a) with two main differences: (1) Speeds 

in the emerging part are non-superluminal, because  

factors in the emerging part are canceled out; (2) The  

factor in denominator of the kinematic part RgR abab 2
1  

elongates the separation for each direction by a factor of 

PC LLN / . All parameters in equations (24.20) are 

evaluated at cubic vertexes separated by Compton scale: 

, . Notice that, the bar on emerging 

terms RgRE ababab


2

1   of (24.19c) indicating they are the 

averaged values from two average process. This process 

should be carried out for all particles involved. The 

converting process is taken after the average process is 

completed, which converts the averaged parameters for 

each particle involved from Planck scale to Compton 

scale. The converting process is also applied to the 

kinematic part. Converting process is required by 

separation’s scale change from Planck scale to Compton 

scale. After the converting process, equations (24.20) are 

in the microscopic sense comparable to Einstein equations 

(24.1c).  

The features of basic equations (24.20) for gravity are 

as follows.  

1. As results of average processes, the details of microscopic 

effects are ironed out and their macroscopic contributions 

are assigned to each cubic vertex separated by Compton 

length 
PC NLL  and Compton time 

PCC NtcLt  / . 

Differential equations (24.13a) become difference 

equations (24.20) with the merit of no singularity.  
2. As discussed in Section 21, particles gain mass via 

breaking space symmetry. For vacuum without “real 

matter”, space-time is perfect symmetry. According to 

(24.17)  all odd terms in equations (24.20), are canceled 

out by average and only even terms remain. According to 

(24.17a) and (24.17b), in the kinematic part of equations 

(24.20) only  related terms remain. 

According to (24.17c), and (24.17d), in the emerging part 

of equations (24.20) no term in the part of  

remain, and only 
)3,2,1,(,

2

oevv
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L
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i 
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  related terms 

remain. The contents of cosmological term  and 

stress-energy term 
abTcG )/8( 4

 
in equations (24.20) are 

significantly reduced. The remained terms still have 

nonzero values contributed by the even terms, which 

represent vacuum fluctuations. In essence, vacuum is 

matter with energy, there is no such thing as absolute 

void.  
3. For the real world with matters around, as shown in 

Section 21, elementary particles obtain mass by breaking 

symmetry. As a result, space symmetry is broken. In 

equations (24.20), the kinematic part RgR abab 2
1  along 

with the cosmological term  and stress-energy terms 

abTcG )/8( 4  have their full brown contents, which serve 

the function as original Einstein equations (24.1c). In 

essence, broken space symmetry provides mass for 

particles, which in return serves as the mechanism for 

space-time curvature and the origin of gravity. It 

shows the consistency of the theory. 

4. Basic difference equations (24.20) are evaluated as discrete 

cubic vertex with Compton scale separations. It has 

important physics implications. For instance, hydrogen 

atom has a proton as its nucleon. The Compton length of 

proton is mcMhL protonC

1510321.1)/(  . Heavier atoms 

have even shorter Compton length. It shows that, according 

to equations (25.20), gravity has sufficiently fine resolution 

at atomic scale. More importantly, the Compton cube 

serves as a shield to isolate the effect of microscopic mass. 

Otherwise, without the shielding effect, everything will be 

crushed by tremendous gravitational force produced by 

Planck mass. It shows the physics impact of separations’ 

elongation for difference equations (24.20) and the 

consistency of the theory.  

5. As shown in (24.13a), the cosmological term  Rgg abab


2
12  

contains  factor, which is eliminated in the cosmological 

term Rgg abab


2

1  of macroscopic basic equations (24.20). 

It provides a way to dealing with the annoying dark energy 

problem. The one hundred twenty some orders of magnitude 

tremendous difference between theoretical value and 

observed data is a typical hierarchy problem. From SQS 

theory viewpoint, the way to dealing with such hierarchy 

problem is to apply appropriate converting factor. One is 

readily available. According (5.5), the converting factor for 

photon with wavelength  is:  

.   (24.22)                                                   

For orders of magnitude estimation, cosmic Microwave 

Background Radiation (MBR) frequency spectrum center 

wavelength  is used to calculate the value 

of converting factor . MBR photons are cosmically 

originated and their effects are elongated to cosmic scale by 

space expansion. As shown in Section 25, to consider their 

contribution should take long path wavelength to replace 

short wavelength. Based on cosmic MBR photons with 

 and long path wavelength , 

the ratio of cosmological terms in microscopic equations 
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(24.13a) and cosmological term in macroscopic equations 

(24.20) is: 

.                              (24.23)                                           

The ratio of theoretical mass density versus observed data 

is: 

.                                   (24.24)                                                 

In which,  is Planck 

density,  is observed cosmic 

mass density. Notice that, there is a subtle difference 

between gravity and electromagnetic force with the factor 

 shown in (4.19). Dark energy is related to gravity, 

while photon is generated by electromagnetic force. 

Taking this factor into account, the theoretical value of 

(24.23) with . becomes: 

.        (24.25) 

Compare to  of (24.24), the theoretical 

result of (24.25) has a relative deviation of 12.6%. Other 

estimations on different basis will be given in Section 25 

with similar results.  is the largest grand 

number in physics and cosmology and the most 

annoying hierarchy problem. It can be reduced to 12.6% 

relative discrepancy by a theory not tailored for such 

purpose. There must be something in it.  

6. It seems a surprise that started with Einstein equations 

(24.1b) for vacuum without stress-energy term and 

ended with basic equations (24.20) having stress-energy 

term automatically showed up from vacuum. After 

thought it over, it is really no surprise. By introducing 

probability, the stress-energy term generated by 

stochastic movement of vacuons in vacuum should be 

expected. Einstein reportedly said: “The left side of my 

equation is marble while the right side is straw.” Now, 

both sides of basic equations (24.20) are marbles. 

Einstein in heaven should be happy to hear the news. 

7. Started with Einstein equations (24.1b) for vacuum 

without cosmological term and ended with basic equations 

(24.20) having cosmological term automatically showed 

up from vacuum. The reason is the same as that for the 

stress-energy term. After the discovery of cosmic 

expansion, regarding his add-on cosmological constant , 

Einstein said: “It was the biggest brander in my life.” The 

authors of reference [20] correctly commented: “A great 

mistake  was indeed! –– not least because, had Einstein 

stuck by his original equation, he could have claimed the 

expansion of the universe as the most triumphant 

prediction of his theory of gravity.” Now, Einstein’s most 

triumphant prediction looks even more profound. 

Cosmological term showed up in basic equations (24.20) 

but not by add-on. It is generated naturally from stochastic 

movement of vacuons in vacuum. More importantly, dark 

energy represented by cosmological term does exist 

evidenced by accelerating expansion of the universe. 

The stress-energy tensor of (24.21c) can be expressed as:  

    .
88 22

44
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                          (24.26)                             

In (24.26), the dimensionless function 
abX  is defined as: 
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12222 .                   (24.27) 

Substituting 
h

Lc
G P

232


 given by (2.1a) into 
abT of (24.26) 

yields:  
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In which, cLt PP / ,
PP tf /1 , GhcmP /2 are the 

Planck time, Planck frequency, Planck mass, respectively. 

According to the converting rule in Section 4, from 

Planck scale converting to the Compton scale: mmP   and 

CPL  , (24.28) is transformed as 
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 .         (24.29) 

In which, m , 
PL , and 

C  are particle’s regular mass, 

Planck length, and Compton wavelength, respectively.  

Express 
abT  of (24.29) in 44  matrix form:  
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  (24.30) 

The macroscopic gravity equation (24.20) is difference 

equation with Compton wavelength as difference:    

Czyx  .                                 (24.31) 

Let’s look at some elements of matrix    to see the 

physics meaning.  

The )0,0(  element of matrix    is:  

m

C V
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3
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.                     (24.32) 

In which 
m  is the mass density. 

The off diagonal elements ),0( a and )0,(a of matrix    is: 

ap

aa

eC

a

V

p

zyx

vmvm
aa 










3
)0,(),0( , a=1,2,3.  (24.33)                                                

In which 
ap is the density of the momentum’s a -direction 

component. 

The diagonal element )1,1(  of matrix    is the stress 

force 
xf perpendicular to the y-z surface

yzS : 
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The off diagonal element )2,1(  of matrix    is the 

stress force along the x-direction on x-z surface 
xzS . 

xz

x

xz

xtt

x

tt

yx

yx

eC S

f

S

ma

zx

m

zyx

m

zyx

vvmvvm














 







3

21)2,1(


. (24.35) 

Let’s discuss the meaning of these results. 

1. According to (24.32) through (24.35), the matrix  T  fits 

the stress-energy tensor well.  

2. The value of dimensionless number factors )16/( 2abX  is 

less than 1 , which is multiplied to corresponding 

elements of    serving as the purpose of converting 

speeds product 
bavv  from the microscopic Planck scale 

into the macroscopic scale. 

The above derivations and results are rough estimations. 

The accurate ones will be available after the solutions of the 

microscopic basic equation for gravity (24.20) is obtained. 

Basic equations (24.20) are valid for gravity as one of two 

long range forces. The other one is electromagnetic force. 

SQS theory macroscopic basic equations also have a version 

for electromagnetic force. Let’s start from the basic equations 

for gravity (24.20) and take steps to convert to the basic 

equations for electromagnetic force. 

As the first step, let’s move the cosmological term 
 

in (24.20) from left to right to build the basic equation of 

electromagnetic force. 











G

g

c

T
GgT

c

G
RgR abab

abababab





8
8

8

2

1
44

.     (24.36)  

According to (4.19), the ratio of static electrical force 

and gravitational force is: 

,                                  (24.37)                                      

Multiplying 2

2/
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  to both sides of equations (24.36)  

yields: 
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According to (A4.1), (20.1), (4.15), , , , 

the right side of equations (24.38) becomes: 
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(24.39)                     
 

In (24.39), the factor  is split to two factors  and 

 for two charged particles with electrical charge  

mass  and charge  mass , respectively. The 

equivalence of stress-energy tensor for electromagnetic (EM) 

force is defined as: 

.
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 (24.40)                      

On left side of equations (24.38), the multiplied factor 

 is absorbed by the kinematic part RgR abab 2

1 . The 

factor  shrinks the Compton scale separation , 

 back to the Planck scale , . 

According to (23.4), the factor  elongates the 

shrunk separation from Planck scale to GUT scale:  

PGUT NLL 71 , 
PGUTGUT tcLt 71/  .        (24.41)                                    

In which 
PGUT LL 71 and  

PGUT tt 71 are the GUT scale length 

and time, respectively.  

Definition 24.2: SQS theory macroscopic basic equations for 

electromagnetic force are defined as the following 

difference equations with parameters evaluated at 

cubic vertexes separated by GUT scale, , 

: 
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 .                      (24.42)                                  

Explanation: Left side of (24.42) is the kinematic part 

representing charged particles movements. Right side is 

the dynamic part serving as electromagnetic driving 

force for charged particles movements similar to the 

function of stress-energy term in equations (24.20) for 

gravitational force. Similar to the converting process for 

equations (24.20), the parameters of equations (24.42) 

are subject to a converting process from the Planck 

scale to the GUT scale 
PGUTP LLL 71  and  

PGUTP ttt 71 .  

The basic equations (24.42) for electromagnetic force 

have following features. 

1. Spatial and temporal separations of difference equations 

(24.42) at GUT scale ,  are 

originated from the dynamic part converted from gravity 

to electromagnetic force. As shown in Section 15, 

 is the length scale for electromagnetic force 

unified with gravity. For distance longer than , 

electromagnetic force separated from gravity becomes an 

independent force. It shows that, the adjustment of 

separation is valid and the theory is consistent. 

2. The factor  responsible for superluminal speed in 

the emerging part of equations (24.18) is expelled to 

build the basic equations (24.20) for gravitational force. 

As a result, the separations of difference equations were 

elongated from Planck scale to Compton scale for 

gravity. Then the factor  is taken back along with 

the factor  to build the basic equations 

(25.42) for electromagnetic force. As a result, the 

separation of difference equations is shrunk back to the 

Planck scale then elongated to the GUT scale. These 
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processes are mathematically consistent and physically 

make sense.  

3. The correlation between two versions of macroscopic 

basic equations (24.20) and (24.42) serves as a support 

of the concept: Gravitational force and electromagnetic 

force as two long range forces are two sides of the same 

coin. The microscopic effects of weak force and strong 

force as two short range forces are averaged out and their 

macroscopic contributions are included in cosmological 

term  and stress-energy term  of equations 

(24.20) or the EM

abM

q

M

q
T

2

2

1

1  term of equations (24.42). It 

shows the richness and rigorousness of the theory.  

4. The distinctive feature of equations (24.42) is the mass 

factor  in denominator of the dynamic part at right. 

Actually the same mass factor also appeared in the 

dynamic part’s denominator of equations (24.20) for 

gravity, but it cancels out by the mass factor in 

nominator according to principle of initial mass equal to 

gravitational mass. Therefore, a fair comparison of the 

effects for electrical force  and gravitational force  

should be  versus . 

Take the electromagnetic force between a pair of electron 

as an example to show the two long range forces’ profiles 

varying with distance l. In (24.42), let  and 

. As shown in Fig. 4.1 and discussed in Section 16, 

the converting factor  as a function of distance  has two 

types of variation profiles in two regions.  

Region-I:  

, for 
eCl  ,   (24.43a)                                                                 

Region-II:  

, for 
eCPGUT lLL  71 .  

 (24.43b)  

In Region-II, the average length scale for the discrete 

variables of difference equations (24.20) is changing with l.  

Fig. 24.1 shows the profiles of  and  

verses l in broad regions.  

In the macroscopic Region-I 
eCl  , both

 
 and 

 are proportional to   with tremendous 

strengths ratio  as expected 

according to general relativity and Newtonian gravity 

equation. In the transitional Region-II， 
eCPGUT lLL  71 , 

electron mass square 2

eM  is proportional to ; static 

electrical force  is also proportional to . As a result, 

 becomes constant, while  keeps its  

variation profile. At GUT length scale, electromagnetic force 

is unified into gravitational force as shown by two profiles 

merged into one at . In the microscopic Region-

III，
PGUT LLl 71 , The unified force stars to 

saturate, when it passes its peak then starts to decrease. At 

, . In the sub-

region , , gravity is converted from 

attractive to repulsive. The profile of 
 
in this sub-

region is according to data listed in Table 3.1 based on 1-

dimensional S-equation with  as a running constant.   

As shown in Fig.24.1, at the vicinity of  

and , the two intersections of straight line and curves 

are slightly rounded by variation of the running constant 

 as mentioned in Section 4.  

Fig. 24.1 reveals important physics implications:  

1. The tremendous difference between   and  

in Region-I is caused by  in region-II.  

2. The   in region-II plays a pivotal rule for 

the unification of electromagnetic force and gravitational 

force at GUT scale. 

3. Now we understand the physics meaning for difference 

equations (24.20) with separation of Compton length 

scale . When   , the mass of the two objects 

involved becomes constant, which put the basic 

equations (24.20) on the same base to compare with 

Einstein’s equations (24.1c). The average process is for 

macroscopic comparison purpose. The redefined 

equation (24.20) for gravity are universally applicable 

for all three regions, I, II, and III.  

4. Gravity and electromagnetic force are indeed two sides 

of the same coin, but gravity is the dominate side.  
 

 
Fig. 24.1: The profiles of and  versus   in broad 

regions. (Scales are not in proportion.) 
 

The profile shown in Fig.24.1 are informative. It supports 

the basic difference equations (24.20) and (24.42) and 
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corresponding separations’ adjustments. It shows that, in the 

macroscopic Region I, equations (24.20) are equivalent to 

Einstein’s equations (24.1c) as expected.  

Conclusion 24.1: SQS theory macroscopic basic equations 

with two versions are derived from redefined Einstein 

equations (24.14) by average, which focus on the big 

picture for two long range forces. The version with 

basic equations (24.20) for gravitational force is 

equivalent to Einstein equations (24.1c) with two main 

differences: (1) The stress-energy term and the 

cosmological term are naturally generated from 

stochastic vacuum; (2) Equations (24.20) are difference 

equations with Compton scale separation, which have 

the merits of shielding effect and no singularity. The 

version for electromagnetic force is difference equations 

(24.42) with GUT scale separation having the merit of 

no singularity. The right side of (24.42) serves as the 

dynamic part. The left side of (24.42) serves as the 

kinematic part, which is virtually the same as kinematic 

part of (24.20) with different scale separations. The 

separations’ adjustments are valid. The theory is 

consistent. It is conceivable that, the solutions of these 

two sets of macroscopic basic equations will contribute 

to cosmology and black hole physics with the advantage 

of no singularity.  

After the macroscopic basic equations establishment 

completed, the next goal is to look for SQS theory 

microscopic basic equations representing elementary 

particles and interactions.  

It starts from equations (24.8). According to Postulation 

24.1, the emerging part at the right side of equations (24.8) is 

converted to space-time variables  

as functions of intrinsic temporal variable  c0 , while the 

kinematic part of the left side is not converted. The difference 

in space-time variables makes two parts of equations (24.8) 

imbalanced. For the macroscopic basic difference equations 

(24.20) and (25.42), the imbalance is rebalanced by proper 

adjustments of separation scales. Microscopic equations (24.8) 

are differential equations, which have no separation to adjust. 

Other measure must be taken to rebalance the kinematic part 

and the emerging part. The logical way is to convert space-

time variables of the kinematic part the same way as for the 

emerging part. It puts the two parts on the same footing. The 

derivation process is given in Part-B of Appendix 6.  

According to (A6.10), the redefined Einstein equations 

(24.8) are presented as:   

ababab ERgR 
2

1 ,     (24.44a)                                                           

Emerging term in (25.56a) is: 

 .  (24.44b)                                          

Auxiliary equations are to determine geodesic lengths 

 for :  

,  to .  (24.44c)                                         

According to (A6.9), the kinematic part of (24.44a) has 

the following contents: 
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In which, the  factors are included and no probability 

attached. 

According to (A6.11), the speed product matrix in 

kinematic part of equations (24.44a) is: 
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In which, the  factors are included and no probability 

attached.  

The emerging terms of equations (24.44a) are the same of 

(24.9), in which, the  factors are included. The weighted 

probability 
 

i

PiPiiw LLLLppip )/exp(/)/exp(/)( 2222 
 serves 

as the weighted factor for parameters with subscript i as 

mentioned previously.  
According to (A6.7), the speed product matrix of the 

emerging part in equations (24.44a) is: 
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In which, the  factor is included. The reason for the speed 

products matrix  iV  and its elements having subscript i , 

because their value depends on i  from the weighing 

probability  
i

PiPiiw LLLLppip )/exp(/)/exp(/)( 2222  .  

Definition 25.3: SQS theory primary basic equations are 

defined as:  

ababab ERgR 
2

1 ,    (24.48a)                                                             

Emerging part: 

.  (24.48b)                                            

Auxiliary equations are needed to determine geodesic lengths 

 for .  

  to  .  (24.49)                                                     

Explanation: The primary basic equations (24.48) include 

ten independent differential equations for ten 

independent variables . The 

contents of kinematic part RgR abab 2
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part  are given by (24.45) and (24.9), respectively.  
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Einstein’s general relativity is based on two principles, the 

covariance principle and the equivalence principle. 

Acceleration is equivalent to gravitation and both are 

represented by space-time curvature. SQS theory primary 

basic equations (24.48) are based on Einstein equations 

(24.1b) along with two principles of general relativity. 

According to Theorem 18.1, Lemma 18.1 and Lemma 18.2, 

vacuons movement is restricted in 1-dimensional discrete 

trajectories. Along a trajectory, variations of vacuons’ 

movement are represented by space-time curvature in terms 

of gauge tensors. General relativity is background 

independent, which is suitable for different coordinate 

systems.  

For a given discrete trajectory, the vacuons with 

superluminal speed  move along a 1-dimensional closed 

trajectory. For the 1-dimensional closed trajectory, one 

spatial variable  along trajectory’s longitudinal direction 

and temporal variable  are selected as the effective 

variables for the selected coordinate system. The speed 

product matrix (24.46) for the kinematic part and the speed 

product matrix (24.47) for the emerging dynamic part in the 

selected coordinate system both are reduced as: 
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According to (24.50), the contents of kinematic part and the 

dynamic part of primary basic equations (24.48) are 

significantly reduced. The original ten independent equations 

of (24.48) for 10 independent variables, , 

are reduced to 3 independent equations for three independent 

variables, . The reduction significantly 

simplifies primary basic equations (24.48) and the solutions.  

The features of the primary basic equations (24.48) are as 

follows. 

1. The primary basic equations (24.48a) are hybrid 

stochastic differential equations. The kinematic part 

RgR abab 2

1  with no probability attached is deterministic, 

while the emerging part  as dynamic part with 

probabilities attached is stochastic. The mixed states 

have important physics implications. 

2. Uncertainty shows up in the emerging part of primary 

basic equations (24.48) evidenced by weighted probability 

ppip iw /)(   in the emerging part (24.9). The uncertainty 

comes from more than one geodesic lengths  

involved representing interactions.  

3. Interactions are effective only in the close vicinity. As 

shown in Section 21, The two sets of symmetries , 

 with radius  are sufficient to serve as the 

origin of the groups representing all three generations 

particles and interactions. Question: Why ? The 

answer is hidden in primary basic equations (24.48). The 

next effective radius longer than  is  . 

For orders of magnitude estimation, assume 

 and ignore temporal part’s effect. The 
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The ratio of  over  represents 

their relative contributions: 

. 

(24.51b)                          

As shown in (24.51b), the relative contribution of 

 term is in the order of , which is 

negligible in most cases. Now we know the reason for 

, because the Gaussian spheres centered at vertexes 

with  all have too long  and too low 

weighted probability ppip iw /)(   with negligible 

effects on interactions. In fact, the result of (24.51b) sets 

the background noise floor for all elementary particles 

and interactions at . The reciprocal of 

 is  as a  grand number. Is it a 

coincidence? 

4. Primary basic equations (24.48a) include two parts: the 

kinematic part RgR abab 2

1   and the dynamic part . 

The dynamic part serves as the cause of vacuons’ 

movement. The kinematic part represents state of 

vacuons’ movement as the result produced by the cause. 

These two parts are intrinsically correlated to causality. 

But they are different in terms of deterministic versus 

stochastic. The obvious question is: How does the 

stochastic cause of dynamic part produce the 

deterministic result for the kinematic part? According to 

Theorem 18.1, Lemma 18.1 and Lemma 18.2, vacuons’ 

movement is confined in discrete trajectory and change 

of movements is by jumping trajectories. In essence, 

vacuons’ movement along a trajectory is 

deterministic and uncertainty occurs only at jumping 

trajectories. The deterministic kinematic part is to 

represent the state of movement in a trajectory without 

uncertainty involved, while the stochastic dynamic part 

causes jumping to different trajectories with uncertainty. 

It answers the question naturally. 

5. The hybrid state of primary basic equations (25.48a) has 

a deeper meaning. The quantization of vacuons’ 

trajectories is a necessity required by introduction of 

uncertainty in the first place. Otherwise, if there is no 

quantization of discrete trajectories, the stochastic 

dynamic part as cause and the deterministic kinematic 
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part as result would be head-on contradictory with no 

way out.  

6. Take a close look at the geodesics. According to 

Lagrange principle, particle takes the path with shortest 

time interval from point A to point B. In general 

relativity, geodesic is the shortest distance connecting 

two points in curved space. As shown in previous 

sections, particle’s trajectory on torus model is 

determined by geodesics connecting characteristic point 

 and point . All of these should come from the same 

origin. As shown in Fig. 24.2, in which Fig. 24.2(a) and 

Fig. 24.2(b) are for a single vertex V and for two 

vertexes V and C, respectively. Vertex V represents a 

particle with torus model, while vertex C is the center 

vertex representing interactions. Fig. 24.2 shows that the 

particle’s trajectory T and the roundtrip geodesic lengths 

 are integrated into an overall closed loop with 

characteristic points A, B, vertex V and center vertex C 

serving as junctions. The diagram for trefoil type model 

is similar to Fig. 24.2 with 3 branches and 6 

characteristic points plus 3 vertexes representing trefoil 

type model. 

a. The   factor in the speed product (24.46), (24.47) and 

(24.50) indicates that, the speed vv ˆ  is superluminal. It 

is expected, because the vacuons movement in the overall 

loop is similar to the movement in the long path

 
Fig. 24.2: Demonstration of particle’s overall loops based on torus 

mode: (a) Only vertex V is included; (b) Vertex V and center 

vertex C are included for interactions.  
 

In general, the solutions of primary basic equations (25.48) 

cover all elementary particles and interactions, which are 

classified into three types. 

Type-1: To cover all elementary particles and all 

interactions.  
In this case, all relevant vertexes inside the sphere with 

radius  should be included. As listed in Table 21.1 or 

Table 21.2, the number of vertexes is . Besides 3 

independent equations of (24.48a),  

auxiliary equations to determine  geodesic 

lengths connecting  characteristic points on particle’s 

model are added. The total number of equations involved is 

. It seems complicated. But to determine 

properties of all three generations elementary particles and 

interactions in details, the complication seems reasonable.  

Fortunately, for practical purposes, there is no need to 

solve all  equations.  

Type-2: To cover elementary particles and interactions in 

generations.  
As shown in Table 21.1, Table 21.2 and Fig. 21.6, 

symmetries ,  with ,  and  correspond to 

elementary particles and interactions of the  generation, 

the  generation plus the  generation and all three 

generations, respectively. The number of vertexes involved 

are 19, 141 and 459 for the , the plus the  and all 

three generations, respectively. According to the procedure 

used for derive formulas (24.51), values of ,  and 

background noise level for different generations are listed in 

Table 24.1. 
 

Table 24.1: The r, V , Numbers of Symmetries and Back Ground 

Noise Level for Generations 

 
 * The value takes the next one higher the number of generation as shown 

in Fig. 21.6. 

** The value is counted the number of vertexes listed in Tables 21.1. 

*** The background noise value is calculated according to (24.51) with 

corresponding values. 
 

The first generation with  is relatively simple. 

Table 24.1 shows that, the background noise level value 

increases rapidly with decreasing number of generations. The 

first generation’s high back ground noise  

indicates that, to calculate interaction related parameters for 

first generation particles accurately, the effects of second 

generation should be taken into account. In fact, first 

generation does not include the W , 0Z  and 0X  for weak 

interactions. For strong interactions, three gluons , ,  

belong to second generation. Moreover, baryon octet 

represented by  and mason octet represented by  

both are crossovers of first and second generations. These 

facts indicate that, first generation and second generation are 

interconnected, which can be explained by the first 

generation’s background noise is too high.  

Type-3: To cover a single elementary particle.  

As shown in Section 21, symmetry  includes 8 

equilateral triangles representing 2 leptons ,  and 6 

quarks , , , , , . Take the equilateral 
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triangle with 3 vertexes in  representing electron as 

an example. The number of auxiliary equations is reduced 

from  to  for 3 branches of 

electron’s trefoil type model, in which  counts for two 

characteristic points  and  of each branch. Since 

electron’s properties can be derived from its torus model 

represented by one  vertex, the number of auxiliary 

equations is reduced from   to , 

Three independent primary basic equations plus two auxiliary 

equations, the five equations provide solutions for electron’s 

trajectories on torus model and related parameters. It is 

surprisingly simple.  

A vertex in  at different locations represents 

other member particles of . Question: How to 

differentiate these particles from the same set of equations 

applied to one vertex? For one vertex, space is spherical 

symmetry. It is conceivable that, primary basic equations 

(24.48) have a set of so many solutions. To select the 

solutions representing trajectories on electron torus model, 

some selecting rules are needed. One is readily available. The 

set of electron’s numerical parameters can be used to select 

the solutions of primary basic equations (24.48) representing 

the trajectories on electron’s torus model. The way to do so is 

based on the following steps learned from previous sections.  

1. Use the set of unique numerical parameters , 

,  for electron to select a set of relevant 

solutions of equations (24.48). 

2. Use characteristic point  and point  to determine 

the overall loop including trajectory and roundtrip 

geodesic lengths as shown in Fig. 24.2(a) to represent 

electron. 

3. Rotate point  and point  to form circle-  and 

circle-B, the trajectory rotates with point  and point 

 to form the torus model supporting a set of discrete 

trajectories on its surface. 

4. Add center vertex C representing interactions and 

additional roundtrip geodesic lengths as shown in 

Fig.24.2(b), then apply f-modification based on 

solutions of PS-equation to change the torus surface 

with slightly different  and  for a set of discrete 

surfaces. 

5. Electron’s all physics parameters are derived from 

characteristic point , point  and associated triangles: 

CKM-triangle, GWS-triangle and S-triangle. 

The same procedure is valid for electron’s trefoil type 

model represented by a triplet with three vertexes in . 

Comparing to torus model, the difference is that, there are 6 

characteristic points involved instead of only 2 for torus 

model. 

Electron is just an example. The same procedure is valid 

for other member particles of . Applying primary 

basic equations (24.48) to different vertexes representing , 

, , , ,  or , solutions are selected according to 

their unique set of numerical parameters and characteristic 

points.  

In general, there are three type interactions for elementary 

particles. Does the center vertex represent all three type 

interactions? As shown in Section 15 and Section 22, all 

interactions are unified with gravity at GUT scale with 

characteristic length . Inside the M-sphere with 

radius , gravity is the only effective 

interaction. The center vertex represents gravitational 

interaction. So the answer is: Yes. But it raises another 

question: How to distinguish three different type interactions? 

Section 21 already provided the answer:  symmetry 

corresponding to  group represents electromagnetic 

interaction; the square with center vertex on surface 

represents weak interaction; the square with center vertex off 

surface represents strong interaction. So these interactions are 

distinguishable. More details will be given later in this 

section. 

A particle ignored interaction is represented by a set of 

trajectories on a surface of its model corresponding to a set of 

selected solutions of primary basic equations (24.48). A 

particle with interactions is represented by a set of 

trajectories on a set of its model’s surfaces corresponding to 

another set of selected solutions of primary basic equations 

(24.48). In essence, trajectory is primary and model is 

secondary.  

If symmetry is perfect, the member particles all are mass-

less. Particle’s mass is obtained by symmetry broken caused 

by vertex shifting from its original location to break the 

symmetry as shown in Section 21.  

Symmetry  is picked as an example. The same 

procedure is valid for other symmetries. It is conceivable that, 

primary basic equations (24.48) applying to different vertexes 

of symmetries , ,  and , , 

 cover all three generation elementary particles and 

interactions. It shows the versatility and richness of primary 

basic equations (24.48). The details will be revealed when 

solutions are available. 

The primary basic equations (24.48) are based on SQS 

theory three fundamental Postulations. The first one provides 

Gaussian probability and Gaussian spheres. The second one 

correlates prime numbers to elementary particles’ numerical 

parameters. The third one provides vacuons. All seem 

reasonable. But look closely, there are open issues.  

One important open issue is the meaning of intrinsic time 

. The introduction of intrinsic time by (24.5) is 

phenomenological. It is conceivable that, intrinsic time serves 

as the “clock” for vacuons. It might play a pivotal rule for 

oscillation along the closed geodesic loop. Further work 

along this line is needed. 

Another important open issue is the origin of selecting 

rules. As mentioned previously, the set of numerical 
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parameters and characteristic points are used as selecting 

rules to choose the relevant solutions for a particle from 

primary basic equations (24.48). But if everything is 

ultimately originated from primary basic equations, so are 

these rules. For instance, numerical parameters m, n, p are 

used to determine loop-1, loop-2 lengths and the oscillation 

pattern along the closed loop. Their value should be 

determined by primary basic equations (24.48) not the other 

way around. The same argument is also valid for 

characteristic points. This is a very important open issue. 

Since the solution of primary basic equations (24.48) is not 

available yet, to get some ideas, let’s look at three special 

cases.  

Case-1: Mechanism of emitting and absorbing a photon 

by charged particles. 

For photon with spin , its trajectory 
 
is a circular loop 

with circumference length  and radius 

. All lengths are normalized with respect to 

Planck length (Planck wavelength) . In Fig.24.3,  
is the vertex representing photon and C is the center vertex, 

, ,  are characteristic points,  and  are geodesic 

lengths connected to vertex V and vertex C, respectively.    

  
Fig.24.3: Overall closed loops represent photon’s emitting and 

absorbing mechanism: (a) , (b) , (c) 1k . 
 

Photon as a stable particle, its internal movement in the 

overall loop including trajectory and roundtrip geodesic 

lengths is exactly synchronized. If not, sooner or later, 

internal movement will fade by cancelation. The 

synchronization condition of photon for trajectory and all 

roundtrip geodesic lengths included is:  

pkjkjppoverall IkLjLkLjLTL  22222,
, (24.52a)                         

, , .  (24.52b)                                             

 is the length of overall loop including trajectory 

length  and roundtrip geodesic lengths. The factor 2 is for 

counting roundtrip.  is an integer. ,, , 

corresponds to Fig.24.3(a), (b),(c), respectively 
 

  As shown in Fig. 24.3, the span angle of line  at 

center vertex  is: 

, .   (24.53)  

 For a first trial, take ,  as 

shown in Fig.24.3(a). for 3/2/2,3 3  kLk , formula 

(24.53) yields: 
 

.

 .       (24.54)                                     

As listed in Table 8.1 and Table 8.2, electron’s original 

and effective Weinberg angles are  and 

, respectively. The relative deviations of  

 and  from  are  and 

, respectively. Formula (24.53) is based on flat 

space. In curved space,  is the length of geodesic, which is 

slightly different from straight line . Taking this fact into 

account, the  relative deviation is justified. It gives 

credit to identify  as the approximate value 

of Weinberg angle for electron.                                         
 

According to (24.53) and shown in Fig. 24.3(a), the total 

length 
 
of overall loop including a full circle of the 

trajectory  plus roundtrips along six geodesic lengths 

connecting three characteristic points , ,  to 2 vertexes 

 and  is: 

.    (24.55) 

8, poverallL  is an integer, which satisfies synchronization 

condition (24.52).  

Encouraged by the first trial positive results, let’s take 

more trials as shown in Fig. 24.3(b) and Fig.24.3(c). 

For , :  

, , 

(24.56a)     
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For 2/2,1 1  kLk : 

, . 

(24.56b)     

For 1/2,2 2  kLk , corresponding synchronization 

conditions are:  

,                    (24.57a) 

For 1/2,1 1  kLk :  

.                  (24.57b) 

The results of (24.57) also satisfy synchronization condition 

(24.52). 

As shown in Section 11, formula (11.1) is used to 

calculate Weinberger angles for particles with fractional 

charges. Besides the factor , another factor  is 

involved. Therefore, the values of 
322

3    and  in 

(24.54) are understandable. 

Formula (11.1) is derived from (10.1b) and originated 

from (8.44) based on normalization , which is 

optional. According to (24.56a) and (24.56b), corresponding 

results are:  

, instead of , (24.58a)                        

  

, instead of .  (24.58b) 

This approach not only provides results more accurate than 

those from formula (11.1) but also serves as a way to determine 

other parameters for charged fermions without normalization 

involved. According to (8.43) and (8.44), gew /sin  ,

'/cos gew  , and . With the value of 

electrical charge  determined from fine structure constant , 

the value of  g,  g’ and  can be derived from  given 

by (24.58a) or (24.58b). Then the value of all parameters of 

GWS-triangle and S-triangle is determined without 

normalization involved.  

Based on the positive results of Weinberg angles, it is 

conceivable that, the cases for ,  and  

represent the mechanism of emitting or absorbing photons by 

charged particles’ with electrical charges ,  

and , respectively. 

Let’s take a closer look at  case shown by Fig. 

24.3(a), which represents the mechanism of emitting or 

absorbing photon by electron.  

As mentioned previously, the geodesic length  and 

related parameters are weighted by the weighed probabilities:  

,   (24.10a)                                          

.      (24.10b)                                                   

In which 
iL and

jL are normalized to the Planck length 
PL . 

The weighted probability concept is also valid for the 

mechanism of emitting or absorbing photons, which 

represents these processes’ stochastic nature. Taking 

stochastic nature into consideration, the synchronization 

condition (24.52) is just a “snap shot” cut from the whole 

“movie”. It is a specific case for all roundtrip geodesic 

lengths are included in the overall loop. In reality, the six 

roundtrip geodesic lengths included or not included in the 

overall loop are determined by probabilities. In essence, the 

scenario is dynamic and stochastic in nature. Taking the 

stochastic effect into consideration, the synchronization 

condition of (24.52) is generalized as: 

  pipvia
i ippoverall ILTL

w
  )(, 2 ,     (24.59a)                               

.   (24.59b)                                        

In (24.59), the six geodesic lengths  are 

renamed as shown in Fig. 24.3(a). In which, three 

 attach to center vertex C and other three 

 attach to vertex V. The subscript “via ” 

in (25.59a) indicates that, synchronization condition is 

stochastic with probability  involved.  is the 

probability for roundtrip geodesic lengths  included in 

overall loop, while   is the probability for  not 

included in overall loop.  

As shown in Fig. 24.3(a), there are 6 roundtrip geodesic 

lengths  involved. For each one of the 6 roundtrip 

geodesic lengths included or not included in the overall loop, 

the total number of overall loops’ different patterns is 

. 

According to (24.59b),  is determined by its 

geodesic length  in the nominator and all geodesic lengths 

in the denominator. 

For  attached to vertex C:  

,  (24.60a) 

For  attached to vertex V:  

.             (24.60b) 

Summation of all :  

.          (24.60c) 

According to (25.10) and (25.60), the probabilities for the 

two types of roundtrip geodesic lengths included in the 

overall loop are given as follows: 
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,   (24.61a) 
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 included in :  

,    (24.61b) 

Check for unitarity:  

.             (24.61c)                   

To get the idea, let’s look at some typical cases.  

1. For the case of all 6 roundtrip geodesics  

included in the overall loop, the occurrence probability is: 

 .       (24.62a)                        

For the case, synchronization condition (25.59) is satisfied 

as: 

.              (24.62b) 

2. For the case of all 6 roundtrip geodesics  not 

included in the overall loop, the occurrence probability is: 

  .    (24.63a)                     

For the case, synchronization condition (24.59) is satisfied:  

.  (24.63b)   

3. For the case of only 1 roundtrip geodesic  

connected to C and only 1 roundtrip geodesic

 
connected to V included in the overall loop, 

the occurrence probability is: 

.      (24.64a) 

For the case, synchronization condition (24.59) is satisfied:  

.   (24.64b) 

4. For the case of only 2 roundtrip geodesic

connected to C and only 2 roundtrip geodesic
 

connected to V included in the overall loop, the 

occurrence probability is: 

       
4

22

4

1014066054.3

)6,5,4(1)6,5,4()3,2,1(1)3,2,1(







 wwwwcase ppppp .   (24.65a) 

For the case, synchronization condition (24.59) is satisfied:  

.   (24.65b) 

5. For the case of only 1 roundtrip geodesic 

connected to C and no roundtrip geodesic  

connected to V included in the overall loop, the 

occurrence probability is: 

.  

(24.66a) 

For the case, synchronization condition (24.59) is not 

satisfied: 

.     (24.66b) 

6. For the case of only 1 roundtrip geodesic 

connected to C and only 2 roundtrip geodesic
 

connected to V included in the overall loop, the 

occurrence probability is: 

. 

(24.67a) 

For the case, synchronization condition (25.59) is not 

satisfied as: 

.     (24.67b) 

The synchronization condition (24.59) must be satisfied, 

for cases like No. 5 and No. 6, the way to do so is to change 

the values of  and  by adjusting gauge tensors  for 

reinstalling synchronization condition (24.59). It is legitimate 

according to background independence principle. Space 

structure is not a priori determined, it emerges naturally with 

gauge tensors  determined by primary basic equations 

(25.48). In this case, synchronization condition is a necessary 

condition for primary basic equations (24.48) to have stable 

solutions. After the adjustment of tensors  completed, the 

probabilities change accordingly.  

Not only cases like No. 5 and No. 6 request adjusting 

gauge tensors , in fact all  cases request 

adjusting gauge tensors . For instance, case No. 3 and 

case No.4 both satisfy synchronization condition (24.59), but 

these two overall loops have different patterns with different 

 distributions in space. In general, for all  

overall loops’ different patterns, each one has its unique  

distribution in space. The total number of different  

distributions is . 

It is very important to point out that, the diagrams shown 

in Fig. 24.3, the synchronization conditions of (24.59) and all 

related formulas are only for the mechanism of photon’s 

emitting and absorbing not for free flying photon. For free 

flying photon, the scenario is very simple. A free flying 

photon is represented by a circular trajectory with 

circumstance of  with nothing attached. It is 

conceivable that, as shown in case No. 2, when all 6 

roundtrip geodesics  are disconnected, the 

overall loop  with nothing attached becomes the 

trajectory of a photon free to fly. The solution of primary 

basic equations (24.48) representing free flying photon 

should be very simple.  

In this case, the overall loop concept and the 

synchronization concept are verified for photon’s emitting 

and absorbing, which provide some insights for photon as 

well as for other particles. 

Case-2: Electron 

As shown in Section 12, electron is represented by trefoil 

trajectory with loop-1 and loop-2 combined movements on 

genus-3 trefoil type model. The situation is more complicated 

than photon. Details have to wait until the solutions of 

primary basic equations (24.48) available. But it is possible 

to take a bird-eyes view to get some ideas. 
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For electron with spin , its loop-1 is a circle with 

circumferential length . Its loop-2 is a closed loop 

with circumferential length . 

For electron as a stable particle, the length of overall loop 

including trajectory and the roundtrip lengths of geodesics 

involved is determined by synchronization condition:  

e
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In which,  is overall loop length, 
eT  

 
is electron’s 

trajectory length, 
 
is roundtrip geodesic length,  is an 

integer. When multiple geodesic lengths are involved, 

weighted probabilities ppip iW /)(    are attached to 

parameters in the emerging part (24.9) of primary basic 

equations (24.48). In (24.68),  is the probability for the 

roundtrip geodesic length  included in , while  

 is the probability for the roundtrip geodesic length 

 not included in . The roundtrip length  of 

each geodesic included or not included in the overall loop 

changes spontaneously by chances, the overall loop length 

 changes accordingly. It shows that, electron’s 

internal movements are dynamic and stochastic in nature.  

Electron trefoil model with 3 branches has  

characteristic points. Electron is represented by 3 vertexes of 

. The total number of roundtrip geodesics   

connecting 6 characteristic points to 3 vertexes is 

. The number of possible overall loops is 

determined by each geodesic roundtrip  included or not 

included in the overall loop as: 

.  (24.69)                                                  

 is number of solutions for primary basic 

equation (24.48) representing  electron. As mentioned in 

previous Section, jumping trajectories on electron model’s 

same surface corresponds to emit and absorb pseudo-photons. 

 is the number of trajectories on electron’s 

trefoil type model’s same surface.   

This is the case for an electron ignored interactions except 

interacting with pseudo-photons.  

Electron is involved in electromagnetic interaction and 

weak interaction. Taking electromagnetic interaction into 

consideration, the center vertex  C  and the vertex V 

representing photon with its overall loop including relevant 

roundtrip geodesic lengths as shown in Fig. 25.3(a) is added 

to the diagram representing electron trefoil model. 

For the electron part, total number of geodesics involved 

including those connected to center vertex C is 

. The number of possible overall loops 

determined by each roundtrip geodesic included or not 

included is:  

.        (24.70)                                          

For the photon part, according to Fig. 24.3(a) in Case-1, 

total number of geodesics involved is . The number of 

overall loops determined by each roundtrip geodesic included 

or not included is: 

.          (24.71)                                                    

As shown in Case-1 for photon, the number of different 

gauge tensors  distributions is . Since 

electron and photon share the same space, as photon adjusts 

gauge tensors  around its surrounding, which inevitably 

changes the gauge tensors  around electron’s surrounding. 

Electron trefoil type model’s  geodesic 

lengths  change accordingly. Taking this effect into 

account,  of (24.70) is changed to  as:  

.  (24.72)                            

It is important to notice that, the contribution of 

 in  is not to combine photon’s overall loop 

to electron’s overall loop. It is counting the effects of 

photon’s  adjustments upon electron. Because of 

 different  distributions generated by 

photon’s overall loop different patterns, electron’s each 

original overall loop becomes 64 different loops caused by 

the values of geodesics  changed according to 64 different 

 distributions. The same is true for other particle involved 

in interactions.  

Taking weak interaction into consideration, as shown in 

Section 14, electron  paired with electron anti-neutrino  

via gauge boson  for the regular type weak interactions. As 

shown in Fig. 17.2,  has trefoil type model with 3 branches 

similar to electron’s trefoil type model. Each branch has 2 

characteristic points, total number of geodesic lengths is 

 for the  part. Gauge boson 

 is made of two companion fermion states, which 

has ginus-2 type torus model with two branches. Each branch 

has 2 characteristic points, total number of geodesic lengths for 

the  part is . The numbers of 

possible overall loops are  and  

for the  part and the  part, respectively. Taking these 

effects into account,  of (24.72) is changed to  for 

counting electromagnetic and weak interactions as: 

.   (24.73)                    

 is the number of primary basic equations’ 

solutions for electron with interactions. According to (24.69) 

and (24.73), on top of a set of  solutions, primary 
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basic equations have another set of  solutions for 

electron:  

.   (24.74)                                           

Physics interpretation is that, electron’s trefoil type model 

has  different surfaces with slightly 

different  and  caused by f-modifications. According to 

(8.41b), electron’s torus model is estimated having 
1410509.1 N  solutions of PS-equation, which is also valid 

for the trefoil model. The number  is in the 

same order of 1410509.1 N given by (8.41b), The orders of 

magnitude agreement serves as another theoretical 

verification for the PS-equation as well as for the validity of 

analysis in this case for primary basic equations (24.48) 

representing electron in terms of numbers of solutions.                   

An electron has  solutions of primary 

basic equations (24.48). Is this scenario too complicated? The 

answer is: Not at all. For the  solutions, in 

which  solutions represent a set of the same 

type trajectories rotating around A-circle and B-circle to form 

trefoil type model with the same parameters represented by 

the same CKM-triangle, GWS-triangle and S-triangle. The 

 solutions have the same form with a 

parameter representing rotation angle. The  

solutions represent a set of trefoil type surfaces caused by f-

modification. The  solutions have the same 

form with slightly different values of parameters for  and 

. This scenario is consistent with electron’s two sets of 

discrete trefoil trajectories and jumping trajectories. Primary 

basic equations (24.48) are stochastic differential equations 

representing stochastic processes. Corresponding to members 

of statistic ensemble, multiple solutions are natural and fully 

expected. The situation is similar to quantum mechanics. The 

mixed state is a superposition of a set of enormous number of 

wave functions as solutions of Schrodinger equation; each 

one has probability for its occurrence. The mixed state of 

quantum mechanics is commonly accepted, so should be the 

multi-solution of equations (24.48). 

The superposition of  solutions represents 

electron in stochastic sense, which corresponds to the 

“electron clouds” concept in Section 8. 

The vacuons moving in trajectory with superluminal 

speed  have the capability to go through 

all  overall loops many times within Planck 

time scale. It indicates that  overall loops are 

in the ballpark. In fact, vacuons’ speed must be superluminal, 

otherwise there is no sufficient time for vacuons to go 

through all these possible paths. 

Each geodesics included or not included in the overall 

loop is a binary discrete event, which supports the discrete 

trajectory concept.  

Gauge tensors along overall loop adjust automatically to 

satisfy synchronization condition (24.68) under all 

circumstance. It shows that, the space-time continuum 

determined by primary basic equations (24.48) is dynamic 

and stochastic in nature. In essence, microscopic space-time 

structure is not a priori determined. Background 

independent is a natural request by primary basic 

equations (24.48) at Planck scale. 

The center vertex C serves as the junction to connect all 

particles involved in interactions. It confirms that, center 

vertex C represents all interactions as mentioned previously. 

Moreover, as shown in this case, center vertex C serves 

another function to distinguish different particles involved in 

interactions. If there is no center vertex C serving as partition, 

the overall loops representing photon,  ,  and electron 

are directly connected to each other, the distinctions of these 

particles would be blurred. The center vertex C not only 

serves as junction but also as partition. 

In this case, the overall loop concept and the 

synchronization concept for particle’s stability are verified 

for electrons in principle. Hopefully, when solutions of 

primary basic equations (24.48) for electron are available, 

these concepts can be confirmed. 

Case-3: Unstable Particles 

The difference between unstable and stable particles is 

synchronization. As shown in Case-1 and Case-2, photon and 

electron as stable particles, synchronization conditions are 

exact with phase difference equal to zero precisely. Otherwise, 

any nonzero phase difference no matter how tiny, as cyclic 

movement goes on, sooner or later it will accumulate to  

phase difference for cancelation corresponding to particle’s 

decay.   

For unstable particles, the quasi-synchronization 

condition is:  
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In which,  is the number of turns around the overall loop, 

 is integer. When  corresponding to  phase 

difference, the particle has a chance to decay. Depending on 

each  included or not included in ,  the values of 

 are stochastic in nature, so are decay times. The 

scenario is consistent with the stochastic multiple decay-

times for muon as an example described in Section 7.   

It is important to point out that, the synchronization 

condition and quasi-synchronization condition are not 

externally imposed; they belong to primary basic equation 

(24.48) serving as the condition of stable solutions for stable 

particle or quasi-stable solutions for unstable particle. The 

same is true for numerical parameters and characteristic 

points, they are not externally imposed, instead, they are 

requested by primary basic equations (25.48) to have 

meaningful solutions. In essence, all selecting rules 
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ultimately are originated from the set of primary basic 

equations (24.48). So it does tell the whole story. 

In principle, some information provided in the previous 

twenty three sections before this section based on three 

fundamental postulations can be obtained from corresponding 

solutions of primary basic equations (24.48). Even though, 

these efforts are not wasted. They serve as very helpful and 

informative rehearsals. Imaging without these rehearsals, 

putting the set of primary basic equations (24.48) as the real 

show on the stage, one would be very hard to recognize what 

it is.   

The set of primary basic equations (24.48) tells the whole 

story. What is the whole story? From SQS theory perspective, 

it includes three parts.  

Bottom Part: Information of all elementary particles and 

interactions include trajectories, models, characteristic 

points, triangles and related parameters. 

Top Part: Information of universe, multiverse and anything 

on top of them include space dimensions, cosmic 

periods and cosmic evolution. 

In-Between Part: Information of things in between the 

bottom part and the top part. 

The bottom part is governed by primary basic equations 

(24.48). The top part is governed by basic equations (24.20) 

and (24.42), which are originated from basic equations via 

average and converting processes. The in-between part needs 

some explanation. If the set of primary basic equations (24.48) 

does unify general relativity with quantum theory including 

standard model and quantum mechanics, it should provide 

information up to the molecules level. Further up to the upper 

levels, uncertainty plays a pivotal rule evidenced by the 

existence of freewill. The set of primary basic equations 

(24.48) is based on probability serving as the ultimate origin 

of uncertainty. It lays the foundation for things in upper 

levels. But, of cause, it cannot provide deterministic 

information for things in upper levels. In fact, no theory can, 

because it violates freewill.  

In principle, the set of primary basic equations (24.48) 

cover all elementary particles and interactions in microscopic 

world and things on higher levels. In essence, it tells the 

whole story.  

The above statement is the final goal of SQS theory. We 

just get started. There is a long interesting journey to go. 

With the joint efforts of so many talented physicists and 

mathematicians, sooner or later we will get there. 

Conclusion 24.2: Equations (24.48) serve as the primary 

basic equations for SQS theory. The solutions of 

equations (24.48) under different circumstances 

provide information of all elementary particles and 

interactions as well as things at higher levels. Basic 

equations (24.20) for gravity and basic equations 

(24.42) for electromagnetic forces are macroscopic 

versions for two long range forces. 

Summary: The goal of this section is to establish SQS theory 

basic equations based on Einstein original equations 

(24.1b) for vacuum with Gaussian probability assigned 

to gauge tensors. What turn out are basic equations 

which cover things from universe down to elementary 

particles’ internal movements. The key is to introduce 

probability. It makes general relativity automatically 

quantized. Einstein original equations for vacuum are 

the right ones to begin with. The only thing lacking 

was probability. Unfortunately, Einstein did not like 

it with his famous saying: “God does not play dice.” 

But if God wants to create the world, he must play 

dice. 
Put it casually: Mr. SQS borrowed an equation from Dr. 

Einstein and added a rolling dice to develop the basic 

equation. It paid back with interests: marbles for straws and 

everything in the universe. 

In this section, the foundation and framework of SQS 

theory basic equations are established based on Einstein 

equations for vacuum with Gaussian probability assigned to 

gauge tensors. Since the solutions of basic equations are not 

available yet, more works along this line are needed. To 

reach the goal wouldn’t be easy, but it is definitely worth the 

effort.  

 

Section 25: Discussions 

 

This section provides an overview of SQS theory with 

emphasis on open issues.  

Originally, SQS theory was intended to be a theory of 

space. It turns out to cover many aspects of particle physics 

and cosmology. 

SQS theory as a mathematic theory with physics 

significances includes four parts.  

Part-1: The Foundation. It includes three fundamental 

postulations: (1) Gaussian Probability Postulation; (2) 

Prime Number Postulation; (3) Vacuon Postulation. 

These three fundamental postulations serve as the first 

principle for SQS theory.    

Part-2: The Framework. Based on the foundation, SQS 

theory built a framework including a series of 

definitions, additional postulations, theorems, lemmas, 

hypothesis, rules, equations, formulas and conclusions.    

Part-3: The Results. Based on Part-1 and Part-2, SQS theory 

produced many results in terms of space structure, 

symmetries, and elementary particles with their 

trajectories, models, parameters, interactions as well as 

cosmic structure and evolution. SQS theory provided 

twenty five predictions for experimental verifications. 

Part-4: SQS Theory Primary Basic Equations. Based on 

Einstein Equations for vacuum of general relativity and 

introduction of probability to redefine gauge tensors, 

SQS theory established the primary basic equations. 

Fig. 25.1 shows the SQS Theory Family Tree. Three 

fundamental postulations shown by three triangles serve as 

the roots of the Tree shown on the bottom. SQS theory 

primary basic equations (24.48) along with macroscopic 

basic equations (24.20) and (24.42) shown in red hexagons 

on the bottom serve as the foundation. The three basic 
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Fig.25.1: SQS theory family tree. 
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constants , ,  in an octagon serving as the vocabulary 

to translate the mathematic results into physics are placed on 

the bottom alongside the three roots and basic equations. The 

major additional postulations, hypothesizes and rules are 

shown by 13 squares. The results and some intermediate 

steps serving as elements of the Family Tree are shown by 

156 circles. The solid line indicates that, the linked elements 

are based on logic deduction, mathematic derivation or 

factual correlation. The dashed line indicates that, the linked 

elements are somehow correlated.  

     As shown in the Family Tree, S-equations play important 

roles for SQS theory. The 1-dimensional S-equation, 

, is the most important one serving as the 

foundation. Other S-equations are derived or extended from 

this one. Its solutions ,  determine the location of 

characteristic points on particles’ model, which provide 

physics properties for the particle and its interactions with 

others represented by three triangles, GWS-triangle, CKM-

triangle and S-triangle. More works along this line are needed 

to complete the task. What is the function of S-triangle? What 

does the triangle  between CKM-triangle and S-

triangle mean? These are open issues. 

The 1-dimensioanal S-equation is a growing point. Many 

branches of Family Tree grow from it. The -equation is 

defined as an extension of the S-equation and Fourier 

transformed into -equation. The -equation on 

complex k-plane serves as the spectrum of particles. Fermions 

and bosons correspond to local minimums and local maximums 

of , respectively. The k-plane spectrum provides 

information of mass and a series of possible decay times for 

particles. But it leaves two open issues: The mass value is not 

uniquely determined; The correlation between decay times and 

lifetime is not clearly known.  

The
 

-equation is extended by adding two sets of delta 

functions to define the -equation, which is Fourier 

transformed back to complex -plane as the -equation. 

Comparing it to the -equation, the additional two 

summation terms are identified to represent interactions. In 

Section 15, these two terms are used for calculating suppression 

factors to determine the characteristic mass values ,  

for two unifications based on ,  and proton mass 

. It was a risk undertaking, because (15.2) is a borrowed 

formula not from SQS theory first principle and proton is a 

composite particle. Fortunately, it worked out well to provide 

the mass scales for two unifications. Moreover, formula (15.15) 

was found to link  and  with . It not only 

provider legitimacy to the borrowed formula (15.2) but also 

reveals the correlation between  and . It eliminates 

 as a physics input of SQS theory. In addition, it serves 

as an independent confirmation for the interaction terms in

-equation.   

The -equation has a solution at  on the x-axis 

corresponding to electron, while -equation no longer has 

the solution at . It is expected, because the adding of 

two interaction terms altered its function. To define -

equation based on -equation is an attempt to restore that 

function. A solution of  the -equation is found at a new 

location ,  and

. The fine structure constant 

 is derived from the value of . 

The importance is the form of solution shows that, electron is a 

changed particle with Weinberg angle  as a phase angle and the 

contribution of electromagnetic energy to its mass by (9.8) related 

to  of (9.9). The theory is consistent and the extension of 

,  and  from  are justified. 
The -function, , did an excellent job to 

find the special point  and the slightly 

broken anti-symmetry of  in the region  from its 

center . It is a very important finding with many 

impacts. Point  sets the boundary of the boson states region 

. Fermions’  and  falling into this region 

must appear in pair with anti-particle as a boson state, which is 

verified by top quarks’ pair production and e-boson serving as 

the inflaton. Point  also defined two other special points  

and , which are used to calculate the values of ,  

from the S-equation to determine the mass value for two 

unifications as mention previously. 

The deviation of  from  is 

only , but its impacts are huge. It shows the 

sensitivity, accuracy and power of -function and its origin, 

the S-equation based on SQS theory first principle. 

For the 3-dimensional Gaussian probability, its standard 

deviation’s three values show  symmetry on the 

complex plane and set the three branch points on the Riemann 

surface to define the two cuts on two layers. The former 

provides the first clue for  group and the latter leads to the 

torus model and the four characteristic points on its surface.  

An important trunk of the Family Tree is rooted from 

Gaussian Probability Postulation. The Random Walk Theorem 

plays a critical role for many important issues including 

converting rules, origin of hierarchy problems, photon 

dispersion, the route to GUT etc. In the converting factor 

transition region, logistic recurrent process and random walk 

process both are in action. The former has a variable binary 

probability, while the latter has six probabilities corresponding 

to  directions along three dimensions for each step.  A strict      

 relation of these two processes is needed to reveal 
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more physics insights. It is an open issu.

The Prime Number Postulation based on even-pairing 

rule is the key to correlate prime numbers with elementary 

particles. It provides the mathematic foundation to 

recognize quarks with different colors as different 

particles and to identify leptons trefoil type model with 

three branches. It serves as a backbone of the Elementary 

Particle Table. In return, The Elementary Particles Table 

did its job including prediction of the boson  along 

with other 12 bosons, , , , , . Its 

most important contribution is to determine 72 as total 

number of elementary particles at this level. The number 

72 is supported by the Number Tower especially the 

magic number 163 on its top. In fact, there is a Second 

Number Tower shown in Fig. 25.2.  
 

 
Fig. 25.2: The second Number Tower.  
 

Two number towers produce the number 48 in 

different ways. First number tower is based on seven 

prime numbers from the m-parameters of first generation 

quarks and electron  with “up+down” pairing. Second 

number tower includes two m-parameters of strange 

quarks to produce number 48 in a different way: 

 with “red+blue” pairing. The 

prime number  used to define the S-sphere is left 

out. Is it a coincidence? In the second number tower, the 

prime numbers assign to quarks with three flavors , , 

, which are the members of isospin group . Is it a 

coincidence? Both number towers provide the mathematic 

basis for six special numbers, 1, 6, 12, 24, 48, 72, and the 

magic number  as well as 

the classification of elementary particles in the Elementary 

Particles Table.  

In essence, SQS theory is a mathematic theory. If there 

is a mathematic inconsistency, it must be taken very 

seriously. For example, from “common sense”, the three 

cells for electrical neutral leptons in Elementary Particles 

Table should be filled with the flavored version 3 

neutrinos and 3 anti-neutrinos. But it makes the total 

number of elementary particles equal to 75 instead of 72 

not supported by two number towers especially the 

number 163 on top of them. The author tried many ways 

to resolve the mathematic inconsistency without success. 

Then the only way out is to take eigenstate version three 

anti-neutrinos as Majorana type fermions to fill the three 

cells. Fortunately, it works well with a bonus— the flying 

around eigenstate neutrinos , ,  provide an 

opportunity to resolve the missing antimatters mystery.  

Another trunk of Family Tree is also rooted from 

fundamental postulations. Gaussian sphere as an assembly 

of vacuons is defined based on Gaussian Probability 

Postulation and Vacuon Postulation. With the help of 

Kepler-Hales theorem, the face-centered lattice is 

identified as the structure of 3-dimensional space. The two 

sets of symmetries ,  with  are identified 

and their vertexes are related to three generations 

elementary particles and interactions as shown by the 

Symmetries Family Tree. The two sets of 6 basic 

symmetries based on the vertexes numbers 1, 6, 12, 24, 48, 

72 have important physics significances. The symmetries 

,  with  are correlated to physics groups 

such as , , , which give elementary 

particles another geometrical origin besides their models. 

But the strict mathematic proof of correlation between 

symmetries ,  with  and groups , 

,  remains an open issue.  

In SQS theory current version, the selection of the p-

parameter is from physics to mathematics. According to 

SQS theory philosophy, it should be the other way around. 

This controversy implies that, at least one rule is missing 

in the current version. When the missing rule is found, it 

will provide the way to select p- parameter from first 

principle to determine particle’s theoretical mass value. It 

remains as an important open issue. The solution is hidden 

in primary basic equations (24.48). 

Similar fluctuation behaviors are found in different 

areas of SQS theory. The first one is muon’s decay times 

determined by  values at local minimums of . 

X

g )82,1( iGi 1U 2U
3U

483117  sbsr mm

23sgm

u d
s )3(SU

7248241261163 

1
~ 2

~ 3
~

)(rO )(rC 3r

)(rO )(rC 3r

)1(U )2(SU )3(SU

)(rO )(rC 3r )1(U

)2(SU )3(SU

ik )(kDSk



1341 

Z.Y.SHEN 

Copyright © 2013 SciRes.                                                                                                                                                                     JMP 

There are so many local minimums corresponding to so 

many possible decay times for muon originated from the 

fluctuation nature of . The second one is the 

fluctuation nature of the complex -plane, on which the 

value of  is calculated from electron’s mass and 

Weinberg angle. The value of  

listed in Table 9.1 is from one root of . In fact, 

there is a serious of roots corresponding to different  

values, which indicates  as a running constant. The third 

one is the fluctuation nature of the PS-equation. There is a 

series of roots or minimums corresponding to slightly 

different tilting angles of loop-2 with slightly different 

effective parameters’ values. The three types of 

fluctuations have something in common. They all are 

random in nature, all vary in small steps, and all 

correspond to real physics parameters. These facts imply 

that, they have the same mechanism and come from the 

same origin. The mechanism is particles’ discrete 

trajectories proved by Theorem 18.1 and related lemmas. 

A particle and its parameters are represented by its 

trajectory on model surfaces. Jumping trajectories in 

discrete manner causing parameters change is responsible 

to these fluctuation behaviors. Ultimately it is originated 

from Gaussian Probability Postulation and stochastic 

nature of the quantum space.   

In Section 22, the finding of three more sets of prime 

number even pairs in prime numbers table is very 

important. Formulas (22.9), (22.10), (22.11) and 

Conclusion 22.2 indicate that, they are based on the 

original set of 18+1 prime numbers. With the help of 

Postulation 22.1, cosmic history and periods are correlated 

to elementary particles and traced back to prime numbers 

table. It provides a mathematical explanation for cosmic 

evolution from the big bang through inflation(s) up to the 

current period. It also predicts the future of universe. 

Finally it reaches a conclusion: A cyclic universe 

oscillates with alternate expanding and contracting periods. 

All of these are built in prime numbers table based on 

even-pairing rule. It shows mathematics at work.  

As mentioned at the end of Section 22, the universe 

during its contracting period, entropy decrease seems 

contradictory to the second law of thermodynamics. The 

second law is such a fundamental physics law; any 

violation is going to shake the foundation of physics. It 

must be dealt with. The precondition for applying second 

law is that, the statistic ensemble for second law to apply 

must be an isolated one. Then the questions become: Is the 

universe an isolated statistic ensemble? Is there anything 

on top of the universe? There are clues from grand 

numbers, as listed in Table 23.3,  as a 

 grand number is for universe current third period, 

 as a  grand number is for pre-

big-bang period. For reference, the universe containing 

 galaxies with  stars correspond to  and 

 grand numbers, respectively.  

Hypothesis 25.1: There is a multiverse including  

universes organized in two levels, each level has 

 members. Our universe is one member of the 

lower level sub-multiverse.  

SQS theory is not the first one to propose the 

multiverse concept. Other theory such as superstring 

theory did years ago. Despite the same name, there are 

differences. The motivation of SQS theory to propose its 

multiverse concept is trying to find a way to resolve the 

second law problem during cosmic contracting period. 

The clues are from two grand numbers. The  

universes in a sub-multiverse or the  universes in 

the multiverse correctively form a statistic ensemble for 

the second law to apply. Our universe is just an element 

akin to a molecule in the air. The entropy is counted for 

entire ensemble not for one element. Moreover, each 

universe in the sub-multiverse started from Gaussian 

spheres evaporated from pre-big-bang over heated liquid 

state at different times in a random fashion. From SQS 

perspective, the overall scenario is like that, at a given 

time, different universes are in their different periods. 

Some are expanding and others are contracting akin to six 

cylinders in a combustion engine. It provides a possible 

solution for the second law problem. But it raises a 

question: What is the physics links among member 

universes in the sub-multiverse serving as the statistic 

ensemble? It may have something to do with neutrinos 

and photons. 

Table 25.1 shows mass, Compton wavelength, 

converting factor, long-path Compton wavelength and 

maximum entanglement distance for three types of 

neutrinos. Mass values are sited from (17.4), converting 

factor and long-path values are calculated according to 

rules introduced in Section 4. Wavelength  for photon 

as boson is replaced by Compton wavelength  for 

neutrinos as fermions. Maximum entanglement distance is 

changed accordingly to  

for neutrinos.  
 

Table 25.1: Three Type Neutrinos Related Parameters* 

 
* ,  are mass and converting factor; ,  are short path and long  

path Compton wavelengths.   
 

According to (17.23), the mass of  and  are close 

to the mass of  and , respectively, the mass of  is 
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close to one third of  mass. For  with mass close to 

, the  light years maximum 

entanglement distance for a pair of entangled  is  

times longer than the  light years visible 

universe size. It is capable to reach neighboring member 

universe territory in the sub-multiverse. For  with mass 

close to , the  light years maximum 

entanglement distance is marginal to reach neighboring 

members of the sub-multiverse. For   with one third of 

 mass, the 
 
light 

years maximum entanglement distance is less than visible 

universe size. It is not capable to reach neighboring 

members of sub-multiverse. If this is the case, a pair of 

entangled  is eligible to serve as the physics link 

between adjacent members of the sub-multiverse. There is 

an interesting twist: cross universes connected  might 

only oscillate with , which is a distinctive feature 

different from its non-cross-universes counterpart. It 

provides a chance to verify the possible link between our 

universe and neighboring universes.   

Accordingly, a pair of entangled photons with 

wavelength longer than millimeter is also capable to do 

the job. The long wavelengths portion of the cosmic 

microwave background radiation (MBR) spectrum is in 

this range. It may leave some traces there.  

In ordinary flat space,  sets a limit of the distance 

between two entangled particles. But under extraordinary 

circumstance, things turn out differently. The edge of 

visible universe is like the event horizon of a black hole. 

The long path link between two entangled particles is 

capable to pass through event horizon. It is possible, 

because event horizon is defined based on speed does not 

exceed the speed of light, the superluminal speed along 

long path link does not subject to this restriction.  

In Section 24, cosmic MBR photons long-path 

wavelength  at frequency spectrum center 

wavelength  is used to deal with the 

dark energy hierarchy problem. For a double check, let’s 

use eigenstate anti-neutrino  with long path wavelength 

 listed in Table 25.1 for an 

independent estimation:  

.     (25.1)                                                   

Since anti-neutrino  is electrically neutral, so the 

additional factor  is not applicable. Comparing 

theoretical result  of (25.1) with observed 

data  of (24.24), the relative discrepancy 

is 70.6%. The agreement from two independent sources 

provides additional support for using converting rule to 

deal with dark energy problem. Question: Why use long 

path wavelength of  not  in (26.1)? Answer: For an 

oscillating pair, the one with shorter wavelength sets the 

limit. The result of (25.1) is important in another sense. It 

confirms that, the factor  is applicable only for the 

case with electromagnetic force and gravity involved.  

As universe keeps expanding in an accelerating rate, 

sooner or later, the distance between universe and its 

closest neighboring universe becomes too long exceeding 

the maximum entanglement distance of these particles 

made the cross universes physics link. Then the second 

law ensemble is in trouble. But look at it the other way, it 

might provide the cause to trigger cosmic contraction. It is 

a wild idea. But it doesn’t hurt to give a thought. 

There is another possible scheme to resolve the second 

law problem based on the definition of isolated statistic 

ensemble. During cosmic contracting period, the universe 

boundary is shrinking. Does an ensemble with shrinking 

boundary qualified to be an isolated one for the second 

law to apply? It deserves a thought. But in any case, the 

second thermodynamic law always holds.  

In case the second law does not need entanglements to 

hold during cosmic contracting period, the multiverse 

concept still has a support from grand numbers: 

 and . It indicates that, 

there is something  times bigger on top of our 

universe. Except the multiverse, what else can be?  

SQS theory provides a way to resolve the black hole 

information paradox. As Hawking suggested, a pair of 

virtual photons pops out from vacuum with one outside 

and the other inside event horizon. The outside one 

becomes a real photon carrying out part of black hole’s 

energy/mass known as the Hawking radiation. Eventually, 

the black hole loses its entire energy/mass and vanishes. 

The paradox is that, after the black hole vanished, 

information in the back hole is lost. It contradicts to the 

conservation of information according to quantum theory. 

From SQS theory standpoint, the two photons entangled 

as coherent states interact to each other with superluminal 

speed along long path link. Like the cosmic entanglement 

case, long path link is capable to pass through event 

horizon and transmitting information along with 

energy/mass out of black hole via Hawking radiation. In 

this way, black hole does not lose any information. 

Information paradox is resolved. The key is the long path 

with superluminal speed.  

SQS theory supports its own version of the limited 

anthropic principle. Compare to the strong anthropic 

principle, it has an important difference. The strong 

anthropic principle is based on the assumption: Physics 

laws and constants are different in different universes. 

According to SQS theory, there are two different types of 

physics laws and constants. The first type based on 

mathematics such as prime numbers does not change; 
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while the second type based on geometry may change as 

the geometry changes. Any universe as a member of the 

multiverse in its third period is governed by 18 prime 

numbers serving as the m-parameters of 18 quarks and in 

some extent the n-parameters as well. These parameters 

cannot change, because they are based on the same sets of 

18 prime numbers. SQS theory standpoint is that, for any 

universe as a member of the multiverse in its third cosmic 

period corresponding to our current universe, the physics 

laws and constants may change, but they subject to strict 

limitations imposed by a set of unchangeable 18 prime 

numbers. Our universe nurtured human being on earth, 

some other universe in the multiverse with 

members should be capable to do the same. Superficially 

this argument seems to restrict the power of anthropic 

principle; actually it is to enhance the power of anthropic 

principle. If everything including all physics laws and 

constants can change arbitrarily, the  member 

universes in multiverse are not sufficient to include even 

one universe having the set of physics laws and constants 

for human being to exist. Then the anthropic principle 

loses its power entirely. Mother Nature may change her 

mind but not arbitrarily. No one, not even God, can 

change the prime numbers.    

Back to the multiverse issue,  is 

defined by (23.33), its values depend on a prime number 

71 and a running constant . For any universe in its third 

period, 71 as a special prime number in the M-group does 

not change, while  depending on geometry of particles 

model may change making  as a running constant. 

It supports the SQS theory limited anthropic principle.  

Prime number 71 defined the M-sphere for the current 

universe corresponding to a set of 9 even pairs of prime 

numbers listed in the first row of Table 22.1. The pre-big-

bang period corresponds to another set of 9 even pairs of 

prime numbers listed in the third and fourth rows of Table 

22.1. The prime number located at similar location as 71 

is 353. Let’s look at (23.33a) for the pre-big-bang period 

universe, if 71 is replaced by 353 and kept  unchanged, 

the value of  is increased about  times. Sine 

fine structure constant  is related to electrical charge, 

such big change is very unlikely. The alternative is:  in 

denominator increases approximately 5 times to 

 for compensation. Since the 1-dimensional 

 carries information from the 3-dimensional space, 

 indicates that pre-big-bang space has 

much larger area of negatively curvature corresponding to 

tremendous repulsive force pushing everything outwards. 

It is a white hole. As mentioned in Section 22, after-big-

crunch universe transfers into pre-big-bang universe via a 

time tunnel. The outlet of time tunnel is a white hole. Here 

is the white hole! The two comedies are matched so well. 

It was conducted by Mother Nature using mathematic 

language, the actress and actors were prime numbers. If 

this argument holds, it serves as another evidence for the 

roles played by 71 and 353 in specific and for the 

correlation between prime numbers and cosmic history in 

general.  

In fact, 71 is a special prime number in many senses. It 

is the largest prime number factor in the M-group factors 

sequence. It is in the non-even prime numbers pair 

 to end the three generations. It is the radius to 

define M-sphere and M-circle. It is the prime number in 

formula (23.33a) to define the running fine structure 

constant. Noticed that, the sum of three m-parameters for 

three strange quarks is: 

. (25.2a)                                            

Prime number 71 is also related to the Euclid number 

 for : 

. (25.2b)                          

This was a mathematic formula introduced by Greeks two 

thousand some years ago. Finally,  is the total 

number of particles listed in Elementary Particles Table. 

All of these are based on mathematics; no wander 71 

played an important role in physics. 

Some mathematicians do not recognize 1 as a prime 

number. Their definition of prime number is like that: A 

prime number is a natural number that has exactly two 

distinct natural number divisors: 1 and itself.  

 For SQS theory, this definition is unacceptable. The 

first natural number 1 must be a prime number. There are 

mathematical reasons. (1) If 1 is not recognized as a prime 

number, the first even pair  does not exist. As a 

result, the first number tower no longer holds. (2) The 

second number tower no longer holds either. (3) The 

magic number 163 loses its foundation. (4) The 

symmetries family trees lose their foundation. (5) 

Definition 22.1 and Postulation 22.1 no longer hold. 

Cosmic history and future based on it lose their foundation. 

There are physics reasons. (1) If 1 is not recognized as a 

prime number, up quark and down quark  do not 

exist. The total number of quarks would be 16 instead of 

18. A flavor triplet is in trouble and two color triplets no 

long exist. (2) Graviton as  does not exist. (3) 

Electron trefoil type model loses its red branch, because 

the only even prime number  

corresponding to electron red branch lost its foundation. (4) 

Photon as  is “handicapped” due to the “wound” 

of  and . (5) For the current cosmic period we live in, 

the space is -dimensional! What kind of world is that? 

SQS theory is obligated to provide a prime number 

definition. 

Definition 25.1, The Prime Number Definition: A prime 

number is a natural number that only has 1 and itself 

as its natural number divisor or divisors.  
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Explanation: Definition 25.1 recognizes 1 as a prime 

number. For 1 as a prime number, two divisors 

happen to be the same. This kind of degenerations is 

common in mathematics as well as in physics.  

Quantum theory is known for its uncertainty nature 

such as Heisenberg uncertainty principle. But the basic 

equation of quantum theory such as Schrodinger equation 

is deterministic. The uncertainty comes later from the 

statistic interpretation of its solution, the square of wave 

function’s magnitude , serving as probability. SQS 

theory introduced uncertainty in the first place with the 

Gaussian Probability Postulation. Quantization comes 

later. After vacuon introduced in Section 18, Theorem 

18.1 and Lemmas 18.1, 18.2 are proved to confirm 

trajectories’ discrete nature. It serves as the basic 

quantization for SQS theory. In essence, quantum theory 

is from quantization to probability, while SQS theory is 

from probability to quantization. These two approaches 

are quite different.  

According to SQS theory, particle’s spin is the angular 

momentum of its loop-1 internal cyclic movement. It is 

based by the fact that conservation of angular momentums 

is the sum of spin and trajectory angular momentums 

combined. Apples can’t add to oranges. Two addable 

terms must belong to the same type. The formula to 

calculate a particle’s spin is: 

.

 (25.3)                                               

In which,  is loop-1 circumferential length, 

 is Planck wavelength,  is reduced m-

parameter.  

For bosons without mass, photon and gluons with 

 have spin ; graviton and massons with  

have spin . For charged leptons’ trefoil model three 

branches together with reduced m-parameter, 

, . Formula (25.3) is 

valid for these particles. 

For quarks, all 18 quarks have reduced m-parameter 

, formula (25.3) is also valid. But all 18 quarks’ 

original m-parameters are greater than 1, reduction means 

m-, n-, p-parameters divided by the  some number m for a 

quark, which makes the quark’s  and its n- and p- 

parameters changes accordingly. As shown in Section 13, 

strong interactions are based on quarks’ original m-

parameter and n-parameter versus gluons’ m-parameter 

and n-parameter. After quarks’ m- and n-parameters 

reductions, how does gluon “recognize” quark’s original 

parameters? There is a possible solution. When a quark 

interacts with gluons, its reduced m-, n-, and p- parameters 

are multiplied by the same number m to recover their 

original value for gluons to recognize. The multiplication 

of m physically means that, the quark’s two cyclic 

movements go through m cycles, which is acceptable. 

There is any question. Reduction makes quark’s n-

parameter fractional. As shown in Section 14, leptons’ n-

parameters are fractional. Does the reduction for quarks 

blur the distinction between quarks and leptons and the 

distinction between strong and weak interactions? The 

answer is: No. Because quarks’ m-, n-, and p- parameters 

are different from leptons’. 

SQS theory does not use operators. It is not the first 

one to do so. Feynman’s path integral theory did it 

decades ago. Feynman’s path integral equation is 

equivalent to Schrodinger’s equation, which shows that 

quantum theory can serve its functions without operators. 

It gives confidence to SQS theory to go its own way 

without operators.  

In Section 5, SQS theory provided the dispersion 

equation (5.7) as a modification for special relativity 

based on Planck length . Later in Section 23, the M-

sphere with radius  is introduced, which serves 

as a domain with linear scale longer than Planck length. 

According to grand number phenomena, large domains 

with linear scale of  are possible as shown by 

(21.12). The multi-layer domain possibility raises a 

question: Should dispersion equation (5.7) change 

accordingly? The answer is: Yes. At least the M-sphere is 

legitimate evidenced by the fact that grand unification 

occurred on its surface. The dispersion equation (5.7) are 

generalized as: 

,     (25.4a)                                                 

.        (25.4b)                                                 

 is the length scale of the effective domain. Compare 

to (5.7), equation (26.4) makes dispersion stronger and 

relatively easier for experimental or observational 

verification. The results will provide information for 

effective domain size. It is important to point out that, if 

an effective domain with  is found, it does not 

mean equation (5.7) is abolished and replaced by equation 

(26.4). Photon dispersion equation (5.7) is fundamental 

based on space basic grainy structure, which is always 

valid no matter higher level domain exists or not. This is 

the reason why equation (25.4) is defined as a 

generalization not a replacement of original dispersion 

equation (5.7).   

Quantum mechanics is a very successful theory in 

terms of extremely high accuracy and very broad practical 

applications. But it has many contradict versions of 

interpretation and seemingly none of them is commonly 

accepted. SQS theory provides an opportunity for a new 

interpretation. The key is the meaning of locality. As 

discussed in Section 5, if locality means interactions and 

information transmission are restricted by speed of  

under any circumstances, the superluminal phenomena 

found by many experiments between entangled particles 

inevitably lead to “spooky action at a distance”. The long 
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path provides a way out. Entangled particles are linked by 

long path. It is a physical entity for interactions and 

information transmission along it with superluminal speed 

 seen by stationary observers. In this way, 

locality is reserved and many other “spooky actions” in 

quantum mechanics can be interpreted with common 

sense. This is a topic with very important physics and 

philosophical significances for further investigations. SQS 

theory standpoint is clear: Einstein was right — “No 

spooky action at a distance.” 

General relativity is a beautiful theory. Based on two 

principles, general relativity provides a set of Einstein 

equations for gravity in terms of space-time curvature. It 

has been verified by many experiments and observations 

without even one failure. General relativity serves as one 

of two pillars for modern physics. The problem is that, 

general relativity is not compatible with quantum theory. 

For decades, there were many attempts to quantize general 

relativity and none of them is commonly accepted. From 

SQS theory viewpoint, it is the time to rethink the issue. In 

fact, this is the initial inspiration for the author to search 

SQS theory basic equations. 

As mentioned in Section 24, the key concept for SQS 

basic equations based on Einstein original equations 

(24.1b) is to introduce uncertainty to gauge tensors by 

Postulation 24.1. From SQS theory perspective, the 

concept is very clear to begin with: To unify general 

relativity with quantum theory, uncertainty is primary 

and quantization is secondary. The other key concept is 

to introduce the intrinsic time by (24.5), which naturally 

leads to the superluminal speed for vacuons movements 

inside elementary particles and the appropriately 

adjustment of separation for the variable in difference 

equations of (24.20) and (24.42) etc. Both concepts paid 

off tremendously as shown in Section 24. 

Standard Model (SM) is proved to be a successful 

effective theory with enormous theoretical results agreed 

very well with experimental data. As shown in previous 

sections, many results from SQS theory are agreed well 

with experimental data. There must be a strict link 

between SM and SQS theory. When the link is found, 

some open issues will settle down.  

On the other hand, there are some differences between 

SM and SQS theory.  

The first one is the difference ways to treat particles. 

SQS theory provides trajectories on models to represent 

elementary particles, while SM treats them as points. This 

is the reason that, SQS theory does not have divergence 

problem and does not need renormalization. There are 

deeper reasons for SQS theory to avoid divergence 

problem. For the long range force such as electrostatic 

force, its strength is inversely proportional to the square of 

distance. As distance approaches to zero, its strength and 

energy density approach to infinity causing divergence. 

According to SQS theory, electromagnetic force is unified 

into gravity at length scale  on  M-sphere 

surface. So there are no infinity and no divergence for 

electromagnetic force. For gravity, its strength is also 

inversely proportional to the square of distance. It keeps 

that way until near saturation as shown in Fig.24.1. At 

, gravitational force 

vanishes. In the region , it becomes repulsive. 

So there is no divergence for gravitational force. In fact, 

this is the way SQS theory eliminated singularity. Within 

the M-sphere, two short range forces are unified into 

gravity, so there is no divergence either. 

The second one is the different ways to introduce 

parameters. SM has twenty some handpicked parameters 

from experimental data, while SQS theory has three sets 

of mathematical parameters. In which two sets mostly are 

determined prime numbers and the other set is determined 

by particle’s mass in the current version. In essence, the 

second difference is originated from the first one. It is 

understandable that, one can derive parameters from a 

geometric model with trajectory and characteristic points, 

but no one can derive any parameter except its location 

and movement from a point.  

The third one is SM does not include gravity, SQS 

theory does. In fact, SQS theory unified all interactions to 

gravitational interaction as shown in Section 15. 

The fourth one is the number of elementary particles. 

As shown in Table 18.1 and Table 18.2, SM has 25 

particles not including anti-particles, while SQS theory 

has 72 particles. The difference is stemmed from SQS 

theory recognized quarks with different colors as different 

particles. After the vacuon introduced, the difference 

becomes the other way around with only one ultimate 

elementary particle for SQS theory. 

SM is a well-developed theory. With decades of 

cooperative efforts, it is capable to calculate the cross 

sections and branching ratios for particles and interactions 

from Feynman diagrams, which are agreed with 

experiments very well. SQS theory is a developing theory. 

It just gets started. It hasn’t done these type calculations 

yet but has the potential to do so. The potential is based on 

properties of SQS theory. One is in the 1-dimensional S-

equation, in general the probability at  has excess and 

the probability at  has deficit. For most particles, the 

excess does not match the deficit exactly. The mismatch 

provides the mechanism for the particle to interact with 

others or transfer to others. The other one is jumping 

trajectories, which also provide the opportunity for the 

particle interacting with others or transferring into others. 

These two properties are intrinsically correlated based on 

primary basic equations (24.48). For instance, as shown in 

Section 24, different elementary particle represented by 

different vertexes in  share the same center vertex. 

It serves as a junction of their overall closed geodesic 

loops, which provides the mechanism for interactions 
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among particles. So SQS theory does have the potential to 

provide the method for calculating cross sections and 

branching ratios. This is an important open issue. It 

wouldn’t be easy and may require some tricks and 

extensive number crunching. But in principle it is feasible. 

Hopefully, it can be done in the near future. 

SQS theory does not intend to compete with SM. It 

provides geometrical models and mathematical 

interpretations to support SM at a deeper level. It also 

provides a way to make SM as a quantum theory 

compatible with general relativity.     

There are similarity between super-symmetry theory 

and SQS theory. Both theories require fermions and 

bosons somehow matching to each other. But there is an 

important difference. All hypothetic particles predicted by 

super-symmetry theory such as the “s- ” for bosons and 

the “-o” for fermions are not discovered yet. In SQS 

theory Elementary Particles Table, there are no 

undiscovered fermions; for the 24 bosons, 13 of them are 

waiting to be discovered. If the 8 massons are indeed 

attached to W, Z, X bosons, the number of undiscovered 

bosons is reduced to 5. The difference between super-

symmetry theory and SQS theory is stemmed from the 

different ways to match fermions and bosons. Super-

symmetry theory does not look for possible matches in 

existing elementary particles, while SQS theory does. In 

fact, all fermions and bosons in Table 18.2 are matched, in 

which only 13 bosons are hypothetical. 

 There are some similarities between SQS theory and 

string theory [21]. After all, strings and trajectories both 

are 1-dimensional objects representing elementary 

particles. In this regard, these two theories do have some 

common grounds. In addition, for SQS theory the way to 

introduce mass by adding oscillating mass terms in the 

AT- and PS- equations is inspired by string theory. But 

there are major differences.  

The first difference is the number of space dimensions. 

Superstring theory is based on 9-dimensional or 10-

dimentional space (the early version of string theory was 

based on 25-dimensional space), while SQS theory is 

based on 3-dimentional space. As shown in Sections 21, 

the physics groups are related to two set of symmetries, 

 and  with , which are the intrinsic 

property of the 3-dimensional space with face-centered 

lattice structure. It includes two parts, the cubic part and 

the octahedral part. The face-centered lattice structure can 

be viewed as an octahedron imbedded in a cube. Someone 

may interpret the imbedded octahedral part as the hidden 

space. For instance,  symmetry centered at 1 

octahedral vertex has 12 vertexes on the spherical surface. 

The  pairs of vertexes related to the center 

vertex form 6 non-orthogonal axes, which might be 

interpreted as a 6-dimensional space hidden in a 3-

dimensional space represented by the cubic part. From 

SQS theory perspective, it is an illusion of the face-

centered space structure. The argument is to state SQS 

theory viewpoint and by no means to criticize string 

theory. After all, what is the number of space dimensions? 

9? 10? 25? or 3? Only experiments can answer.  

The second difference is the nature of string and 

trajectory. String theory treats string as a vibrating thread 

with mass and elasticity. SQS theory treats trajectory as a 

path of vacuons movement. This difference makes the 

other difference. For some version of the string theories, 

except graviton, all other elementary particles are 

represented by open strings; only graviton is represented 

by closed string. For SQS theory, except graviton, all 

other elementary particles’ trajectories are closed loops. 

The reason is that, in general, vacuons movement along 

trajectory cannot stop suddenly and revise directions 

abruptly. As the only exception, graviton stops at cubic 

vertex  and changes its directions. It has specific 

reasons based on Theorem 3.2, Theorem 4.1 and Theorem 

21.1. 

The third difference is the topological structures of 

elementary particles. The particle models proposed by 

SQS theory are topological manifolds with genus numbers 

of zero, one, two and three. String theory has so many 

different Calabi-Yao manifolds with possible numbers up 

to . If the model does represent an elementary 

particle, it should provide particle’s all physics parameters 

from its geometrical parameters. SQS theory did so with 

models having genus number not exceeding three. The 

key is model having definitive shape and size plus 

characteristic points and related triangles. Model’s shape 

and size are determined by particle’s m-, n-, p-parameters; 

its characteristic points’ location and related triangles are 

determined by  and  as messengers carrying 

information from the S-equation. In principle, the 

particle’s all physics parameters can be derived from these 

geometry parameters. On the other hand, if the topological 

manifold has no definitive shape, size and lack of 

characteristic points, the only way for it to represent an 

elementary particle with all physics parameters is to 

increase its genus number. Again, it is by no means to 

criticize string theory. What type of strings or trajectories 

and models elementary particles really have, only 

experiments can tell. 

The fourth difference is fermions versus bosons. The 

original string theory based on 26-dimensional space-time 

had only bosons. Fermions were introduced later via 

super-symmetry to form the superstring theory. For SQS 

theory, fermions are primary, bosons made of a pair of 

fermion and anti-fermion are secondary. Fermion or boson, 

which one is primary? This is the question. A basic theory 

should answer. 

Over the years, string theory has accumulated so many 

mathematic achievements and some physics insights. It 

takes time for SQS theory to learn. Hopefully, more 

mutual understandings will benefit both theories.   
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There are similarities between SQS theory and the loop 

theory [22]. One similarity is obvious. Both theories are 

basically dealing with loops. There is another important 

similarity. One of the major merits of loop theory is 

background independence. Space structure is not a priori 

determined; instead, it emerges naturally. SQS theory 

supports background independence. In the transitional and 

macroscopic scales, the moving around M-spheres arrange 

themselves according to distribution of mass and energy 

to satisfy basic equations (24.20) the same way as general 

relativity. Inside the M-sphere, Gaussian spheres arrange 

themselves in face-centered lattice structure to reach 

minimum potential energy. Inside the Planck cube, the 

primary basic equations (24.48) provide a mechanism for 

background independence based on the stochastic 

behavior of geodesics adjusting gauge tensors as shown in 

Section 24.  

Composite preons theory is based on preons triplets to 

form models for elementary particles [23,24]. In SQS 

theory, charged leptons and neutrinos trefoil trajectories 

have three branches. For quarks, there are flavor triplets 

and color triplets. In its current version, composite preons 

theory does not provide detail information regarding 

elementary particles’ parameters for further comparison. 

Striking similarities between crystallography and 

particle physics were found [25]. For SQS theory, it is not 

only similarity; the microscopic space is a crystal with 

face-centered lattice structure. All elementary particles, 

interactions and symmetries are originated from it. This 

area deserves further investigation based on the face-

centered lattice structure. Hopefully, they will give SQS 

theory more supports and inspirations. 

Technicolor theory is proposed as an alternative of 

higgs mechanism to provide mass for particles with mass 

[26]. There are some similarities between technicolor 

theory and SQS theory. The eight hypothetic massons 

( ) introduced in Section 14 are pure mass stuff. 

Massons contribute a portion of mass for gauge bosons W, 

Z and X. If , ,
 
are indeed made neutrino and 

anti-neutrino pairs, the tremendous mass gap between the 

“heaviest” and the “lightest” would be also filled by vast 

numbers of massons. From SQS theory perspective, 

massons provide a portion of mass to bosons with mass. 

Whither massons also play a role to provide a portion of 

mass for some fermions, it is an open issue. According to 

SQS theory, particles’ mass is determined by  

ratio and generated by sinusoidal oscillation of mass term 

 along trajectory, which is ultimately 

originated from solutions of primary basic equations 

(24.48). It serves as the universal mechanism of particles’ 

mass for SQS theory. But it does not necessarily mean no 

common grounds for Higgs mechanism, technicolor 

theory and SQS theory. There are possible correlations 

among these theories, which deserve a close look. 

The original Grand Unification Theory (GUT) 

intended to unify three interactions excluding gravity was 

based on  group [27, 28]. Despite the same name, it 

is different from SQS theory GUT including gravity. The 

GUT based on  is an elegant theory. According to 

the minimal  model [28], protons are not stable and 

decay with lifetime of  years. Unfortunately, 

this prediction was disproved by Irvine-Michigan-

Brookhaven (I-M-B) experiment and later by Super-

Kamiokande (S-K) experiment. It was such a 

disappointment, afterwards physicists moved on other 

directions. From SQS theory perspective, there are reasons 

to believe the original GUT based on  group might 

have a chance for revival.  

The protons predicted lifetime of  years is 

based on  group. The obvious precondition is that, 

 group must be in existence in the first place. It is 

well known in crystallography that, 5-fold symmetry does 

not exist in single-crystal structure; it exists in the quasi-

crystal structure with quasi-periodic lattice lengths [29, 

30]. The quasi-crystal lattice must have at least two 

different spatial periods with irrational ratio. The face-

centered space structure in its single-crystal form does not 

support 
 
group. For  group to exist, the face-

centered space structure must have defect to accommodate 

5-fold spatial symmetry.  

As show in Fig. 25.3, icosahedron has 5-fold spatial 

symmetry. Like  symmetry, icosahedron also has 

12 vertexes on a spherical surface with radius: 

,        

(25.5)                  

The relative deviation of  from 

 is 4.9%.  

The icosahedron has 20 connected equilateral triangles 

on its surface. It has sufficient room to accommodate 

quarks ),,( bgr uuuu , ),,( bgr uuuu , ),,( bgr dddd  and 

leptons participated in the proton )(uudp  decay process.  

According to Kepler-Hales theory, space based on 

Gaussian spheres with face-centered lattice structure is the 

ground state of vacuum with lowest potential energy. A 

icosahedron as defect in face-centered space structure is in 

a quasi-stable state with higher energy. To accommodate 

5-fold symmetry, the 12 vertexes of  must shift 

locations converting to icosahedron structure. The 

conversion process is governed by probability. Assume a 

vertex stays in  and shifts to icosahedron with 

equal probability . The probability for 12 vertexes of 

 all shift to icosahedron is 

For a tank of water containing  
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protons with lifetime   years, one originally 

expected to detect  decay events per year. This 

expectation is based on the assumption that,  group 

is fully applicable to all  protons involved. But it is not 

true, because for N  protons only  protons are eligible 

for  group to apply. Take this effect into account, 

for the water tank containing  

protons, the expected number of proton decay events 

should be multiplied by probability  p and become 

 per year. Instead 10 decay 

events per year, the real expectation is ~2.4 events per 

1000 years. According to this argument, I-M-B type and S-

K type experiments should increase the number of protons 

in tank by at least 1000 times.   
 

 
Fig. 25.3: Icosahedron with 12 vertexes and 20 equilateral 

triangles on its surface has 5-fold symmetry.  
 

There are also questions regarding the validity of I-M-

B type and S-K type experiments. As shown in Section 7, 

in the time interval , muons 

have zero probability to decay. What is proton’s ? If 

proton’s , even all protons were born at 

big bang  years ago, none of them is eligible 

for decay yet. If this is the case, to increase the number of 

protons for I-M-B type and S-K type experiments would 

not help at all, the only way is to wait until  

In Section 15, SQS theory borrowed a method from the 

GUT based on  group to calculate the characteristic 

mass for two unifications. This method is proved to be 

equivalent to the one with more credibility. It shows that, 

there is some truth in  group. For instance,  

group breaks down to , which are 

the right ones for elementary particles and interactions in 

the standard model. Moreover,  group contains 24 

bosons, in which 13 of them called “X -bosons” are 

hypothetic. As shown in the Elementary Particles Table, 

SQS theory also has 24 bosons, in which 13 are 

hypothetical. Is this a coincidence? It is worthwhile to 

investigate  group to find out its relations with  

and  symmetries. The bottom line is that, as long as 

 can convert to icosahedron with 5-fold 

symmetry, proton has a chance to decay. The question is: 

Under what condition and what’s the probability? This is 

an interesting open issue worthwhile to explore.  

Elementary particles’ models proposed by SQS theory 

are s in Table 25.2.  

Most models listed in Table 25.2 have been explained 

in previous Sections. A few models need some 

explanation. The spindle type torus models are listed as 

genus-0, because their center hole(s) are covered. 

Topological manifold is allowed to continuously deform, 

but the heavy mass 
 
requires  preventing 

the center hole to be uncovered. For gauge bosons W, Z,  

X and scalar bosons , ,  with heavy mass 

, their models belong to two joint spindle type 

torus with genus-0.  
 

Table 25.2: Summary of Elementary Particles Models  

 
 

In algebraic topology, Henri Poincare discovered the 

“hairy ball theorem” [31]. Imagine a ball with a hair 

growing out from every point on its surface. One tries to 

comb the hairs flat and smoothly around the ball. Put in 

mathematic terms. “Hairs” correspond to nonzero tangent 

vector field made of a set of tangent vectors. “Comb the 

hairs around the ball” is to arrange the tangent vectors 

around the closed surface. “Flat” means tangent vectors 

pointing only at tangential direction of the closed surface. 

“Smoothly” means tangent vectors arranged with 

continuity without abruption. 

Poincare theorem proved that, no matter how to 

arrange these tangent vectors (hairs), it always leaves 

some crown (bundle of hairs) stretched out from the ball 

surface. Poincare theorem is valid for any genus-0 closed 
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surface topologically equivalent to the ball surface. Fig. 

25.4 shows two crowns on a spherical surface. 
 

 
Fig. 25.4: “Combed hairs” on spherical surface as genus-0 

manifold with two “crowns”. 
 

There are two closed surfaces, on which hairs can be 

combed flat and smoothly without crown. One is genus-1 

torus with one center hole and the other is Klein bottle. 

In 3-dimensional space, closed surfaces are classified 

into two types: Type-1 surface with genus number equal 

to 1 and Type-2 surface with genus number other than 1. 

According Poincare theorem and related rules, Type-1 

closed surface does not have crown and Type-2 closed 

surface has at least two crowns. 

From SQS theory perspective, Poincare theorem and 

related rules provide important clues for elementary 

particles’ models, trajectories and interactions. As shown 

in previous sections, particle’s trajectories are on its 

model’s closed surface (the small holes on torus surface 

are closed by filling points according to Penrose [2]). For 

a trajectory on model surface, the tangent vectors along its 

path are flat and smooth. For a set of trajectories on the 

model surface, the tangent vectors along these trajectories 

are arranged like combed hairs. According to Poincare 

theorem and related rules, for the set of trajectories on the 

model’s Type-2 closed surface, there are always crowns 

for trajectories to jumping out or jumping in. Jumping 

literarily means vector must leave the surface, which 

makes it no longer tangential and abruptly changing 

directions. This is what happens at the crowns. 

As described previously, jumping trajectories are 

equivalent to interactions. Therefore, a particle having 

interactions must be capable to jump trajectories and its 

model surface must have crowns. The requirement for 

crowns is met for Type-2 model with genus number other 

than 1. The problem is the fifteen quarks with genus-1 

torus model: , , , , , , , , , , , ,

, , . The genus-1 torus belongs to Type-1, which 

has no crown. If this is really the case, there would be no 

electromagnetic interaction, no strong interaction and no 

weak interaction for these fifteen quarks. Obviously, it is 

not true. One possible way to solve the problem is to leave 

same of four tiny holes open on torus surface, which 

makes their model as open surface to have crowns. For 

instance, leaving two tiny holes open at characteristic 

points  and  creates two crowns. It serves as a 

working assumption for SQS theory. 

In topological terms, free flying photon with genus-1 

model of Type-1 has no crown meaning no interaction 

among photons. In fact, electromagnetic interactions are 

linear and photons do not interact with each other. It is 

also evidenced by the fact that, Maxwell equations are 

linear equations. It serves as a supportive evidence for the 

effectiveness of Poincare theorem and related rules in 

particle physics.  

Gluon’s genus-2 model of Type-2 has crowns 

indicating that, there is interaction among gluons. In fact, 

strong interaction mediated by gluons is nonlinear and 

gluons interact with each other as shown in Table 13.5. It 

also serves as another supportive evidence for the 

effectiveness of Poincare theorem and related rules in 

particle physics.  

Graviton’s genus-0 model of Type-2 has crowns. They 

should interact with themselves. In fact, as the mediator of 

gravity, graviton interacts with anything having mass and 

energy. The flying around gravitons have energy and 

dynamic mass for gravity to act upon. It is also evidenced 

by the fact that, Einstein equations of general relativity are 

nonlinear equations and nonlinearity represents self-

interaction. The gravity among gravitons is extremely 

feeble, but it does exist. It supports graviton with genus-0.  

Conclusion 25.1: Graviton is a scalar boson with spin 0. 
Explanation: Poincare theorem and related rules serve as 

the topological evidence for Conclusion 25.1, 

graviton must have spin 0. Let’s consider the 

opposite. If graviton has spin 2 or any other nonzero 

spin values, its closed loop model belongs to genus-1 

of Type-1 without crown corresponding to no 

interaction among gravitons. It is obviously not true. 

This is a conclusive evidence for graviton having 

spin 0 as stated in Definition 18.1 based on other 

mathematic reasons.  

Black hole with closed event horizon is a genus-0 

manifold of Type-2. According to Poincare theorem, black 

hole must have crowns and hairs. Therefore, Hawking 

radiation is not only a possibility but also a necessity. It 

serves as a mathematic support for Hawking radiation and 

the solution of information paradox suggested by SQS 

theory. 

Poincare theorem and related rules also support an 

“absolute black hole” with no stretched out hair.  

Definition 25.2: Absolute Black Hole. A chuck of matter 

with total mass exceeding critical mass to form a 

manifold with genus-1 torus event horizon is defined 

as an absolute black hole. 

Explanation: The name “absolute black hole” is chosen 

to differentiate it from black hole. Black hole has 
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Hawking radiations as stretched out hairs. Absolute 

black hole has no radiation and no stretched out hair.  

Theorem 25.1: No Radiation Theorem. Absolute black 

hole has no radiation of any kind.  

Proof: According to Poincare theorem with related rules 

and Definition 25.2, absolute black hole with genus-

1 torus event horizon has no crown and no stretched 

out hair which means no radiation.                  QED                                                                                                   

Lemma 25.1: Hawking Mechanism. Absolute black hole 

has no Hawking radiation, but it has Hawking 

mechanism. A pair of virtual photons pops up in the 

vicinity of absolute black hole’s event horizon. One 

photon falls into absolute black hole, and the other 

photon is kept in the event horizon. This Hawking 

mechanism process keeps going on. As results, more 

and more photons are circulating in absolute black 

hole’s event horizon like “combed hairs”.   

Proof: The Hawking mechanism is the same as that 

occurred in the vicinity of ordinary black hole. The 

only difference is that absolute black hole has no 

“crown”, therefore photon cannot radiate.        QED                                                                                       

Lemma 25.2: When two absolute black holes collide in 

proper ways, they transfer into a regular black hole 

with genus-0 event horizon or a special black hole 

with genus-2 event horizon. Both subject to Hawking 

radiation. 

Proof: According to Poincare theorem with related rules 

and Theorem 25.1, the regular black hole with 

genus-0 event horizon or the special black hole with 

genus-2 event horizon has crowns and stretched out 

hairs — radiation.                                           QED 

The boundary of visible universe like black hole’s 

event horizon is a genus-0 manifold of Type-2. According 

to Poincare theorem, it must have crowns. Therefore, the 

cross universes connections via entangled ,  and 

cosmic MBR photons not only are possible but also are 

necessary. It serves as an independent mathematic support 

for the multiverse concept and the physics connections 

among its member universes. 

So far everything is consistent. It indicates that, 

Poincare theorem in particular and topology in general 

play critical role for elementary particles’ models, 

trajectories and interactions as well as for cosmology. It is 

mathematics at work. 

According to Green et al [21], spinors may relate to the 

tangent vectors in Poincare theorem. Spinor is the basic 

concept of spinor theory [32]. The relation between spinor 

theory and SQS theory is an open area. Spinor theory is 

based on complex space, while SQS theory is based on 

real space except the abstract 3 complex planes associated 

with 3 axes introduced in Scheme-2 of Section 3. What is 

the implication of real space versus complex space is an 

interesting topic. 

SQS theory provided a framework for cosmology 

based on prime numbers with results agreed to cosmology 

standard model plus some new insights. But some 

important issues left open such as: (1) How many cosmic 

inflations did happen, one, two or three? (2) What is the 

mechanism of -dimensional space in the first period 

transferred into 2-dimensional space in the second period? 

(3) Based on mathematics, is there a way to reveal cosmic 

history and to predict cosmic future in more details? (4) 

When will the current accelerating cosmic expansion end? 

(5) Are there more cosmic “secretes” hidden in prime 

numbers? In fact, there is one. 

It is interesting to find another set of 13 consecutive 

even paired prime numbers listed in Table 25.3. It starts 

from 2791&2797 and ends at 2999&3001. The two prime 

number odd pairs are 2777&2789 and 3011&3019 marked 

with underline to start and to stop the even paired prime 

number sequence at two ends. 

  

 

Table 25.3: The Prime Numbers between 2707 and 3083 and 13 Consecutive Even Pairs 

2707 2711 2713 2719 2729 2731 2741 2749 2753 2767 2777 2789 

2791     2797 2801     2803 2819     2833 2837     2843 2851     2857 2861     2879 

2887     2897 2903     2909 2917     2927 2939     2953 2957     2963 2969     2971 

2999     3001 3011 3019 3023 3037 3041 3049 3061 3067 3079 3083 
 

 

The set of 13 even prime numbers pair represents 

dimensional space without temporal dimension. The product 

of 26 prime numbers in this set is:  
          

(25.6)
 

In the 13 consecutive even pairs representing 

dimensional space, the one additional even pair served as 

fractal mechanism to change dimensions. 

 

Based on , two prime number products are defined as: 

(25.7a)                     

 

 
(25.7b)

         

In which,  is the product of 4 consecutive even pairs in 

the beginning part of  and  is the product of the other 9 

consecutive even pairs.  

As shown in Section 23, the product  as a 

 grand number corresponds to the universe in current 

period. The product  as a  grand 

number corresponds to the multiverse in pre-big-bang period. 
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It seems natural to assume that, the product  

as a  grand number corresponds to the precursor of the 

“super-multiverse”. 

Hypothesis 25.2: Super-Multiverse. There is a super-

multiverse including 4410/~ preS FF ,  multi-universes 

organized in two levels, each level has  member 

multiverse. Our multiverse is one  

member of the lower level. The total number of 

universes in the super-multiverse is 66

3 10/~ FFS
 . 

Hypothesis 25.2 serves as a foundation to explore 

possible physics implications of  related issues. 

Hypothesis 25.3: Big Start. The super-multiverse started at 

the big start, which is the beginning of time. Before the 

big start, everything was static without any variation. 

Time started at the big start, everything started to 

develop.  

Before the big-start, the dimensional space 

corresponding to  without temporal dimension was static, 

in which everything was at a standstill without any movement. 

The mass/energy was “frozen”. 

The big start was the beginning of time, temporal 

dimension split from the -dimensional space. The  

-dimensional space-time corresponding to  was 

born. The mass/energy carried out by  became dynamic 

and the super-multiverse started to evolve. The mass/energy 

corresponding to  served as the precursor of 

dark energy and dark matter. The mass/energy carried out by 

 served as the precursor of ordinary matter/energy, which 

was the “raw material” of the ordinary elementary particles 

and energy to build the planets, stars and galaxies in the 

super-multiverse. 

The concept of changing space-time dimensions is 

checked with two ways. One way is given by  in (25.7b). 

The other comparative way is to treat spatial dimensions as 

the exponentials of . As space changed from -

dimensional to 3-dimensional: 

.   (25.8)                                                 

Comparing to , the result of (25.8) has a 

relative deviation of 18.9%. For two numbers’ difference as 

large as 62 orders of magnitude, the 18.9% relative deviation 

serves as a check for the validity of changing space-time 

dimensions based on three products ,  and 

. 

After the big-start, according to Hypothesis 25.2, the 

super-multiverse kept expanding and splitting to form multi-

level multiverses and universes. The mechanism of space 

expansion is Planck cubes’ splitting. As the original one 

super Planck cube split into  Planck cubes, the mass/energy 

in a Planck cube decreases according to  rate, and the 

mass/energy density decreases according to  rate. 

Correspondingly, the ratio of the super Planck density at big-

start versus the ordinary mass/energy density in the current 

universe is estimated as: 

. (25.9)                                        

Notice that, in the two previous estimations, the theoretical 

values of (24.25), (25.1) and the observed ratio 

 of (24.24) all are based on 

Planck density versus overall density including the 

contributions of ordinary matter, dark matter and dark energy. 

According to cosmic observation and cosmic MBR data, the 

universe contains 4% ordinary matter, 23% dark matter and 

73% dark energy. Taking this factor into account, the value 

of (25.9) should be adjusted as: 

.  

(25.10)     

Compare the value of (25.10) with  of 

(24.24), the theoretical result  has a relative 

deviation of .  

Three theoretical results for the dark energy hierarch 

problem are listed in Table 25.4 to compare with observed 

data. 
 

Table 25.4: Theoretical Results for Dark Energy Hierarch 

Problem Compare to Observed Data 
 

Formulas   Formula 
numbers 

Results Relative 
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(25.10)  12310268.3   9.17x10-4 Prime numbers products 

SF  and 
4SF  
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PlanckR





 Original discrepancy:  

123 orders of magnitude  

 

The comparison says all. 

As shown in Section 22, the legitimacy of three cosmic 

periods, Period-I, Period-II and Period-III*, were verified  

by (22.9), (22.10), (22.11) and summarized in Conclusion 

22.2. It shows that, the prime number corresponding to these 

three periods are closely correlated to the prime number 

corresponding to current period, Period-III. Let’s verify the 

legitimacy of the big start with prime number products . 

The following formulas are based on the prime numbers 

corresponding to cosmic periods listed in Table 22.1 and 

Table 25.3. 

The first prime number in product sequence  is 2791, 

which is closely correlated to the prime numbers 
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corresponding to Period-III, Period-II, Period- and  Period-

III*.  

 

 

 

 

).117()321(

263257251241239

197193191181179

113109107103101

1311753212791

*





















IIIPeriod

IPeriod

IIPeriod

IIIPeriod

   (25.11)                                          

The rules in (25.11) are similar to the rules in (22.9). As 

shown on right of (25.11), prime number 2791 is the sum of 4 

sets of beginning prime numbers in parenthesis for Period-III, 

Period-II, Period- and Period-III* plus (1+2+3) and (7+11). 

The repeat of three prime numbers (1+2+3)  represents the fact 

that, the space corresponding to product sequence  is -

dimensional. The repeat of two prime numbers (7+11) 

represents the fact that, there is a temporal dimension hidden 

in the product sequence . For the Period- , the two prime 

numbers 167 and 173 at beginning of the sequence are omitted 

to transfer Period-  with -dimension space into 

Period-  with 1-dimension space to avoid redundancy. 

Otherwise, the sum of Period-I and Period-II would be 

-dimension space contradictory to Period-III with 3-

dimensional space. 

The last prime number in product sequence  is 3001, 

which is closely correlated to the prime numbers 

corresponding to Period-III, Period-II, Period- and  Period-

III*.  

 (25.12)                                              

The rules in (25.12) are similar to the rules in (22.10). The 

order of summation in (25.12) is backwards from the last 

prime numbers 61, 157, 199, 347 of prime numbers sets 

corresponding to Period-III, Period-II, Period- , Period-III* 

and consecutively takes the next ones. After the backwards 

consecutive summation ended, it jumps to the prime 

number(s) shown in parenthesis. For Period-III, 43 is the 

prime number assigned to  as the up type quark of the 3rd 

generation, 19 is the prime number assigned to  as the up 

type quark of the 2nd generation. Prime number 5 and the set 

of three prime numbers  is similar to the prime 

number 7 and  in formula (22.10). 

Besides 2791 and 3001, the rest 24 prime numbers  in 

product sequence  are expressed as the same form as 

(22.11).  

,    (25.13)                                                  

In which  and  are two prime numbers selected from the 

set of odd prime numbers from 1 to 147 in two prime 

numbers sequences corresponding to Period-III and Period-II. 

Conclusion 25.2: Based on (25.11), (22.12), (25.13), the set 

of even paired prime numbers started from 2791&2797 

ended at 2999&3001 corresponding to the big start are 

based on the original 4 sets prime numbers 

corresponding to Period-III, Period-II, Period- and 

Period-III*.  

Conclusion 25.2 supports Hypothesis 25.2 and related 

issues of the big start related to . 

From SQS theory perspective, some mathematical issues 

may have important physics implications. Examples are 

given as follows. 

1. Besides the three finite sporadic Lie groups, M-group, B-

group, and Suz-group, are there any other finite sporadic 

Lie groups also related to SQS theory? 

2. What type group, sub-group or something else correlates 

to three sets of prime numbers corresponding to the first 

period, second period, pre-big-bang period and the 

precursor of the big-start? In fact, there are clues. One 

clue is related to  and other even paired prime numbers 

sequences , , , :          

.       (25.14)                       

In which,  for pre-big-start is given by 

(25.6),  for current period and 

 for pre-gig-bang period are listed in 

Table 23.3,  and  are the products for two sets of 

prime numbers sequences corresponding to cosmic 

Period-I and Period-II: 

, (25.15a)                      

2510534.1

157151149139137131127113109107103101



IIF

.  

(25.15b) 

The prime numbers product sequences for three sporadic 

groups Suz-group, B-group and M-group as listed in Table 

23.3 have the following products square: 

          .            (25.16)                                  

In which 
 
is given by (23.32) 

based on an argument to multiply an additional prime 

number factor 17 to the product sequence of M-group. 

The results of (25.14) and (25.16) only deviate by a factor 

of  for two grand numbers in the orders of 

. If this is not a coincidence, it supports the 

cosmological roles played by newly found 13 even pairs 

of prime numbers corresponding to . 

Moreover, there are three additional clues. 

A:     ,  (25.17a)                                                   

B:     ,     (25.17b)                                                                 
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A/B: .  (25.17c)                                                  

A:     ,    (25.18a)                                                                

B:     ,     (25.18b)                                                                      

A/B: .                  (25.18c)                                                              

A:     ,                                       (25.19a)                                                                          

B:     ,      (25.19b)                                                                      

A/B:  .  (25.19c)                                                                      

In which, A is the products of prime numbers sequence 

for different cosmic period(s) shown in Section 22; B is 

the squared product of corresponding sporadic Lie 

group(s) shown in Section 23; A/B is the ratio serving as 

the relative discrepancy factor. If all these are not by 

coincidence, there are some implications: (1) There is a 

general relation between the products of prime numbers 

sequence(s) corresponding to cosmic period(s) and 

squared product(s) of sporadic Lie group(s); (2) Grand 

number phenomena show up in many different areas; (3) 

It seems reasonable to modify  by multiplying 17 as 

. But it raises interesting questions: Why 

the prime number 17 is so special? There is a clue: 

, , b, c are prime numbers.  (25.20)                   

Checked for , only two sets of prime numbers fit 

(25.20). 

:     ;    (25.21a)                                                  

:   . (25.21b)                                                 

So 17 is a special prime number. 

3. What is the physics implication of the j-function closely 

related to M-group?  

4. The Riemann conjecture has some hidden physics 

significance. Physicists have speculated: The zeros of 

the -function might relate to some particles’ spectrum. 

For SQS theory,  serving as particles’ spectrum 

for mass and decay times also has a series of local 

minimums. Are they somehow correlated to -

function? Riemann hypothesis is based on the zeta 

function: 

                        .                                   (25.22)                                                     

In which, s are complex numbers. A connection 

between zeta function and prime numbers was 

discovered by Euler, who proved the identity: 

.      (25.23)                                                  

In which,  p are prime numbers greater than 1. Does it 

mean something for SQS theory?  

5. Mathematics helped SQS theory tremendously. Are 

there any other mathematics related to SQS theory? For 

instance, golden ratio, fractals, Fibonacci numbers, 

Morley theorem etc. 

6. Beyond the set of consecutive even pairs listed in Table 

25.3, are there other sets of even pairs qualified for 

cosmological periods? If they are, what do they mean? 

These are important issues for mathematicians, 

physicists and cosmologists to find out and thank about. 

It is important to point out that, except electron, the way 

to derive parameters from models for other particles is only 

for demonstration purpose. It is by no means the final version. 

In fact, the selection of p-parameters is still an open issue. 

Moreover, other than electron, the way to calculate particles 

geometrical parameters on the outer half of torus x-z cross 

section based on normalization  is optional. For 

the inner half, there are also some optional issues. For the 

primary basic equations (24.48), solutions are not available 

yet. In essence, SQS theory is still a developing theory. The 

final version is waiting for these open issues and options to 

settle down. What this paper did is only scratching the 

surface. There are many open areas left to be explored.  

Simplicity is the guideline to develop SQS Theory. The 

phenomena in Physics world are complicated. The physics 

basic principle is simple. The deeper the level the simpler it is. 

At the deepest level, the basic principle should be the 

simplest. SQS Theory serving as a version of unified field 

theory has three fundamental postulation: the Gaussian 

Probability Postulation, the Prime Numbers Postulation and 

the Vacuon Postulation to begin with. After the establishment 

of SQS theory basic equation, the basic principles become 

even simpler. The Prime Number Postulation actually should 

derive from the set of primary basic equations (24.48) as the 

necessary condition for its stable or quasi-stable solutions. 

Moreover, since the vacuon serving as the basic unit of space 

and the carrier of Gaussian probability, the Vacuon 

Postulation can be combined with the Gaussian Probability 

Postulation. In other words, SQS theory ultimately has only 

one first principle, the Gaussian Probability Postulation, 

which provides our basic understanding of the space. The 

three basic physics units: Planck length, Planck time and 

Planck energy (Planck mass) are another example of 

simplicity. In essence, SQS theory is a mathematic theory. Its 

physics meaning is interpreted in terms of these three basic 

units. In principle, no more physics input is needed. In this 

regard, Planck contributed most. He not only is the one found 

the Planck constant h, but also is the one to point out that 

three Planck units can be defined by three basic physics 

constants: h, c and G.   

The final goal for SQS theory is to unify all interactions 

and all elementary particles into a self-consistent theory 

based on the first principle. It tells the whole story. It is 

exciting, but there is a long journey to go. A gold mine is out 

there. Let’s go for it.  

 

Section 26: Suggested Experimental Verifications for SQS 

Theory Predictions 
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SQS theory is such a different theory from other particle 

physics and cosmology theories. Extraordinary claims require 

extraordinary evidence. SQS theory provides twenty five 

predictions for experimental and/or observational 

verifications.  

1. SQS theory predicts the mass of the scalar boson 
1U  

responsible for electroweak unification as:  
2/)5(754.152 cGeVM ew  .    (15.5)                                               

The uncertainty of (15.5) comes from two sources: one 

is the relative accuracy of proton mass 

)23(272013.938pM  (PDG 2010 data) in 810 order, the 

other one is the relative accuracy of 

)6(3701945.20)( bx  limited by the 16-digit 

numerical calculation, which is in 910  order. So the 

uncertainty of 
ewM  given in (15.5) is a conservative one. 

The predicted value of 
ewM  is within the energy range 

of LHC. 

2. According to (18.11), the hypothetical neutral gauge 

boson oX  with mass 2/94690465.9 cGeVM X   

probably has a very narrow width. It is worth the effort 

to find it; after all it is an elementary particle. After the 
oX  boson is found, the next thing is to find out the 

value of two parameters 
sg  and 

sq  defined as two 

sides of the S-triangle, which may provide some insights 

related to hadrons decay with the oX  boson involved. 

3. The hypothetical neutral scalar boson 
ffMs MMM   is 

a composite particle with predicted mass  
2/074032.115 cGeVM Ms  .                          (20.9) 

The uncertainty of the mass value depends on the 

accuracy of electron’s mass in the order of 810~  . 

4. In Section 14, SQS theory predicted 8 hypothetical 

neutral scalar boson massons, 
iG , )83,2,1( i . The 

mass values listed in Table 14. 4 are within LHC 

capability. But there are some concerns of how to 

identify them. It is possible that, massons are attached to 

W , Z , X gauge bosons serving as part of their mass. If 

this is the case, massons are not detectable as individual 

particles. Nevertheless, there is a chance providing an 

indirect way to test the effects of two heavy massons, 

7G  and 
8G  each with mass values around 2/342 cGeV . 

If they indeed attach to W or Z, it is conceivable to find 

two resonances around or higher than 2/342 cGeV  as 

the high energy states of W or Z. So there are two 

possibilities: One is to find all eight massons with their 

predicted mass listed in Table 14.4, the other is to find 

the effects of two heavy massons 
7G  and 

8G  attached to 

W or Z. Either way serves as the evidence of 

hypothetical massons. 

5. More accurate experiments are needed to determine the 

mass and mixing angle of eigenstate neutrinos, which 

can be used to verify the three flavored neutrinos’ mass 

values of (17.4) as well as the estimated mass relations 

of (17.23) predicted by SQS theory. 

6. As discussed in Section 5, photons’ speed varies with its 

frequency (energy) predicted by dispersion equation 

(5.7). Since the dispersion effect is in the 5610~   order 

for visible lights, it is impossible to test by experiments 

in that wavelength range. The generalized dispersion 

equation (25.4) is relatively easier for experimental 

verification. Hopefully GRB090510 type of  -ray 

bursts with much higher energy and longer distance can 

provide chances for verification.  

7. The long path concept originated from the Random 

Walk Theorem is very important in many senses. In 

case of entanglement, the extended long path makes the 

physics link between entangled particles. Along the long 

path, interactions and information are transmitted with 

superluminal speed many orders of magnitude faster 

than c, which was recently confirmed by experiment [9]. 

It serves as evidence for the superluminal speed. For 

direct evidence of the long path, one way is to confirm 

the maximum distance 
PLd /)4/12( 2

0max   between 

a pair of entangled photons. For an experimentally 

manageable distance kmd 1max  , the required 

wavelength is in m1710475.8   range corresponding to 

 -ray with energy of GeV629.14 . The alternative way 

is to use a pair of entangled charged nucleons. The 

manageable distance can be increased by circulating the 

entangled nucleons in a ring with extremely high 

vacuum to prevent de-coherency. Such types of 

experiments are not easy, but it is worth the effort. 

Because so many things are based on the long path 

concept.  

8. According to SQS theory, entangled photons have 

entanglement red shift and de-coherent blue shift. If some 

photons of the cosmic microwave radiation (MBR) were 

entangled to begin with, their entanglement red shifts and 

de-coherent blue shifts provide opportunities to verify 

them as well as for the stretched out long path for cross 

universes links. The cosmic MBR is the relic of high 

temperature radiations in the early universe with 

blackbody radiation spectrum. Due to the expansion of 

space, the MBR spectrum went through tremendous red 

shift and its temperature is lowered to 2.725k. The 

measured cosmic MBR kept the blackbody spectrum. 

According to the discussion in Section 5, the entanglement 

red shift is frequency (wavelength) dependent causing 

distortion to the blackbody spectrum. Comparing to the 

tremendous red shift caused by space expansion, the 

distortion is extremely small even for the maximum red 

shift of 
0max 5.1    according to (5.19). The de-coherent 

blue shift is unique. According to (5.22) and (5.24), the 

range of blue shifts for the photon far away from de-

coherence location is from 1.5 times to 2 times of its 
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frequency. The red shifts and blue shifts have cancelation 

effect in the spectrum. It causes the difficulty to verify 

them. Fortunately, the highly raised peak of blackbody 

spectrum provides a mechanism to reduce the cancelation 

effect. Over all, the combination of entanglement red shifts 

and de-coherent blue shifts causes the cosmic MBR 

spectrum deviated from the blackbody spectrum such that, 

its lower frequency portion has tiny gain due to 

entanglement red shifts and its higher frequency portion 

also has tiny gain due to de-coherent blue shifts, while its 

middle portion has deficit to pay for these gains. There are 

two ways for verification. One way is to compare the 

measurement cosmic MBR data with blackbody radiation 

theoretical spectrum to find the deviation in different 

portions. The other way is based on statistic analysis of the 

measured cosmic MBR data. Since the stochastic nature of 

blackbody radiation and the randomness of measurements’ 

errors, the measured cosmic MBR data should have no 

statistic correlation among different frequency components. 

That is the scenario without counting the effects of 

entanglement red shift and de-coherent blue shift. The 

entanglement red shifts produce a correlation with gain for 

low frequency component and deficit for high frequency 

component in the spectrum’s lower and middle portions. 

The de-coherent blue shifts produce a correlation with 

deficit for low frequency component and gain for high 

frequency component in the spectrum’s middle and higher 

portions. The deviation overall effect upon the spectrum is 

to slightly lift up its two end portions and to slightly press 

down its middle portion. Due to the overwhelm effect of 

the space expansion red shift, the correlations and 

deviations are extremely small. It requires extremely 

sensitive and extremely high precision measurements to 

verify. If the entanglement red shift deviation does exist, it 

indicates that some photons in the cosmic MBR are still 

entangled. If the de-coherent blue shift deviation does exist, 

it indicates that some originally entangled photons in the 

cosmic MBR were de-coherent already. If none of these 

two deviations exist, it indicates that, either the photons in 

cosmic MBR were not entangled to begin with or the 

entangled photons were de-coherent shortly after their 

entanglement. In any case, it is worth the effort.    

9. As shown in Section 17, The PDG-2010 data listed the 

upper limit 048.0
 of “neutrino density” is close to the 

upper limit )4(044.0b
 of baryon density in the universe, 

but the lower limit 
0009.0  is far less than 

)4(044.0b
. From SQS theory standpoint, it is very 

important to narrow error range of the value 
  to 

determine the amount of 
1

~ , 
2

~ , 
3

~  comparing to the 

amount of 
b . In addition, it is very important to measure 

the cosmology originated neutrinos’ handedness to 

determine the percentage of 
1

~ , 
2

~ , 
3

~ ,  contribute to the 

“missing antimatters”. In case 
1

~ , 
2

~ , 
3

~ contribute only a 

part of the “missing antimatters”, it provides the 

opportunity for other types of antimatter candidates.  

10. SQS theory would like to see more accurate experimental 

data of the upper limit for flavored version neutrinos and 

anti-neutrinos electrical charge and magnetic moment to 

verify whether they have remnant electrical charge or not. 

According to Conclusion 17.1, the three eigehstate anti-

neutrinos 
1

~ , 
2

~ , 
3

~  have no electrical charge.  According 

to Theorem 17.1 and related discussions, for the flavored 

version 
e , 

 , 
  and 

e , 
 , 

 ,  SQS theory intends 

to favor no electrical change. Hopefully, further 

experiments will press the upper limits lower.  

11. As discussed in Section 25, the cross-universes entangled 

eigenstate anti-neutrinos 
1

~  oscillates only with 
2

~  not 

with 
3

~ , while the regular anti-neutrinos oscillate among 

all three members 
1

~ , 
2

~ , 
3

~ . The different oscillation 

patterns provide an opportunity for verification. Of cause, 

1
~  and 

2
~  are not directly detectable, but their 

information can be extracted from the detected flavored 

neutrinos or anti-neutrinos based on the probability matrix 

of (17.26) and (17.27). The key is to make sure that, the 

neutrinos 
1

~ , 
2

~  are cross universes originated.  

12. According to SQS theory, part of dark matter is the 

debris left over from the cosmos inflation. In which the 

majority is 2-dimensional membranes flooding around 

in space. The right way to detect such dark matter 

should base on gravitation effects. As suggested in 

Section 22, gravity-meters with extremely high 

sensitivity isolated from local interferences fit the job.  

13. SQS theory predicts the mini-inflation caused by a piece 

of 2-dimensional dark matters membrane occasionally 

converting into a chunk of visible matters in the 3-

dimensional space. As discussed in Section 22, the 

unstable particles’ decay modes and branching ratios are 

the same as the second generation particles’. In other 

words, the decay events happen in ordinary 3-

dimensional space according to the same laws and rules. 

The way to verify this prediction is to detect the decay 

products in the original cosmic ray and to see whether 

they fits the decay modes and branching ratios of 

second generation particles. The most likely target of 

these cosmic rays source is the center region of galaxies, 

where the dark matter has higher density. Samuel Ting’s 

Alfa Magnetic Spectrometer fits this job perfectly. In 

addition, the 2-dimensional membrane contains equal 

amount of particles and anti-particles,  

their annihilations produce a boost of high energy  -

ray. The most likely place to look for is the center 

region of galaxies.    

14. SQS theory suggested that, there were more than one 

cosmic inflations happened after the big bang. These 

cosmic inflations should leave some traces on cosmic 

MBR. As shown in Section 22, the first cosmic inflation 
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and the third cosmic inflation happened at 

st 42

1 108278.3~   and 36

3 10072.2~ t  s after the big 

bang, respectively. It is worthwhile to look for possible 

traces. 

15. SQS theory predicts that cosmic history went through 

three periods each with different dimensional spaces, 

3
11 -dimensional, 2-dimensional, 3-dimensional for the 

st1  period, nd2  period, rd3  periods, respectively. The 

space with different numbers of dimensions should 

leave some traces on cosmic MBR map or somewhere 

else. When more detailed data with better precision and 

resolution are available, that is the place to look for.  

16.  According to the logistic recurrent process described in 

Section 16, the transition from Compton length to GUT 

scale, the mass of a particle such as electron or muon 

increases continuously. This effect may be testable. For 

instance, Randolf et al found that, to replace electron with 

muon in the hydrogen atom, some peculiar behaviors were 

observed including different values for proton’s size and 

the Rydberg constant [33]. The changing mass effect due 

to random walk theorem may be responsible for these 

anomalies. It is worthwhile to check with existing 

experiments data and the future ones.  

17. As shown in Section 7, SQS theory predicts that, muon has 

zero probability to decay in the time intervals 

stt 13

min 1020750   and the probability of decay at 

time st 3100933.8   or longer is less than 710 , in 

which time 0t  is set at the birth of the muon. When the 

muon factory is in operation, the two predictions should be 

relatively easy to check with experiments. If these 

predictions are confirmed, which serve as supportive 

evidences for )(kDSk
 as particles spectrum. 

18. SQS theory suggested that, quarks with the same flavor 

and different colors are different elementary particles 

having different masses. The difficulty to confirm is due to 

the fact that, there is no standalone individual quark in 

existence. Fortunately, there is an indirect way. Numerical 

calculation methods such as the lattice QCD to analyze 

hadrons experimental data are capable to extract the mass 

values of their component quarks. Comparison of PDG-

2010 data with PDG-2008 data found more distinctive 

multi-peak behaviors of flavored quark’s mass curves, 

which support SQS theory. Hopefully more experimental 

data and more powerful numerical computation capability 

for lattice QCD will finally verify the mass values of 18 

quarks listed in Table 11.2.  

19. SQS theory proposed the multiverse with 2210~  member 

universes organized into two levels. There are two possible 

ways to verify this hypothesis. One way is to look at the 

cross-universe entangled eigenstate anti-neutrino 
1

~  and 

2
~  oscillation pattern as suggested in Prediction No. 11. 

The other way is to look at the cosmic MBR map to search 

for the trace of cross universes entangled photons. If such 

photon is found, it serves as evidence for cross universes 

entangled photons pair as well as for the neighbor universe 

in the multiverse. But one must make sure that the 

entanglement is cross universes. One possible way to 

verify is to observe the de-coherent blue shift. According 

to (5.24), for the de-coherence located at 
maxdd   in a 

neighbor universe, the originally entangled photon in our 

universe shows a large blue shift as its frequency suddenly 

doubled to ff 2' max,0  . It also serves as evidence for the 

existence of long path. 

20. According SQS theory, graviton is scalar boson with 

spin 0 instead of tensor boson with spin 2. The decisive 

proof is to find the graviton and to measure its spin. 

Graviton having spin 0 is based on mathematics 

supported by two Number Towers and independently 

verified by Poincare’s “hairy ball” theorem. SQS theory 

takes conclusion 25.1 seriously. There are many 

existing experimental setups designed to look for 

gravitational wave and gravitons. Perhaps all of them 

are based on the assumption of graviton having spin 2. 

Whether these types of setups eligible to find graviton 

with spin 0 or not? It is a question for experimenters and 

general relativity theorists to think about. The urgency 

is enhanced by the fact that, despite decades of 

extensive efforts, no gravitation wave or graviton have 

found. It is the time for a second thought.  

21. According to Definition 25.2, Theorem 25.1 and 

Lemma 25.1, Lemma 25.2, when two absolute black 

holes collide in the proper ways, they transfer into a 

regular black hole with genus-0 event horizon or a 

special black hole with genus-2 event horizon. Both are 

eligible to have Hawking radiations. As discussed in 

Section 25, absolute black hole with ginus-1 event 

horizon has Hawking mechanism without Hawking 

radiation. The absolute black hole holds half photons of 

virtual photon pairs produced by Hawking mechanism 

in its event horizon. After the collision, these held 

photons suddenly have the chance to release. The burst 

of Hawking radiations caused by collision is detectable.  

22. Since the gravity distribution pattern of absolute black 

hole with genus-1 event horizon is quite different from 

that of black hole with genus-0 event horizon, the 

different patterns provide another way to indentify the 

absolute black hole. 

23. As shown in Section 25, GUT based on )5(SU  group 

may have a chance to revival. The key is to reinterpret 

the results of I-M-B type and S-K type experiments. It is 

worthwhile to consider redo these experiments with 

larger water tank. For instance, if the linear size of water 

tank is increased by 20-fold corresponding to 8000 

times more protons involved, it would be possible to see 

some proton decay events. But before doing that, one 

must make sure proton’s yearst 10

min 10  from 

theoretical estimation.  
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24. A remote hope is to find the e-boson with predicted 

mass GeVM be

8

, 10959754.3  , which is roughly 410  

times higher than the full scale energy of LHC. It is far 

beyond the current accelerator capability. But there is 

another way. Occasionally, a cosmic ray with extremely 

high energy hits earth. There is a chance that, it contains 

the trace for the leftover e-boson or its decay products 

from the big cosmic inflation. It is worthwhile to 

monitor and observe. The verification of the e-boson is 

significant. It not only will confirm electron having a 

high energy intermediate boson state but also will shed 

lights on details of the cosmos inflation. Let’s keep 

hoping.  

25. The author is confident to voluntarily offer a falsified 

test for SQS theory. In our universe current period, if 

any experiment and/or observation find additional space 

dimension or dimensions beyond the existing three 

space dimensions, SQS theory is proved to be false. 

Hopefully some experimental physicists will be interested 

and figure out the ways to carry out these proposed 

experiments. The author is standing by for assistance.  

 

Section 27: Conclusions 

 

The conclusions of SQS theory are summarized as 

follows. 

1. For the current cosmic period, space is a 3-dimensional 

continuum with Planck scale face-centered lattice as the 

basic building block.  

2. Space is stochastic in nature with Gaussian probability 

distribution function attached at each discrete point, 

which serves as the ultimate origin of all physics 

uncertainties and stochastic behaviors. 

3. Space is made of a collection of infinite point particles 

called vacuons corresponding to infinite geometrical 

points. Vacuons serve as the event carriers of the 

Gaussian probability distribution function.  

4. The Gaussian sphere is defined as a sphere with radius 

. The separation between two adjacent 

Gaussian spheres is  determined by the 

balance of gravity attractive and repulsive forces. 

5. SQS theory is background independent. Space structure 

is not a priori determined. At upper level, redefined 

gauge tensors adjust simultaneously in according with 

mass and energy distribution governed by macroscopic 

basic equations (24.20). Inside the M-sphere with radius 

, Gaussian spheres governed by gravity 

arrange themselves to reach minimum potential energy. 

At the Planck scale, redefined gauge tensors adjust 

simultaneously to satisfy microscopic primary basic 

equations (24.48).  

6. Space is classified into three regions: (1) The 

microscopic region (2) The transitional region (3) The 

macroscopic region. The classification is based on 

mathematics and physics. The boundary of the 

microscopic region is set by the GUT scale of 
PL71 , 

The boundary of the transitional region is set by the 

Compton scale 
C , which have deep physics meanings 

and mathematical foundation. 

7. Inside the M-sphere, space has Planck scale face-

centered lattice structure including two parts, the cubic 

part and the octahedral part. Space symmetries based on 

its face-centered lattice structure are classified into two 

types,  and , each has 18 symmetries within 

, which serve as the origin of the symmetrical 

groups for elementary particles and interactions. 

8. The Random Walk Theorem is proved based on 

Gaussian Probability Postulation. It serves as the 

foundation of many important issues for SQS theory. 

For the two long rang forces, according to Theorem 

21.1, the random walk zigzagging path each step stops 

only at cubic vertexes. 

9. Based on the Random Walk Theorem, the short path and 

long path are defined. Short path is the distance between 

two points; long path is the random walk zigzagging 

path connecting two points. The ratio of the long path 

and the short path is defined as the converting factor. 

10. Converting rules based on the Random Walk Theorem 

are used to treat hierarchy problems. The effectiveness 

of these converting rules serves as physics evidence for 

the Random Walk Theorem.  

11. SQS theory supports locality. Einstein was right: “No 

spooky action at a distance”. A pair of entangled 

particles is physically linked by the stretched out long 

path. The transmitting speed of information and 

interactions along the long path between the entangled 

particles is superluminal but not infinite.  

12. Photons have dispersion. Its speed varies with frequency 

(energy). The real meaning of  is a basic physics 

constant. No photon travels with speed exactly equal to 

. For the short path, photon travels with speed  

slightly less than . For the long path, interactions and 

information transmit with superluminal speed 

. Dispersion equation is given 

by (5.7) and generalized by (25.4) serving as revision of 

special relativity. 

13. The 1-dimensional S-equation is defined based on 

Gaussian Probability Postulation. It serves as the base 

for a series of secondary S-equations with impacts on 

different areas. 

14. In x-axis region , the S-equation’s solution 

 is a very special point. It 

provides the mass value of two scalar bosons , , 

and to some extent the mass value of top quark and 

three gauge bosons , , .   

15. For the 3-dimensional Gaussian probability distribution 

function, its standard deviation has three values,

 ,   2/3/4
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corresponding to the three branch points on Riemann 

surface. According to Roger Penrose, the three branch 

points plus another one at infinity serve as the ends of 

the two pairs of cuts on Riemann surface two sheets. 

The edges of two pairs of cuts are glued together, it 

makes the two-sheet Riemann surface topologically 

equivalent to a torus with four tiny holes. The torus 

serves as the basic building block of models for Dirac 

type fermions and some bosons with mass.  

16. Dirac type fermions have two components 

geometrically represented by two loops. Loop-1 is the 

torus center cycle, and loop-2 is perpendicular to loop-1 

and has its center at the circumference of loop-1. 

17. According to theorem 18.1, Lemma 18.1 and Lemma 

18.2, the vacuons as point particles with non-infinite 

speed only take discrete 1-dimensional trajectories. It 

serves as the basic quantization of space for SQS theory. 

18. Dirac type elementary fermion is represented by a set of 

trajectories on its torus based model. Along a trajectory, 

there are a combination of three types of internal 

movements: a cyclic movement along loop-1, another 

cyclic movement along loop-2, and an oscillation along 

the trajectory path.  

19. According to Theorem 18.1 Lemma 18.1 and Lemma 

18.2, particle’s trajectory must be 1-dimensional and it 

changes trajectory only by jumping not by shifting. The 

movements in a trajectory are totally deterministic and 

the uncertainty only comes from jumping trajectories.  

20. A set of three numerical parameters, m, n, p is assigned 

to each Dirac type fermion. The ratio of n/m equals to 

the length ratio of loop-2 to loop-1 for the fermion’s 

torus model. The ratio p/n equals to the ratio of 

fermion’s mass to electron’s mass. The value of 

numerical parameters, m, n, p are ultimately determined 

by corresponding solutions of primary basic equations 

(24.48). 

21. According to Theorem 3.1, the 1-dimensional S-

equation defined  and  serve as messengers 

carrying curvature information to the torus model to 

define the locations of characteristic points on its 

surface.  

22. On the x-axis, region  is defined as 

the gauge boson region. Fermion’s  and  in this 

region with mass  

must be paired with anti-fermion as a boson state. 

23. Elementary particles are represented by trajectories on 

models with genus numbers of 0, 1, 2, 3 as listed in 

Table 25.2.  

24. On its model surface, fermion’s trajectory is made of 

two connected geodetics between two characteristic 

points  and  defined by  and , 

respectively. The value of  and  are 

determined by fermion’s mass and the 1-dimensional S-

equation. The values of these geometrical parameters 

are ultimately determined by corresponding solutions of 

primary basic equations (24.48).  

25. On fermion’s torus model outer half surface, the 

characteristic points defines the GWS-triangle and S-

triangle, which provide geometrical parameters for 

electromagnetic and weak interactions. On fermion’s 

torus model inner half surface, the characteristic points 

defines the CKM-triangle corresponding to hadrons 

decay modes. These characteristic points and triangles 

represent the geometric parameters for the particle, 

which serve as the origin of particle’s physics 

parameters. The values of these geometrical parameters 

are ultimately determined by corresponding solutions of 

primary basic equations (24.48).  

26. The AT-equation and PS-equation with the mass term 

 to break the  symmetry, which 

serves as the mechanism to provide particle’s mass. 

Despite their ad hoc origin, the results derived from AT-

equation and PS-equation are agreed to experiment data 

with reasonable accuracy. 

27. According to Postulation 11.1, quarks with the same 

flavor and different colors are different elementary 

particles with different parameters. Accordingly, there 

are eighteen quarks instead of only six. It is supported 

by two independent experimental evidences. 

28. The Prime Numbers Postulation along with even pairing 

rule plays pivotal roles in many areas including 

elementary particles and cosmology. The 18 least odd 

prime numbers 1, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 

41, 43, 47, 53, 59, 61 paired as even pairs are assigned 

as the m-parameters of 18 quarks, , , , , , 

, , ,  , , , , , , , , , , 

respectively. Quarks n-parameters are also selected 

from prime numbers.  

29. There are only three generations of elementary particles. 

The fourth generation and beyond are strictly forbidden 

by mathematics.   

30. Lepton’s before reduction m-parameter equals to the 

average value of corresponding up type and down type 

quarks m-parameters. All leptons reduced m-parameters 

equal to 1 corresponding to spin . Leptons’ 

reduced n-parameters are fractional, which play a 

pivotal rule for weak interactions and serve as 

mathematical distinction between leptons and quarks. 

31. The n-parameters for the flavored version neutrinos and 

anti-neutrinos, , , , , , , are determined 

by the matching rule of (17.1), which matches the n-

parameter of corresponding charged lepton. The weak 

interactions are classified into two types. The ordinary 

type meets the matching rule and satisfies the lepton 

family numbers conservation law. The rare type violates 

the matching rule and the lepton family numbers 

conservation law. 
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32. According to SQS theory, the eigenstate neutrinos , 

,  all are Marjorana type, which are the ones flying 

around in space. The flavored version neutrinos and 

anti-neutrinos , , , , ,  as Dirac type 

only exist at the birth or been detected. The relation 

between the eigenstate version and the flavored version 

neutrinos is determined by converting probability 

matrixes of (17.26) and (17.27). This scheme eliminated 

the chaser’s paradox and provided a candidate for the 

missing antimatters.   

33. Photon as a gauge boson with spin  has single closed 

loop structure.  

34. The eight gluons are made of corresponding quark and 

anti-quark of the same type: , )8,2,1( i , 

),,,,,,,( bgrbbggr sssududdj  . Strong interactions are 

mediated by eight gluons and classified into two types. 

The ordinary type mediated by gluons with the same 

handedness and the weakened type mediated by gluons 

with different handedness.  

35. Based on Theorem 13.2, SQS theory provided a 

simplified way to treat certain composite particles such 

as proton, neutron, and some light nucleons. It shows 

some promises in terms of interpretation for the binding 

forces for these composite particles based on simple 

mathematic rules.  

36. Graviton has spin 0 represented by cutoff loop with 

length , which is supported by Poincare’s “hairy 

ball” theorem. The cutoff loops move through the long-

path and only stops at cubic vertexes serving as the 

building blocks for space with cubic lattice structure.  

37. Bosons with mass are made of combination of their 

fermions constituents, and so are their trajectory and 

model. 

38. The unifications for electro-weak, electroweak-strong, 

and grand unification of all four interactions including 

gravitation occur at energy scales of , 

, , respectively.  

39. Logistic recurrent process plays an important role to 

drive the converting factor as a running constant from 

grand unification scale to Compton scale with important 

impacts on elementary particles and interactions.  

40. Grand number phenomena with rank-G based on 

 ( ) are found in many areas including 

elementary particle physics and cosmology. Grand 

number phenomena are intrinsically related to logistic 

process, random walk, group theory and Gaussian 

probability.  

41. SQS theory provides the Elementary Particles Table 

including 72 particles. The number 72 is supported by 

two Number Towers with the special prime number 163 

on top. It is an indication of mathematics at work.  

42. In the deeper level, there is only one elementary particle, 

vacuon. All elementary particles and interactions are 

ultimately originated from different patterns of vacuons 

movements. 

43. SQS theory provides a simple formula  

to determine the values of fine structure constant  

at different mass scales. At three mass scale, ,  

and , it provided reasonably accurate results. 

 as a physics running constant is originated from 

 as a mathematic running constant.   

44. According to the Prime Numbers Postulation and 

Postulation 22.1, cosmic history is intrinsically related 

to elementary particles and both are based on prime 

numbers. Three more sets of prime numbers were found 

corresponding to three cosmic periods, the -period, 

the -period, and the before-big-bang-period. The 

legitimacy of three sets of prime numbers has additional 

support from the correlations given by (22.9), (22.10), 

(22.11) and Conclusion 22.2. 

45. According to SQS theory, started from the big bang, 

three space phase transitions occurred at 

, , and 

st 36

3 10072.2  . The one occurred at  caused the 

big cosmic inflation suggested by cosmology standard 

model.  

46. According to SQS theory, electron has an intermediate 

boson state. The e-bosom, with mass 

 
serves as the inflaton 

to drive the cosmic inflation. When the inflaton decayed, 

the inflation stopped.  

47. Based on the  and  symmetries in the face-

centered space, the elementary particles and interactions 

in the cosmic periods are explained naturally. The  

and  symmetries also serve as the guideline for the 

solutions of primary basic equations (24.48). 

48. At least part of dark matters is 2-dimensional debris left over 

from cosmic inflation, which only interact with ordinary 

matters via gravity. Two suggestions are given for 

verifications. 

49. Based on Definition 22.2 and Hypothesis 22.2 and the 

“negative prime numbers table”, SQS theory proposed a 

cyclic universe model. In which the negative prime numbers 

sequences represent a cosmic contracting period ended up 

with the big crunch. The post-big-crunch universe transfers 

via a time tunnel into the pre-big-bang universe, and a new 

round of cosmic cycle starts.  

50. SQS theory supported the multiverse concept as a possible 

way to resolve the second thermodynamic law problem 

during the cosmic contracting period. Based on grand 

numbers and the two prime numbers sequences, number of 

universes in the multiverse is estimated around  

organized in two levels. 

51.  SQS theory proposed the limited anthropic principle. For 

any member universe in the multivers during its third period, 

1
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the change of physics laws and the variation of physics 

constants are not arbitrary; they subject to strict restrictions 

imposed by the same set of 118  prime numbers of our 

current universe.   

52. Close correlation between the prime numbers sequence of 

three finite sporadic Lie groups, M-group, B-group, Suz-

group and the 18+1=19 prime numbers assigned as the m-

parameters for the 18 quarks and electron was found, in 

which the missing prime numbers in the sequence are 

correlated to some top type quark’s boson states. The 

correlation provides additional support to the Prime 

Numbers Postulation. 

53. Based on the largest prime number 71 in the prime 

numbers sequence of M-group, the M-sphere with radius 

 is defined. Inside the M-sphere, two more 

spheres, the B-sphere with radius  and the S-

sphere with radius  are defined. Between M-

sphere and B-sphere is the “quark-antiquark liquid state” 

region; inside the S-sphere all elementary particles are 

distinguishable.  

54. Poincare’s “hairy ball” theorem and related rules play 

important roles for elementary particles in terms of 

trajectories, models and interactions as well as for 

cosmology. As shown in Section 25, black hole has hairs 

and must have crowns, cross universes connections are 

necessary, and graviton must have spin 0. These are the 

conclusions supported by Poincare’s “hairy ball” theorem 

and related rules. It is mathematics at work. 

55. Based on Poincare’s “hairy ball” theorem, SQS theory 

proposed the absolute black hole with no radiation of any 

kind and the suggestions for verification. 

56. Another set of 13 even pairs of prime numbers as listed in 

Table 25.3 is found. According to Hypothesis 25.2, it 

corresponds to a super-multiverse including 4410~  

member multiverses organized in two levels, each level 

has  member multiverse. Hypothesis 25.2 is 

supported by grand numbers as well as its estimates for 

dark energy hierarchy problem agreed with other estimates 

and observed data as listed in Table 25.4.  

57. Based on Einstein equation (24.1b) for vacuum with 

redefined gauge tensors attached to probability, SQS 

theory established two sets of basic equations. The 

macroscopic set includes equations (24.20) for gravity 

and equations (24.42) for electromagnetic force. The 

microscopic set is equations (24.48), which serve as the 

primary basic equations representing all elementary 

particles and interactions as well as things on upper 

levels. 

58. In essence, SQS theory is a mathematic theory with 

physics interpretations. Based on three basic physics 

constants , ,  or equivalently , , . In 

principle, all physics parameters can be derived from 

mathematics with  , ,  or , , as 

“interpreters”.    

Let’s end this paper with two famous ancient statements, 

one from East and one from West. 

East philosopher: 

“道生一，一生二，二生三，三生万物。”         老子 

English translation: 

“Tao generates one, one generates two, two generates three, 

three generates everything.”                      Laozi 

West philosopher: 

 “Everything is numbers.”                            Pythagoras 
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Appendixes 

 

Appendix 1 
The 1-dimensional Gaussian probability function of (3.1) is: 

2)'()';( xxexxp   ;  

;
 

 ,,0,,'x .                         (3.1)                        

Take Fourier transform of )';( xxp  with respect to variable : 
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In (A1.1), the real function  is the probability distribution 

function in the k-space:  

 .                                          (A1.2) 

The phase factor is: 
')';( ikxexkQ  .                               (A1.3) 

As shown by (A1.2),  is also Gaussian as expected, and  

the unitarity requirement is satisfied: 

.                             (A1.4)                                
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The standard deviation of  is 

.                                                   (A1.5)                              

Multiplying  with  given by (2.3) yields: 

.                                     (A1.6)  

                                

Appendix 2 

3-dimensional geodesic coordinators in parametric form: 

;                       (A2.1)                        

Here , ,  are 3-dimensional spatial coordinators, and 

 is the affine parameter. The solution  of 

following differential equation represents geodesic:  

.                 (A2.2)                           

In which, the Christoffel symbol of second type is:  

.  (A2.3)                      

The components of a symmetrical gauge tensor satisfy: 

.                                               (A2.4)  

                               

Appendix 3 

Let’s evaluate the effect on  of disregarding the 

factor: 

.  

(A3.1)              

For the local minimums or local maximums of  are 

evaluated by its absolute value , the second factor 

of (A3.1) does not have effect, because  

regardless the values of  and . Since mass and decay 

times are determined by the location of local minimums or 

local maximums of  on complex -plane, the effect 

of  is only related to the variation of  and . 
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 (A3.2)                        

Substitute the muon data from Table 7.1 into (A3.2):  

;  (A3.3a)                                               

. (A3.3b)                                                   

Substitute the taon data from Table 7.1 into (A3.2):  

;  (A3.4a)                                            

. (A3.4b)                                                

In both cases, the errors caused by disregarding the factor 

 are negligible. 
 

Appendix 4 

The fine structure constant is: 

.                                          (A4.1)                                                

 is permittivity of free space. Electron’s Compton wavelength 

of electron is:  .                        (A4.2)                                                                                         

Classical electron radius is:  ,            (A4.3a)                                             

Electron mass is:  .                 (A4.3b)                                                   

According to the converting rule given in Section 4, 

Compton wavelength  is originated from Planck wavelength 

, which is the circumferential length of circular loop-1. 

On the other hand,  is defined as radius. To be compare on the 

same base,  should compare to . 

Since mass is inversely proportional to corresponding 

wavelength, the ratio of electron’s electromagnetic mass 

 to its total mass  is: 

.   (A4.4)                                 

The electromagnetic modification factor for mass is: 

.       (A4.5)                                            

(A4.5) is valid to other charged particles as well. 

 

Appendix 5 

The origin of logistic equation is the following nonlinear 

difference equation: 

,  .    (A5.1)                                                  

In which parameters  and  represent the positive 

action (Type-P) for positive feedback and negative action (Type-

N) for negative feedback, respectively. Convert the variables in 

(A5.1) as: 

; ;  ,  (A5.2a)                                            

; ;  .        (A5.2b)                                     

Substituting (A5.2) into (A5.1) yields the logistic equation 

with parameter : 

,  .   (A5.3)                                                   

.                  (A5.4)                                                                             

The logistic equation of (A5.3) represents a recurrent 

process. In (A5.3),  and  is absorbed. As  value 

increases, Type-P action overwhelms Type-N  action. 

 (A5.3) is the logistic equation with constant parameter . 

In some cases, parameter  also varies, which belongs to the 

varying  type logistic equation. 
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Appendix 6 

Part A: The derivative process for the basic equations 

based on Postulation 24.1. 

Based on Postulation 24.1, the redefined Ricci parameters 

are:                                                                         

,                     (A6.1a)                                                                                  

 , (A6.1b)  

, .           (A6.1c)   
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In (A6.2), the first term serves as the term of kinematic part, 

which is in the  part of kinematic 

part RgR abab 2

1 . The second term is in the

 part of emerging part RgR abab
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 For the second order derivatives, the derivation process 

yields:  
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 For the second order derivative 
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of (A6.3), the 

first term serves as the term of kinematic part, which is in the 

 part of  and . The 

five terms in parenthesis serve as the terms in the emerging 

part RgR abab


2

1  . 

According to (24.6) and (A6.3), the terms in the emerging 

part generated by gauge tensor attached to probability are:
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According to Definition 24.1, the space-time variables 

 as functions of intrinsic time 

ctc 10   , The derivation process should be carried out 

further such as: 
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Utilizing (A6.5) to carry out the derivative process with 

respect to space-time variables  as 

functions of intrinsic time ctc 10    for the emerging 

terms given by (A6.4a) and (A6.3b) yields: 
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In (A6.6), the emerging terms  and  are originated from 

the kinematic terms  and R, respectively.  

The speed products the emerging terms can be presented in 

 matrix form as:  
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Part-B: The spatial and temporal derivatives of gauge 

tensor  for the kinematic part of basic 

equations based on Postulation 24.1. 

According to (24.5), the space-time variables are 

 )();(),(),( 00030201  xxxx functions of the intrinsic time 

ctc 10   , the derivative process should go further as: 
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Based on (A6.8), the parameters of kinematic part 

RgR abab 2

1  change as: 
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As a result, equations (24.44a) are presented as: 

ababab ERgR 
2

1 ,                     (A6.10a)                                                    

Emerging part:  .                 (A6.10b) (A6.10b)                                                    

The contents of emerging part are the same of (A6.6). The 

contents of the kinematic part are given by (A6.9). The speed 

product matrix of the kinematic part is: 
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The speed product matrix of emerging part is the same as 

(A6.11).  

 

abg

3,2,1,0,,, dcba









 RgREE abababab



2

122 

http://dx.doi.org/10.4236/jmp.2013.4.410165

