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ABSTRACT 

A system, coupled by an incompressible Navier-Stokes and a Fokker-Planck equation, is investigated. The global weak 
solution with small initial data is obtained. 
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1. Introduction 

The dilute suspensions of passive rod-like particles can 
be effectively modeled by a coupled microscopic Fok- 
ker-Planck equation and macroscopic Navier-Stokes equa- 
tion, known as Doi model (see Doi [1]). We refer to [2] 
for the Doi model for suspensions of active rod-like 
particles without considering the effects of gravity. Re- 
cently an extended model under gravity was introduced 
by Hezel, Otto and Tzavaras [3], which reads 
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  is a stress tensor,  is the pressure, 
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trami operator on , respectively. In this model, 
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 is a distribution function which represents the 
configuration of a suspension of rod-like particles and 

 is the fluid velocity induced by the other 
particles in the suspension.  is a Reynolds  
 ,u t

number. The coefficients 0   and 0   are con- 
stants (see [3], Remark 2.1 - 2.2). 

If Re 0 , the model includes a Stokes equation. In 
this case, Chen, Li and Liu [4] obtain the global weak 
solution and its uniqueness to the two dimensional 
 2d   initial-boundary problem. In Remark 3.2 of [4], 
they point out that it is a mathematically interesting 
question to ask if the above result is still valid when the 
Stokes equation is replaced by the Navier-Stokes equa- 
tion  Re 0 , and there are some technical difficulties 
in solving this problem. The main purpose of this note is 
to answer this question by using an assumption of small 
initial data. See [5-7] etc. for more results on Doi related 
model without considering the effects of gravity. 

For conciseness in presentation, we set  
Re 1     in the rest of this paper. Define 
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Set the initial and boundary conditions as follows, 

0 0 0 0;t t ;f f u u               (5) 

  2 0; 0.xId n n e f f u          (6) 



X. L. LI 9

2. The Main Result 

Theorem 2.1 Let . Suppose that 2d  0u H , 
2

0 f L  S , and 0  a.e. are on  Then 
there exists 

0f  .S
0  , such that if 
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the initial-boundary problem (1)-(6) has a global weak 
solution  which satisfies for a.e. ,  ,u f [0, )t  
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Definition 2.2 The weak solution  is in the fol- 
lowing sense, 
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Proof. The proof follows that of [4] (some ideas and 
techniques come from [8]). Here we only show the dif-
ferent details. 

Step 1. Approximate problem. For any fixed  

0 1   and for any k N , given  1 1,k ku f  , the 
approximate problem with cut-off reads  
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Similarly as the proof of [4], we have 
Lemma 2.3 
Let   2: : 0 . .Z f L S f a e S     . 
If  1 1,k ku f V Z    , then there exists  
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Step 2. Uniform estimate. Suppose that 0u H , 
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and  weakly in  as 0
0u u H 0  . Moreover, let 
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2.3 iteratively, we obtain a sequence of approximate so- 
lutions, 
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to (15)-(16). Similarly as the proof of Lemma 3.5 and 
Lemma 3.6 in [4], we have  
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Lemma 2.5 For any  we might as well set 0T 
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Proof. We can use (17), (19)-(21) directly to finish the 
proof. Here we only show that π u   is bounded. In fact, 
it follows from (17) and (20) that 

Proof. Following the proof of (3.44) in [4], we have 
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Using (20) again, and the discrete Gronwall inequality, 

We finish the proof of (21). 
Definition 2.6 Define the piecewise function in t by Therefore, please see the Equation (26) below. 
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Similarly as the proof of (26), we have from (23) and  

(24) that 
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Step 3. Convergence. With the above uniform esti-
mates at hand, we can use the Aubin-Lions lemma for 
time-piecewise functions (see [9]) to perform the com- 
pactness argument. This concludes the proof of Theorem 
2.1. 
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