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ABSTRACT 

Various directions of obtaining novel structured matrices are discussed. A new class of matrices, called “the L-family” 
matrices are introduced and their properties are studied. 
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1. Introduction 

Linear algebra is central to modern mathematics and has 
been found many applications in Science, Technology, 
Engineering and many other disciplines. Matrices with 
special kind of structure like Toeplitz, Hankel etc., are 
studied with great interest [2]. In this paper, a special 
family (called “The L-family”) of matrices are discussed 
in detail with some interesting properties. It is expected 
that this family of matrices will find interesting applica- 
tions in various disciplines of human endeavour. 

This idea of analysing new structured matrices was 
adopted from Dr. G. Rama Murthy’s journal paper “In- 
novative Structured Matrices”, International Journal of 
Algorithms, Computing and Mathematics Volume 2, 
Number 4, November 2009. 

2. Logical Idea behind Structured Matrices 

We can think of innovative structured matrices in many 
ways. For example, one way is to construct a matrix from 
the indices or subscripts of elements of the matrix. The 
other way is to assign a particular same value to all ele- 
ments for each subset of the matrix, where these subsets 
are taken to be mutually exclusive and exhaustive [1,3]. 

Constructing matrices from indices point-of-view: 

11 12 13

21 22 23

31 32 33

a a a

a a a

a a a

 
 
 
 
 

 

we can map axy to a function of x, y, f (x, y). 
x, y = 1, 2, 3 i.e.,  ,xya f x y  

The following is the matrix constructed by taking  

  2 2,f x y x y xy   

2 6 12

6 16 30

12 30 54

 
 
 
 
 

 

We can also take  just like  ,xya af x y 
 ,f x y x y   as in a Toeplitz. 
Constructing matrices from subset point-of-view: 
Let us look at some typical examples. 
Example: 1 

3 3 3 3 3

3 2 2 2 3

3 2 1 2 3

3 2 2 2 3

3 3 3 3 3

a a a a a

a a a a a

a a a a a

a a a a a

a a a a a

 
 
 
 
 
 
 
 

 

 constructed by taking size-increasing, mutually ex- 
clusive and exhaustive square shaped subsets 

Example: 2 

4 3 2 1

4 3 2 2

4 3 3 3

4 4 4 4

a a a a

a a a a

a a a a

a a a a

 
 
 
 
 
       

1 2 3 4

2 2 3 4

3 3 3 4

4 4 4 4

a a a a

a a a a

a a a a

a a a a

 
 
 
 
 
 

4 4 4 4

4 3 3 3

4 3 2 2

4 3 2 1

a a a a

a a a a

a a a a

a a a a

 
 
 
 
 
       

4 4 4 4

3 3 3 4

2 2 3 4

1 2 3 4

a a a a

a a a a

a a a a

a a a a

 
 
 
 
 
 

The above 4 matrices are constructed by taking └, ┘, 
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┐, ┌ shaped subsets of the matrix as the criteria respec- 
tively.  

Example: 3 

2 2 2 2

2 1 1 2

2 1 1 2

2 1 1 2

a a a a

a a a a

a a a a

a a a a

 
 
 
 
 
       

2 2 2 2

2 1 1 1

2 1 1 1

2 2 2 2

a a a a

a a a a

a a a a

a a a a

 
 
 
 
 
 







2 2 2 2

1 1 1 2

1 1 1 2

2 2 2 2

a a a a

a a a a

a a a a

a a a a

 
 
 
 
 
       

2 1 1 2

2 1 1 2

2 1 1 2

2 2 2 2

a a a a

a a a a

a a a a

a a a a




 
 


These matrices are constructed by taking     shaped 
subsets of the matrix as the criteria in all the four direc- 
tions with opening towards south, east, west and north 
directions respectively. 

Remark: This logical approach can be extended to ar- 
rive at large number of structured matrices (like Toeplitz 
matrix) [3]. 

The L-family of matrices: 
Now we focus our attention on the class of matrices in 

Example 2. 
This class of matrices can be called “The L-family” 

matrices due to their resemblance in their structure with 
the letter “L”. 

4 3 2 1

4 3 2 2

4 3 3 3

4 4 4 4

L-matrix

a a a a

a a a a

a a a a

a a a a

 
 
 
 
 
 

     

1 2 3 4

2 2 3 4

3 3 3 4

4 4 4 4

rev-L matrix

a a a a

a a a a

a a a a

a a a a

 
 
 
 
 
 

4 4 4 4

4 3 3 3

4 3 2 2

4 3 2 1

inv-L matrix

a a a a

a a a a

a a a a

a a a a

 
 
 
 
 
 

     

4 4 4 4

3 3 3 4

2 2 3 4

1 2 3 4

rev-inv-L matrix

a a a a

a a a a

a a a a

a a a a

 
 
 
 
 
 

[rev: stands for reverse and inv: stands for inverse].� �
Let us consider only square matrices in our entire dis- 

cussion. 
Let us define an originator of a matrix in L-family. 

The ith originator of a n*n L-family matrix is the element 
which occurs (2i-1) times in the matrix. 

In all the above mentioned matrices, a1-1
st originator, 

a2-2
nd originator, a3-3

rd originator and a4-4
th originator. 

Let us examine some of the properties of L-family: 
Claim 1: For any L-family matrix A, 

1
A A




 
where ||.|| represents natural norm [4]. 

Proof 1: 

1
1 11 1 1

max max

maximum absolute column sum of the matrix

m

z ij
z j n i

A A a
   

    
 





 

1 1 1

max max

maximum absolute row sum of the matrix

n

z ij
z j m i

A A a


    

    
 



  

For rev-L and inv-L matrices absolute kth row sum is 
equal to absolute kth column sum for . For 
L- and rev-inv-L matrices absolute kth column sum is 
equal to absolute (n ‒ k + 1)th column sum for 

1,2, ,k n 

1,2, ,k n  . (Note: m = n for a square matrix). 
Hence 

1
A A


  

Claim 2: For an L-family matrix to be stochastic, all 
the originators of it must be equal to each other. 

Proof 2: The sum of all the elements in each column 
of a stochastic matrix is equal to 1.Consider an L-matrix 
of order “n”, i.e.,  , 1,2, ,ia i n   are originators. 

Sum of all the elements in 1st column = nan 

1 1n nna a n    

Sum of all the elements in 2nd column =  

  11 n nn a a   

  1 11 1 1 1n nn a n a       n  

Sum of all the elements in 3rd column =  

  2 12 n nn a a a  n    

  2 22 2 1 1n nn a n a       n

S

 

imilarly, sum of all the elements in kth column =  
   11 1n kn k a k n      

   1

1

1 1

1 for 4,5,
n k

n k

n k a k n

a n k
 

 

     

   
1

n
 

Therefore, 1ia  n  for all i n  1,2, , 
Hence all the originators must be equal to each other. 
Similar type proof can be provided for other type of 

matrices rev-L, inv-L, rev-inv-L matrices also. 
Claim 3: The determinant of a rev-L or inv-L matrix  

with originators  , 1,2, ,ia i n   is equal to 

     1 2 2 3 3 4 1n na a a a a a a a a    n . 

Proof 3: The proof for rev-L matrix is as follows. 
Perform the following elementary row operations on 

the determinant. 
1) 1i i iR R R    for all i n   1,2, , 1 

2) Take      1 2 2 3 1, ,a a a a a a  , ,na mmon 

out of the determinant 
n n  co

3) 1i i iR R R    for all i n   , 1 , ,n   2

4) The remaining determinant goes to “1” as it is Iden- 
tity matrix. 
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Hence proved for rev-L matrix. 
The proof for inv-L matrix is as follows. 
1)  for all  1i i iR R R    , 1 , ,i n n   2

2) Take an, (a1 − a2), (a2 − a3), ... (an−1 − an) common 
out of the determinant 

3)  for all 1i i iR R R    1,2, , 1i n   

4) The remaining determinant goes to “1” as it is Iden- 
tity matrix. 

Hence proved for inv-L matrix also. 
Claim 4: The determinant of L-matrix or rev-inv-L  

matrix with originators  , 1,2, ,ia i n   is equal to 

       2

1 2 2 3 3 4 11
n

na a a a a a a a a     n n







, 

where [.] denotes step function/greatest integer function. 
The above claim can be easily proved using a simple 

mathematical induction. Before going through the proof 
let us look at some criteria which will be useful in prov- 
ing the claim. 

Let us define Mirror image of a n*n ordered square  

matrix  as the matrix , where 

. 

  i jA a 

  1i n jb a  

  i jB b 

  i j 

 

(MIRROR) 

11 12 13 13 12 11

21 22 23 23 22 21

31 32 33 33 32 31

a a a a a a

a a a a a a

a a a a a a

   
  
  
  
   








 

0 0 1

0 1 0

1 0 0

 


 
 

 (say M3) is the mirror image of Identity  

matrix, I3. 
Our aim is to find out the determinant (say Dn) of Mn. 

Claim 5:   2
1

n

nD    

Proof 5: We shall prove this using mathematical in- 
duction method. 

Let    1 2

1 1
k

kD
  

   . 

Then  

           1 1 1 2 1

11 1 1 1
k k k k

k kD D
          

       1 2k
 

Case 1: If k is even (= 2p) 

       
      

2 1 1 2 2 1 1 3

2 2

1 1

1 1 1

p p p p p

k

p k k

D
          

     

1
 

Case 2: If k is odd (= 2p + 1) 

           2 1 1 1 2 2
1 1 1

p p p p

kD
          1

k
. 

Hence,   2
1

n

nD   . 

The proof for claim 4 is as follows. 

Proof 4: The proof for L-matrix is as follows: 
Perform the following elementary row operations on 

the determinant. 
5) 1i i iR R R    for all   1,2, , 1i n 

6) Take      1 2 2 3 1, , , ,a a a a a a  na mmon 

out of the determinant 
n n  co

7) 1i i iR R R    for all   , 1 , ,i n n   2

8) The remaining determinant goes to “Dn” which is 
equal to (−1)[n/2]. 

Hence proved for L-matrix. 
The proof for rev-inv-L matrix is as follows: 
5) 1i i iR R R    for all   , 1 , ,i n n   2
6) Take an, (a1 − a2), (a2 − a3), ... (an−1 − an) common 

out of the determinant 
7) 1i i iR R R    for all   1,2, , 1i n 
8) The remaining determinant goes to “Dn” which is  

equal to   2
1

n  

Hence proved for rev-inv-L matrix also. 
Therefore, from the above we can say that any L-fami- 

ly matrix of order n*n will be a non-singular matrix if 
and only if nth originator is non-zero and any ith generator 
is not equal to to (i + 1)th originator (for all 

 1,2, , 1i n  ) matrix. 
Claim 5: If we permute   a i  with its adjacent 

number i.e. with 

 1ia   or  1ia   (in circular way), the value of  

 D L n  changes to 
  

    1 1

1

n n

n n n

a a a
D L

a a a




 
  

 
  

and 
  
    1 1

1 2

n

n

a a a
D L

a a a

 
  

 
  

Proof 5:  
Case 1. When replacing ai by ai‒1 for 2,3, ,i n   

and a1 by an (in Circular Manner) 
i.e. 1n na a  ,  and  1 2 2, ,n na a a   1a 1 na a

then the value of Det. become  

  
    1 1

1

n n

n n n

a a a
D

a a a




 
 

 
L 

 

and by dividing it by the 

actual value of  L ,  

  
  

1 1

1

n n

n n n

a a aD

D a a a




 


 
 

Case 2. When replacing ai by ai + 1 for  
and an by a1 (in Circular Manner) 

1,2, , 1i n 

i .e .  ,   and   1 2a a 2 3 1, , na a a a  n 1na a
then the value of Det. become  

  
    1 1

1 2

n

n

a a a
D L

a a a

 
  

 
  and  
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by dividing it by the actual value of Det (L), 

  
  

1 1

1 2

n

n

a a aD

D a a a

 


 
 

Now note that, if we divide both the ratios, 

  
  

1 1 2

1 1

n

n n

a a aD

D a a a




 


  
 

3. Block “L” Matrix 

If we take any one of the four kind of L matrix and make 
a bigger matrix (having order greater than the previous 
matrix) which contain the previous matrix then this type 
of matrix can be characterized as Block “L” where the 
Matrix has the same building block all over the matrix.  

Let us consider a “L” matrix having minimum order (2 
 2) – 

a b

a a

 
 
 

 

Now, we are considering a shape where b = 0 then 
0a

L
a a


 
 


  which has a shape of “└” 

If we take this matrix and make a new matrix which 
has this matrix as a building block then 

0L
X

L L

 
  
 

 

here L is the same as described above. 
Here we can see that the value of   2L a   

Again, if we can take X as a building block and if we 
follow the same shape “└”, we can get a new matrix 

0X
L

X X

 
 
 



4

 where “X” is as described above. 

Note that, all the matrices are following the same pat- 
tern and hence having a same shape. 

If we calculate the Determinant of the above matrices 
[5]:  

      2 2X L L a a a        

Likewise, for Y, 
      4 4Y X X a a       8a

 
where the matrix Y 

has order = 2  2  2 = 8 
So we can generalized the det. value as 
 -Block nL a   

where n is the order of the matrix. 
Now, if we more generalize our Block Matrices with 

different L matrices having different elements, then we 
can write X   as –  

1

2 3

0L

L L

 
   

 

where 1L , 2L , 3L  are L matrices having different ele- 
ments. 

Note,   2
1 1L a     2

2 2L a      2
3 3L a 

and that is how, the value of  

       22 2
1 3 1 3 1 3X L L a a a a           

Again, going for bigger ordered matrices, we have Y   
which has blocks of X  , X  , X   and if we go 
through above method, we can find the  

        2 2

1 3 1 3Y X X a a b b            

Where  are elements of 1 2 3, , ,a a a  X   matrix. like- 
wise,  are elements of 1 2 3, , ,b b b X  . Here we can 
write X   as  

1

2 3

0L

L L

 
   

 

So, In general, Determinant value of Block “L” matri- 
ces can be written as: 

       2 2 2

1 3 1 3 1 3Block L a a b b c c         

Where  are elements of different “L” Ma- 
trices. 

, , , ,a b c d 

4. Hybrid “L” Matrix 

We can make a matrix in which it has blocks of different 
kinds of “L” matrices like └, ┘, ┐, ┌. 

They may or may not repeat in the matrix. We are 
calling this type of matrix as hybrid “L” matrix where the 
building block of matrix is different types of L matrix. 
This type of shapes can be found in the nature itself. 

0 0

0 0

a b

a a b b

c c d d

c d

 
 
 
 
 
 

 

Matrix having all four type of L matrices. 
Here we can see the different L patterns. The elements 

are arranged in this fashion that they are constructing 
different L shapes. In future, the Determinant value and 
inverse of the above matrix can be evaluated. 

5. Conclusion and Future Work 

In this technical report, we reflect on the approach of 
arriving at structured matrices. Specifically, we propose 
some concrete approaches to define innovative structured 
matrices. Furthermore, we define the family of L-matri- 
ces and study some of their properties. We expect this 
class of matrices to find many applications in future. 
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