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ABSTRACT 

The purpose of this paper is to present for the first time an elementary summary of a few recent results obtained through 
the application of the formal theory of partial differential equations and Lie pseudogroups in order to revisit the mathe-
matical foundations of general relativity. Other engineering examples (control theory, elasticity theory, electromagnet-
ism) will also be considered in order to illustrate the three fundamental results that we shall provide successively. 1) 
VESSIOT VERSUS CARTAN: The quadratic terms appearing in the “Riemann tensor” according to the “Vessiot 
structure equations” must not be identified with the quadratic terms appearing in the well known “Cartan structure equ-
ations” for Lie groups. In particular, “curvature + torsion” (Cartan) must not be considered as a generalization of “cur-
vature alone” (Vessiot). 2) JANET VERSUS SPENCER: The “Ricci tensor” only depends on the nonlinear transfor-
mations (called “elations” by Cartan in 1922) that describe the “difference” existing between the Weyl group (10 pa-
rameters of the Poincaré subgroup + 1 dilatation) and the conformal group of space-time (15 parameters). It can be de-
fined without using the indices leading to the standard contraction or trace of the Riemann tensor. Meanwhile, we shall 
obtain the number of components of the Riemann and Weyl tensors without any combinatoric argument on the ex-
change of indices. Accordingly and contrary to the “Janet sequence”, the “Spencer sequence” for the conformal Killing 
system and its formal adjoint fully describe the Cosserat equations, Maxwell equations and Weyl equations but General 
Relativity is not coherent with this result. 3) ALGEBRA VERSUS GEOMETRY: Using the powerful methods of 
“Algebraic Analysis”, that is a mixture of homological agebra and differential geometry, we shall prove that, contrary to 
other equations of physics (Cauchy equations, Cosserat equations, Maxwell equations), the Einstein equations cannot be 
“parametrized”, that is the generic solution cannot be expressed by means of the derivatives of a certain number of arbi-
trary potential-like functions, solving therefore negatively a 1000 $ challenge proposed by J. Wheeler in 1970. Accord-
ingly, the mathematical foundations of electromagnetism and gravitation must be revisited within this formal frame-
work, though striking it may look like. We insist on the fact that the arguments presented are of a purely mathematical 
nature and are thus unavoidable. 
 
Keywords: General Relativity; Riemann Tensor; Weyl Tensor; Ricci Tensor; Einstein Equations; Lie Groups; Lie 

Pseudogroups; Differential Sequence; Spencer Operator; Janet Sequence; Spencer Sequence; Differential 
Module; Homological Algebra; Extension Modules; Split Exact Sequence 

1. Introduction 

The purpose of this paper is to present an elementary 
summary of a few recent results obtained through the 
application of the formal theory of systems of ordinary 
differential (OD) or partial differential (PD) equations 
and Lie pseudogroups in order to revisit the mathemati-
cal foundations of general relativity (GR). More elemen-
tary engineering examples (elasticity theory, electro-
magnetism (EM)) will also be considered in order to il-
lustrate the quoted three fundamental results that we  

shall provide. The paper, based on the material of two 
lectures given at the department of mathematics of the 
university of Montpellier 2, France, in may 2013 and 
Firenze, Italy, in june 2013, is divided into three parts 
corresponding to the different formal methods used. 

PART 1: In 1880 S. Lie (1842-1899) studied the 
groups of transformations depending on a finite number 
of parameters and now called Lie groups of transforma-
tions. Ten years later he discovered that these groups are 
only examples of groups of transformations solutions of 
linear or nonlinear systems of ordinary differential (OD) 
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or partial differential (PD) equations which may even be 
of high order and are now called Lie pseudogroups of 
transformations. During the next fifty years the latter 
groups have only been studied by two frenchmen, name-
ly Elie Cartan (1869-1951) who is quite famous today, 
and Ernest Vessiot (1865-1952) who is almost ignored 
today. We have proved in many books and papers that 
the Cartan structure equations have nothing to do with 
the Vessiot structure equations still not known today. 
Accordingly, the quadratic terms appearing in the Rie-
mann tensor must not be identified with the quadratic 
terms appearing in the well known Maurer-Cartan equa-
tions for Lie groups. In particular, curvature + torsion 
(Cartan) must not be considered as a generalization of 
curvature alone (Vessiot). 

PART 2: Though we consider that the first formal 
work on systems of PD equations is dating back to Mau-
rice Janet (1888-1983) who introduced as early as in 
1920 a differential sequence now called Janet sequence, 
it is only around 1970 that Donald Spencer (1912-2001) 
developped, in a quite independent way, the formal the-
ory of systems of PD equations in order to study Lie 
pseudogroups, exactly like E. Cartan did with exterior 
systems. However, all the physicists who tried to under-
stand the only book “Lie equations” that he published in 
1972 with A. Kumpera, have been stopped by the fact 
that the examples of the Introduction (Janet sequence) 
have nothing to do with the core of the book (Spencer 
sequence). We may say that the work of Cartan is super-
seded by the use of the canonical Spencer sequence while 
the work of Vessiot is superseded by the use of the ca-
nonical Janet sequence but the link between these two 
sequences and thus these two works is not known today. 
Accordingly, the Spencer sequence for the conformal 
Killing system and its formal adjoint fully describe the 
Cosserat equations, Maxwell equations and Weyl equa-
tions but general relativity (GR) is not coherent with this 
result because we shall prove that the Ricci tensor only 
depends on the nonlinear transformations (called elations 
by Cartan in 1922) that describe the “difference” existing 
between the Weyl group (10 parameters of the Poincaré 
subgroup + 1 dilatation) and the conformal group of 
space-time (15 parameters). 

PART 3: At the same time, mixing differential ge-
ometry and homological algebra but always supposing 
that the reader knows a lot about the work of Spencer, 
V.P. Palamodov (constant coefficients) and M. Kashi-
wara (variable coefficients) developped “algebraic ana- 
lysis” in order to study the formal properties of finitely 
generated differential modules that do not depend on 
their presentation or even on a corresponding differential 
resolution, namely the algebraic analogue of a differen- 
tial sequence. Using double duality theory, we prove that, 
contrary to other equations of physics (Cauchy equations, 

Cosserat equations, Maxwell equations), the Einstein 
equations cannot be “parametrized”, that is the generic 
solution cannot be expressed by means of the derivatives 
of a certain number of arbitrary potential-like functions, 
solving therefore negatively a 1000 $ challenge proposed 
by J. Wheeler in 1970. 

The new methods involve tools from differential ge- 
ometry (jet theory, Spencer operator,  -cohomology) 
and homological algebra (diagram chasing, snake theo-
rem, extension modules, double duality). The reader may 
just have a look to the book [1] (review in Zbl 1079. 
93001) in order to understand the amount of mathematics 
needed from many domains. 

The following diagram summarizes at the same time 
the historical background and the difficulties presented in 
the introduction: 

?

CARTAN SPENCER

LIE

VESSIOT JANET






 


 

Roughly, Cartan and followers have not been able to 
“quotient down to the base manifold” [2,3], a result only 
obtained by Spencer in 1970 through the nonlinear 
Spencer sequence [4-7] but in a way quite different from 
the one followed by Vessiot in 1903 for the same pur-
pose [8,9]. Accordingly, the mathematical foundations of 
mathematical physics must be revisited within this for-
mal framework, though striking it may look like for cer-
tain apparently well established theories such as EM (J. 
C. Maxwell, 1864) and GR (A. Einstein, 1915). 

2. First Part: From Lie Groups to Lie 
Pseudogroups 

If X  is a manifold with local coordinates  ix  for  

 1, , dimi n X  , let   be a fibered manifold over  

X , that is a manifold with local coordinates  ,i kx y  
for 1, ,i n   and 1, ,k m   simply denoted by 
 ,x y , projection  

   π : : ,X x y x   

and changes of local coordinates  

   , ,x x y x y   . 

If   and   are two fibered manifolds over X  
with respective local coordinates  ,x y  and  ,x z , we 
denote by X   the fibered product of   and   
over X  as the new fibered manifold over X  with 
local coordinates ),,( zyx . We denote by 

    : : ,f X x x y f x    
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a global section of  , that is a map such that 
π Xf id  but local sections over an open set U X  
may also be considered when needed. We shall use for 
simplicity the same notation for a fibered manifold and 
its set of sections while setting  dimX m . Under a 
change of coordinates, a section transforms like  

     ,f x x f x   

and the derivatives transform like: 

    

       , ,

l
r

ir

l l
k

ii k

f
x x

x

x f x x f x f x
x y

 

 





 

  
 

. 

We may introduce new coordinates  , ,i k k
ix y y  

transforming like: 

     , ,
l l

l r k
r i ii k

y x x y x y y
x y

   
  

 
. 

We shall denote by  qJ   the q-jet bundle of    
with local coordinates  

   , , , , ,i k k k
i ij qx y y y x y  

called jet coordinates and sections  

        
  

: , , , ,

,

k k k
q i ij

q

f x x f x f x f x

x f x






 

transforming like the sections  

          
    

: , , , ,

,

k k k
q i ij

q

j f x x f x f x f x

x j f x

  




 

where both qf  and  qj f  are over the section f  of  
 . Of course  qJ   is a fibered manifold over X   

with projection πq  while  q rJ    is a fibered mani-  

fold over  qJ   with projection π , 0q r
q r   . 

DEFINITION 1.1: A (nonlinear) system of order q  
on   is a fibered submanifold  q qJ   and a 
solution of q  is a section f  of   such that 

 qj f  is a section of q . 
DEFINITION 1.2: When the changes of coordinates 

have the linear form    ,x x y A x y  , we say that 
  is a vector bundle over X . Vector bundles will be 
denoted by capital letters , ,C E F  and will have sec-
tions denoted by , ,   . In particular, we shall denote  
as usual by  T T X  the tangent bundle of X , by  

 * *T T X  the cotangent bundle, by *r T  the 
bundle of r-forms and by *

qS T  the bundle of q- 
symmetric covariant tensors. When the changes of coor- 
dinates have the form 

     ,x x y A x y B x    

we say that   is an affine bundle over X  and we 
define the associated vector bundle E  over X  by the 
local coordinates  ,x v  changing like   ,x x   

 v A x v . Finally, If X X  , we shall denote by  

 ,q q X X    the open subfibered manifold of  

 qJ X X  defined independently of the coordinate  

system by  det 0k
iy   with source projection  

   : : ,q q qX x y x     

and target projection  

   : : ,q q qX x y y    . 

DEFINITION 1.3: If the tangent bundle  T   has 
local coordinates  , , ,x y u v  changing like  

 

   

,

, ,

j j i
i

l l
l i k

i k

u x u

v x y u x y v
x y



 

 

 
 
 

, 

we may introduce the vertical bundle    V T   as 
a vector bundle over   with local coordinates ),,( vyx  
obtained by setting 0u   and changes 

 ,
l

l k
k

v x y v
y





. 

Of course, when   is an affine bundle over X  with 
associated vector bundle E  over X , we have 
  XV E   . 
For a later use, if   is a fibered manifold over X  

and f  is a section of  , we denote by   1f V   
the reciprocal image of  V   by f  as the vector 
bundle over X  obtained when replacing  , ,x y v  by 

  , ,x f x v  in each chart. A similar construction may 
also be done for any affine bundle over  . 

We now recall a few basic geometric concepts that 
will be constantly used through this paper. First of all, if 

, T   , we define their bracket  , T    by the local 
formula  

            ,
i r i s i

r sx x x x x          

leading to the Jacobi identity 

     , , , , , , 0,  

, , T

        

  

            
 

 

allowing to define a Lie algebra and to the useful 
formula  

          , ,T f T f T f       

where      :T f T X T Y  is the tangent mapping of 
a map :f X Y . 
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When  1 < < rI i i   is a multi-index, we may set  

1iIdx dx dx    

for describing *ir rT  by means of a basis and introduce 
the exterior derivative 

* 1 *: :r r I
I

i I
i I

d T T dx d

dx dx

  



    

  
 

with 2 = 0d d d   in the Poincaré sequence: 

0 * 1 * 2 * * 0
d d d d

nT T T T      . 

The Lie derivative of an r -form with respect to a 
vector field T  is the linear first order operator 
   linearly depending on  1j   and uniquely de-

fined by the following three properties: 

1)    0 *. ,i
if f f f T C X         . 

2)    d d   . 

3)          ,                
*, T   . 

It can be proved that  

     i d di     

where  i   is the interior multiplication  

  
11 rr

i
ii ii i

i     
 

and that 

           
  

,

, , , .T

     

   

   
  

      


 

We now turn to group theory and start with two basic 
definitions: 

Let G  be a Lie group, that is a manifold with local 
coordinates  a  for  1, , dimp G    called 
parameters, a composition 

 : ,G G G a b ab   , 

an inverse 1:G G a a   and an identity Ge  
satisfying: 

    1 1,  ,  

  , , .

ab c a bc abc aa a a e

ae ea a a b c G

    

   
 

DEFINITION 1.4: G  is said to act on X  if there  
is a map    : , ,X G X x a y ax f x a      such  

that     ,  , ,  ab x a bx abx a b G x X       and we  

shall say that we have a Lie group of transformations of 
X . In order to simplify the notations, we shall use global 

notations even if only local actions are existing. It is well 
known that the action of G  onto itself allows to intro-
duce a purely algebraic bracket on its Lie algebra 

 eT G . 

DEFINITION 1.5: A Lie pseudogroup of trans- 
formations  aut X   is a group of transformations 
solutions of a system of OD or PD equations such that, if 

 y f x  and  z g y  are two solutions, called finite 
transformations, that can be composed, then 

   z g f x h x    

and 

   1x f y g y   

are also solutions while y x  is the identity solution 
denoted by Xid id  and we shall set  q qid j id . In 
all the sequel we shall suppose that   is transitive that 
is  

 , ,  ,  x y X f y f x     . 

It becomes clear that Lie groups of transformations are 
particular cases of Lie pseudogroups of transformations 
as the system defining the finite transformations can be 
obtained by eliminating the parameters among the equa-
tions  

   ,q qy j f x a  

when q  is large enough. The underlying system may be 
nonlinear and of high order. Looking for transformations 
“close” to the identity, that is setting  y x t x    
when 1t   is a small constant parameter and passing to 
the limit 0t  , we may linearize the above nonlinear 
system of finite Lie equations in order to obtain a linear 
system of infinitesimal Lie equations of the same order 
for vector fields. Such a system has the property that, if 
 ,  are two solutions, then  ,   is also a solution. 

Accordingly, the set T  of solutions of this new 
system satisfies  ,     and can therefore be 
considered as the Lie algebra of  . 

EXAMPLE 1.6: While the affine transformations 
y ax b   are solutions of the second order linear sys-

tem 0xxy  , the projective transformations 

   y ax b cx d    

are solutions of the third order nonlinear system  

   23
0

2xxx x xx xy y y y    . 

The sections of the corresponding linearized systems 
are respectively satisfying 0xx   and 0xxx  . The 
generating differential invariant xx xy y   of the af-
fine case transforms like  

 x xx xu u f f f      

when  x f x  while   transforms like  

     2 23

2x xxx x xx xv v f f f f f        . 
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We now sketch the discovery of Vessiot [8,9] still not 
known today after more than a century for reasons which 
are not scientific at all. Roughly, a Lie pseudogroup 

 aut X   is made by finite transformations  y f x  
solutions of a (possibly nonlinear) system q q   
while the infinitesimal transformations    are solu-
tions of the linearized system 

    1
q q q qR id V J T   

as we have 

  1T id V X X  . 

When   is transitive, there is a canonical epimor-
phism 0π :q

qR T . Also, as changes of source x  
commute with changes of target y , they exchange 
between themselves any generating set of differential 
invariants   qy  as in the previous example.Then 
one can introduce a natural bundle   over X , also 
called bundle of geomeric objects, by patching changes 
of coordinates of the form  

    , , qx f x u u j f x   

thus obtained. A section   of   is called a 
geometric object or structure on X  and transforms like  

        , qf x x j f x    

or simply    1

qj f  . This is a way to generalize 
vectors and tensors  1q   or even connections 
 2q  . As a byproduct we have  

      1
aut qf X j f       

and we may say that   preserves  . Replacing 
 qj f  by qf , we also obtain  

  1
q q q qf f     . 

Coming back to the infinitesimal point of view and 
setting  

   exp aut ,  tf t X T     , 

we may define the ordinary Lie derivative with value in 
the vector bundle   1

0F V   by the formula: 

     

  

1

0

d

d

0

q t
t

j f
t

T

   

  





  

  

 



 

and we say that   is a Lie operator because 
 0, 0 , 0          as we already saw. 

Differentiating r  times the equations of qR  that 
only depend on  1j  , we may obtain the r - 
prolongation  

      q r r q q r r qR J R J T J J T   . 

The problem is then to know under what conditions on 
  all the equations of order q r  are obtained by r  
prolongations only, 0r   or, equivalently, qR  is 
formally integrable (FI). The solution, found by Vessiot, 
has been to exhibit another natural vector bundle 1  
with local coordinates  , ,x u v  over   with local 
coordinates  ,x u  and to prove that an equivariant 
section     1: : , , ,c x u x u v c u     only de-
pends on a finite number of constants called structure 
constants. The integrability conditions (IC) of qR , 
called Vessiot structure equations, are of the form 

    1I j c   and are invariant under any change of 
source. 

We provide in a self-contained way and parallel man-
ners the following five striking examples which are 
among the best nontrivial ones we know and invite the 
reader to imagine at this stage any possible link that 
could exist between them (A few specific definitions will 
be given later on). 

EXAMPLE 1.7: Coming back to the last example, we 
show that Vessiot structure equations may even exist 
when 1n  . For this, if   is the geometric object of 
the affine group y ax b   and *0 ( )dx x T     
is a 1 -form, we consider the object  ,    and get 
at once the two second order Medolaghi equations: 

 
 

0,  

0

x x

xx x x

     

      

    

      




 

Differentiating the first equation and substituting the 
second, we get the zero order equation: 

  2 2

2

2

0  0

xx x x x

x
x

       

 


      

      
 

 

and the Vessiot structure equation 2
x c     . 

Alternatively, setting 

1 T    , 

we get 

x c    . 

With 

1, 1, 0 0c         

we get the translation subgroup y x b   while, with  

1 , , 0 1x x c          

we get the dilatation subgroup y ax . Similarly, if   
is the geometric object of the projective group and we 
consider the new geometric object  ,   , we get 
the only Vessiot structure equation 

21
0

2x       
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without any structure constant. 
EXAMPLE 1.8: (Principal homogeneous structure) 

When   is the Lie group of transformations made by 
the constant translations i i iy x a   for 1, ,i n   of 
a manifold X  with  dim X n , the characteristic 
object invariant by   is a family  

  * *d i
i X Xx T T         

of n  1 -forms with  det 0   in such a way that  

      1

1autf X j f       

where  aut X  denotes the pseudogroup of local dif- 
feomorphisms of X ,  qj f  denotes the derivatives of  
f  up to order q  and  1j f  acts in the usual way on  

covariant tensors. For any vector field  T T X    
the tangent bundle to X , introducing the standard Lie 
derivative    of forms with respect to  , we may 
consider the 2n  first order Medolaghi equations: 

       0r r
i r i r ii

x x
              . 

The particular situation is found with the special 
choice  idx   that leads to the involutive system 

0k
i  . Introducing the inverse matrix   1i

    , 
the above equations amount to the bracket relations 
 , 0    and, using crossed derivatives on the solved 
form  

    0k r k
i r ix x

       , 

we obtain the  2 1 2n n   zero order equations: 

          0r i j
r i j j ix x x x 

          . 

The integrability conditions (IC), that is the conditions 
under which these equations do not bring new equations, 
are thus the  2 1 2n n   Vessiot structure equations: 

       i j j i i jx x c x x    
        

with  2 1 2n n   structure constants  c c c 
    .  

When X G , these equations can be identified with the 
Maurer-Cartan equations (MC) existing in the theory of 
Lie groups, on the condition to change the sign of the 
structure constants involved because we have  

, c          . 

Writing these equations in the form of the exterior 
system d c  

     and closing this system by 
applying once more the exterior derivative d , we obtain 
the quadratic IC: 

0c c c c c c     
         

also called Jacobi relations   0J c  . 

EXAMPLE 1.9: (Riemann structure) If  

  *
2ij ji S T      

is a metric on a manifold X  with  dim X n  such 
that  det 0  , the Lie pseudogroup of transformations 
preserving   is  

      1

1autf X j f       

and is a Lie group with a maximum number of 
 1 2n n   parameters. A special metric could be the 

Euclidean metric when 1, 2,3n   as in elasticity theory 
or the Minkowski metric when 4n   as in special 
relativity [10]. The first order Medolaghi equations: 

  
      0

ij ij

r r r
rj i ir j r ijx x x

 

     

 

      


 

are also called classical Killing equations for historical 
reasons. The main problem is that this system is not 
involutive unless we prolong it to order two by differen-
tiating once the equations. For such a purpose, introduc-
ing  1 ij    as usual, we may define the Christoffel 
symbols: 

          
 

1

2

.

k kr
ij i rj j ri r ij

k
ji

x x x x x

x

    



     


 

This is a new geometric object of order 2 providing the 
Levi-Civita isomorphism      1 , ,j         of 
affine bundles and allowing to obtain the second order 
Medolaghi equations: 

      

    0

kk k k r k r
ij ij rj i ir jij

r k r k
ij r r ij

x x

x x

      

   

       

    


 

Surprisingly, the following expression called Riemann 
tensor: 

     
       

k k k
lij i lj j li

r k r k
lj ri li rj

x x x

x x x x

  

   

   

 
 

is still a first order geometric object and even a 4 -tensor 
with  2 2 1 12n n   independent components satisfying 
the purely algebraic relations: 

0, 0k k k l r
lij ijl jli rl kij kr lij           . 

Accordingly, the IC must express that the new first  

order equations    0
kk

lij lij
R     are only linear  

combinations of the previous ones and we get the Vessiot 
structure equations: 

      k k k
lij i lj j lix c x x       

with the only structure constant c  describing the con-
stant Riemannian curvature condition of Eisenhart 
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[11,12]. One can proceed similarly for the conformal 
Killing system    A x    and obtain that the 
Weyl tensor must vanish, without any structure constant 
[12]. 

EXAMPLE 1.10: (Contact structure) We only treat 
the case  dim 3X   as the case  dim 2 1X p   
needs much more work [6]. Let us consider the so-called 
contact 1 -form 1 3 2dx x dx    and consider the Lie 
pseudogroup  aut X   of (local) transformations 
preserving   up to a function factor, that is  

      1

1autf X j f       

where again  qj f  is a symbolic way for writing out 
the derivatives of f  up to order q  and   trans-
forms like a 1 -covariant tensor. It may be tempting to 
look for a kind of “object” the invariance of which 
should characterize  . Introducing the exterior 
derivative 2 3d dx dx    as a 2 -form, we obtain the 
volume 3 -form 1 2 3d dx dx dx     . As it is well 
known that the exterior derivative commutes with any 
diffeomorphism, we obtain sucessively: 

          

   
 

1 1

1 1

1

1

2 .

j f d d j f d

d d j f d

d

  

     

  

 



 

    

 

 

As the volume 3 -form d   transforms through a 
division by the Jacobian determinant 

   1 2 3 1 2 3, , , , 0f f f x x x      

of the transformation  y f x  with inverse  

   1x f y g y  , 

the desired object is thus no longer a 1-form but a 1- 
form density  1 2 3, ,     transforming like a 1- 
form but up to a division by the square root of the Jaco-
bian determinant. It follows that the infinitesimal contact 
transformations are vector fields  T T X    the 
tangent bundle of X , satisfying the 3 so-called first 
order Medolaghi equations: 

  
       1 2 0

i i

r r r
r i i r r ix x x

 

     

 

      


. 

When  31, ,0x   , we obtain the special involu- 
tive system: 

 

3 2 3 2 1
3 2 1 1

1 3 2
3 3

21 3 2 3 1 3 2 3
2 2 1 1

2 0,

0,

0

x

x

x x x

   

 

    

       

   

        

 

with 2 equations of class 3 and 1 equation of class 2 (see 
later on for a precise definition) and thus only 1 com- 

patibility conditions (CC) for the second members. 
For an arbitrary  , we may ask about the differential 

conditions on   such that all the equations of order 
1r   are only obtained by differentiating r  times the 

first order equations, exactly like in the special situation 
just considered where the system is involutive. We notice 
that, in a symbolic way, d   is now a scalar  c x  
providing the zero order equation   0r

rc x    and the 
condition is  c x c cst  . The integrability condition 
(IC) is the Vessiot structure equation: 

   
 

1 2 3 3 2 2 3 1 1 3

3 1 2 2 1 c

     

  

    

   
 

involving the only structure constant c . 
For  31, ,0x   , we get 1c  . If we choose 
 1,0,0   leading to 0c  , we may define  

      1

1autf X j f       

with infinitesimal transformations satisfying the involu- 
tive system: 

3 2 1 1 1
3 2 1 3 20,  0,  0               

with again 2 equations of class 3 and 1 equation of class 
2. 

EXAMPLE 1.11: (Unimodular contact structure) 
With similar notations, let us again set  

1 3 2 2 3dx x dx d dx dx       

but let us now consider the new Lie pseudogroup of 
transformations preserving   and thus d  too, that 
is preserving the mixed object 

  * 2 *, XT T       

made up by a 1 -form   and a 2 -form   with  

0      and 0d d     . 

Then   is a Lie subpseudogroup of the one just 
considered in the previous example and the correspond-
ing infinitesimal transformations now satisfy the invo-
lutive system: 

1 2 3 1 3 3 3
1 1 1 2 3

2 3 1 3 2
2 3 3 3

0,  0,  0,  0,

0, 0

x

x

     

   

          

       
 

with 3 equations of class 3, 2 equations of class 2 and 1  
equation of class 1 if we exchange 1x  with 3x , a result 
leading now to 4 CC. 

More generally, when  ,    where   is a 1- 
form and   is a 2 -form satifying 0   , we may 
study the same problem as before for the general system  

   0,  0      . 

We let the reader provide the details of the tedious 
computation involved as it is at this point that computer 
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algebra may be used [13]. The result, not evident at first 
sight, is that the 2-form d  must be proportional to the 
2-form  , that is  d c x   and thus 

 d c x      . 

As 0   , we must have  c x c cst    and 
thus d c  . Similarly, we get d c     and 
obtain finally the 4  Vessiot structure equations  

,  d c d c         

involving 2 structure constants  ,c c c  . Contrary to 
the previous situation (but like in the Riemann case!) we 
notice that we have now 2 structure equations not con-
taining any constant (called first kind by Vessiot) and 2 
structure equations with the same number of different 
constants (called second kind by Vessiot), namely  

,  d c d c            . 

Finally, closing this system by taking once more the 
exterior derivative, we get  

20 d c d c c          

and thus the unexpected purely algebraic Jacobi condi-
tion 0=cc  . For the special choice  

 1 3 2 2 3,dx x dx dx dx     

we get  1,0c  , for the second special choice  

 1 2 3,dx dx dx    

we get  0,0c   and for the third special choice  

  1 1 1 2 31 ,x dx x dx dx    

we get  0,1c  . 
FIRST FUNDAMENTAL RESULT: Comparing the 

various Vessiot structure equations containing structure 
constants that we have just presented and that we recall 
below in a symbolic way, we notice that these structure 
constants are absolutely on equal footing though they 
have in general nothing to do with any Lie algebra. 

2c

c

  
 

  

  

 

 
( )

c

c

c

  
     
  

  

     

   

 

d c

d c

 
  


  

. 

Accordingly, the fact that the ones appearing in the 
MC equations are related to a Lie algebra is a coinci-
dence and the Cartan structure equations have nothing to 
do with the Vessiot structure equations. Also, as their 

factors are either constant, linear or quadratic, any 
identification of the quadratic terms appearing in the 
Riemann tensor with the quadratic terms appearing in 
the MC equations is definitively not correct [7]. We also 
understand why the torsion is automatically combined 
with curvature in the Cartan structure equations but to-
tally absent from the Vessiot structure equations, even 
though the underlying group (translations + rotations) is 
the same. 

HISTORICAL REMARK 1.12: Despite the pro-
phetic comments of the italian mathematician Ugo 
Amaldi in 1909 [12], it has been a pity that Cartan delib-
erately ignored the work of Vessiot at the beginning of 
the last century and that the things did not improve af-
terwards in the eighties with Spencer and coworkers 
(Compare MR 720863 (85 m: 12004) and MR 954613 
(90e: 58166)). 

3. Second Part: The Janet and Spencer 
Sequences 

Let  1, , n     be a multi-index with length  

1 n      

class i  if  

1 1 0, 0i i       

and 

 1 1 11 , , , 1, , ,i i i i n          . 

We set 

 1 ,0k
qy y k m q       

with k ky y   when 0  . If E  is a vector bundle 
over X  with local coordinates  ,x y  and  qJ E  is  

the q -jet bundle of E  with local coordinates  , qx y ,  

the Spencer operator just allows to distinguish a section 

q  from a section  qj   by introducing a kind of 
“difference” through the operator  

     *
1 1 1 1: :q q q q qD J E T J E j         

with local components  

        , ,k k k k
i i i j ijx x x x         

and more generally  

       1 1,

k k k
q i ii

D x x x 
      . 

Minus the restriction of D  to the kernel *
1qS T E   

of the canonical projection  

   1
1:q

q q qJ E J E 
   

can be extended to the Spencer map 
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* * 1 * *
1: s s

q qT S T E T S T E 
        

defined by 

  1

k i k

i
dx     . 

The kernel of D  is made by sections such that  

     1 1 2 1 1q q q qj j j         . 

Finally, if  q qR J E  is a system of order q  on 
E  locally defined by linear equations  

   , 0k
q kx y a x y 

   , 

the r -prolongation  

 
      

q r r q

r q q r r q

R R

J R J E J J E







 
 

is locally defined when 1r   by the linear equations  

   
 

1

1

, 0,  ,

( ) 0

q i q

k k
k i ki

x y d x y

a x y a x y

 

 
 





  

   
 

and has symbol  

 *
q r q r q r q rg R S T E J E       

locally defined by  

  0,  ,  k
ka x q r

        

if one looks at the top order terms. If 1 1q qR    is over  

q qR  , differentiating the identity  

    0k
ka x x

   

with respect to ix  and substracting the identity  

       1 0k k
k i ki

a x x a x x 
      , 

we obtain the identity  

      1 0k k
k i i

a x x x
       

and thus the restriction *
1: q qD R T R   . This first 

order operator induces, up to sign, the purely algebraic  

monomorphism *
10 q qg T g



    on the symbol level  

[8,14]. The Spencer operator has never been used in GR 
though an accelerometer in a rocket merely measures 
one of the components of the Spencer operator involving 
second order jets. 

DEFINITION 2.1: qR  is said to be formally inte- 
grable (FI) when the restriction  

1
1π :q r

q r q r q rR R 
     

is an epimorphism 0r  . In that case, the Spencer 
form  1 1q qR J R   is a canonical equivalent formally 

integrable first order system on qR  with no zero order 
equations. 

DEFINITION 2.2: qR  is said to be involutive when 
it is formally integrable and the symbol qg  is involutive, 
that is all the sequences 

*s
q rT g

 

     

are exact 0 , 0s n r     . Equivalently, using a linear 
change of local coordinates if necessary, we may 
successively solve the maximum number 1 1, , ,n n

q q q     
of equations with respect to the leading or principal jet 
coordinates of strict order q  and class , 1, ,1n n   . 
Then qR  is involutive if 1qR   is obtained by only 
prolonging the i

q  equations of class i  with respect to 

1, , id d  for 1, ,i n  . In that case, such a prolonga- 
tion procedure allows to compute in a unique way the 
principal jets from the parametric other ones and may 
also be applied to nonlinear systems as well [8,15]. 

When qR  is involutive, the linear differential ope- 
rator 

    0:
jq

q q qD E J E J E R F


    

of order q  with space of solutions E   is said to be 
involutive and one has the canonical linear Janet 
sequence [8]: 

1 2

0 10 0
n

nE F F F     
 

 

with Janet bundles  

    * * 1 * *
1 .

r

r r r
q q q

F

T J E T R T S T E 




       
 

Each operator 1 1:r r rF F   is first order involut-
ive as it is induced by  

   
 

* 1 *
1 1

1

: :

1

r r
q q q

r

q q

D T J E T J E

d D

 

   


 



     

    
 

and generates the compatibility conditions (CC) of the 
preceding one. As the Janet sequence can be cut at any 
place, the numbering of the Janet bundles has nothing to 
do with that of the Poincaré sequence, contrary to what 
many people believe in GR. 

Similarly, we have the involutive first Spencer 
operator 

   
 

1

1 0 1 1 1

*
1 1

:
j

q q q q

q q

D C R J R J R R

T R g C





  

 
 

of order one induced by *
1: q qD R T R   . Introduc-

ing the Spencer bundles  

 * 1 *
1

r r
r q qC T R T g 

     , 
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the first order involutive  1r   Spencer operator 

1 1:r r rD C C   is induced by 
1 * 1 *

1: r r
q qD T R T R 
      

and we obtain the canonical linear Spencer sequence 
[8,14]: 

31 2

0 1 20 0
j D DD Dq n

nC C C C       

as the Janet sequence for the first order involutive system 

 1 1q qR J R  . Introducing the other Spencer bundles  

     * 1 * *
1

r r
r q qC E T J E T S T E 

       

with  r rC C E , the linear Spencer sequence is in- 

duced by the linear hybrid sequence: 

       
31 2

0 1 20 0
j D DD Dq n

nE C E C E C E C E        

which is at the same time the Janet sequence for qj  and 
the Spencer sequence for  

    1 1q qJ E J J E   

[8,14]. Such a sequence projects onto the Janet sequence 
and we have the following commutative diagram with 
exact columns: 

 

31 2

0 1 2

31 2

0 1 2

0 1 2

31 2

0 1 2

0 0 0 0

0 ... 0

0 ( ) ( ) ( ) ... ( ) 0

0 ... 0

0 0 0 0

j D DD Dq n

n

j D DD Dq n

n

n

n

n

C C C C

E C E C E C E C E

E F F F F

   

       
   

      
   

        
   


  

 

 
In this diagram, only depending on the linear differen-

tial operator qj   , the epimorhisms  

 :r r rC E F   for 0 r n   

are induced by the canonical projection  

     0 0 0: q q qC E J E J E R F       

if we start with the knowledge of  q qR J E  or from  

the knowledge of an epimorphism  

  0: qJ E F   

if we set  kerqR   . In the theory of Lie equations 
considered, E T ,  q qR J T  is a transitive invo-
lutive system of infinitesimal Lie equations of order q  
and the corresponding operator   is a Lie operator. As 
an exercise, we invite the reader to draw this diagram in 
the affine and projective 1-dimensional cases. 

EXAMPLE 2.3: If we restrict our study to the group 
of isometries of the euclidean metric   in dimension 

2n  , exhibiting the Janet and the Spencer sequences is 
not easy at all, even when 2=n , because the corre-
sponding Killing operator  

  *
2S T      , 

involving the Lie derivative   and providing twice the 

so-called infinitesimal deformation tensor   of contin-
uum mechanics, is not involutive. In order to overcome 
this problem, one must differentiate once by considering 
also the Christoffel symbols   and add the operator  

  *
2S T T     . 

Now, one can prove that the Spencer sequence for Lie 
groups of transformations is locally isomorphic to the 
tensor product of the Poincaré sequence by the Lie 
algebra of the underlying Lie group [7,8]. Hence, if two 
Lie groups ˆG G  act on X , it follows from the defi-
nition of the Janet and Spencer bundles that the Spencer 
sequence for G  is embedded into the Spencer sequence 
for Ĝ  while the Janet sequence for G  projects onto 
the Janet sequence for Ĝ  but the common differences 
are isomorphic to  * ˆr T    . This rather philoso-
phical comment, namely to replace the Janet sequence by 
the Spencer sequence, must be considered as the crucial 
key for understanding the work of the brothers E. and F. 
Cosserat in 1909 [7,17-19] or H. Weyl in 1918 [7,16], 
the best picture being that of Janet and Spencer playing 
at see-saw. Indeed, when 2n  , one has 3 parameters (2 
translations + 1 rotation) and the following commutative 
diagram which only depends on the left commutative 
square:   
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2 1 2

2 1 2

0 1 2

1 2

0 0 0

0 3 6 3 0

0 2 12 16 6 0

0 2 9 10 3 0

0 0 0

j D D

j D D

Spencer

Janet

  

     
  

    
  

      
  


 

 

 
In this diagram, there is no way to compare 1  (cur-

vature alone as in Vessiot) with 2D  (curvature + torsion 
as in Cartan). 

For proving that the adjoint of 1D  provides the Cos-
serat equations which can be parametrized by the adjoint 
of 2D , we may lower the upper indices by means of the 
constant euclidean metric and look for the factors of 

1 2,   and 1,2 2,1    in the integration by parts of the 
sum: 

     
   

11 12 21
1 1 1,1 2 1 1,2 1 2 2,1

22
2 2 2,2 1,2 1,2

r
r r

        

     

       

     
 

in order to obtain: 

11 12 1 21 22 2
1 2 1 2

1 2 12 21
1 2

,  ,  f f

m

   

   

       

     
 

Finally, we get the nontrivial first order parametriza-
tion 

11 1 12 1
2 1

21 2 22 2
2 1

1 3 1 2 3 2
2 1

,  ,  

,  ,

 ,  

   

   

     

   

   

     

 

by means of the three arbitrary functions 1 2 3,  ,     , in  

a coherent way with the Airy second order parametriza-
tion obtained if we set 

1 2 3
2 1,  ,              

when 1 20,  0    as we shall see in the third part. 

The link between the FI of qR  and the CC of   is 
expressed by the following diagram that may be used 
inductively: 

 

( )
* *

0

( )

0

1 1

( )1

1 1 1 0 1

0 0 0

0 ( ( )) 0

0 ( ) ( ) ( ( )) 0

0 ( ) ( ) ( ( ) 0

0 0 0

r

q r q r r r

r

q r q r r r
q r r
q r r

r

q r q r r r

CC

g S T E S T F coker

R J E J F coker

R J E J F coker

FI










 





 



 

  



     

   

       
   

     
   

     
  

 

 
The “snake theorem” [8,20] then provides the long exact connecting sequence: 

 

        1 10 coker coker coker 0q r q r q r r r rg R R                 . 

 
If we apply such a diagram to first order Lie equations 

with no zero or first order CC, we have 1,q E T   
and we may apply the Spencer  -map to the top row ob- 
tained with r = 2 in order to get the commutative diagram:          
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* *
3 3 2 0 1

* * * * *
2 2 0

2 * 2 * * 2 *
1 0

3 * 3 *

0 0 0

0 0

0 0

0 0

0 0

0 0

g S T T S T F F

T g T S T T T T F

T g T T T T F

T T T T

  

  

 

  
      

  
        

  
          

  
      

 

 

 
with exact rows and exact columns but the first that may 
not be exact at 2 *

1T g  . We shall denote by  2
1B g  

the coboundary as the image of the central  , by 
 2

1Z g  the cocycle as the kernel of the lower   and 
by  2

1H g  the Spencer  -cohomology at 2 *
1T g   

as the quotient. 
In the classical Killing system, *

1g T T   is de-
fined by  

   
2 3

0

0, 0, 0

r r
rj i ir j

r
r

x x

g g

   



 

   
 

Applying the previous diagram, we discover that the 
Riemann tensor is a section of the bundle  

   2 2
1 1 1Riemann F H g Z g    

with  

 
      
      
 

22 2

22 2

2 2

dim Riemann

1 4 1 2 6

1 4 1 2 6

1 12

n n n n n

n n n n n

n n

    

    

 

 

by using the top row or the left column. Though we dis-
cover the two properties of the Riemann tensor through 
the chase involved, we have no indices and cannot 
therefore exhibit the Ricci tensor of GR by means of the 
usual contraction or trace. 

Let us proceed the same way with the conformal 
Killing system  

  ˆ ˆ

2
ˆ ˆ ˆ 0

ij ij

r r r r
rj i ir j ij r r ijn

 

       

 

        



 

obtained by introducing  

 
1

ˆ det n
ij ij    

or, equivalently, by eliminating  A x  in  

   A x   . 

Now 1ĝ  is defined by  

2
0r r r

rj i ir j ij rn
         

but we have 3ˆ 0, 3g n    with  2
2ˆ 0, 4H g n    

and the Weyl tensor is a section of the bundle  

     2 2 *
1 1 1 2
ˆ ˆ ˆ ˆWeyl F H g Z g T g     

with 

     dim Weyl 1 2 3 12n n n n    . 

Similarly, we have no indices and cannot therefore ex-
hibit the Ricci tensor. However, when 4=n , among the 
components of the Spencer operator we have  

r r r
i rj rij i rj       

and thus  
r r

i rj j ri ijF     . 

Such a result allows to recover the electromagnetic 
field in the image of the Spencer operator 1D  and Max- 
well equations by duality along the way proposed by 
Weyl in [16] but the use of the Spencer operator pro- 
vides the only possibility to exhibit a link with Cosserat 
equations. 

Comparing the classical and conformal Killing sys-
tems by using the inclusions 

1 1 1 1
ˆ ˆR R g g   , 

we finally obtain the following commutative and exact 
diagram where a diagonal chase allows to identify Ricci  
with  

* * * *
2 2ˆS T T T T g    

and to split the right column [7,12,20]:       
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SPENCER

TTTTS

WeylgZgT

JANET

RiemanngZ

Ricci

00

00

0)ˆ(ˆ0

0)(0

0

0

*2***
2

1
2

2
*

1
2
















  

 
SECOND FUNDAMENTAL RESULT: The Ricci 

tensor only depends on the “difference” existing between 
the clasical Killing system and the conformal Killing 
system, namely the n  second order jets (elations once 
more). The Ricci tensor, thus obtained without contract-
ing the indices as usual, may be embedded in the image 
of the Spencer operator made by 1-forms with value in 
1-forms that we have already exhibited for describing 
EM. It follows that the foundations of both EM and GR 
are not coherent with jet theory and must therefore be 
revisited within this new framework. 

4. Third Part: Algebraic Analysis 

EXAMPLE 3.1: Let a rigid bar be able to slide along an 
horizontal axis with reference position x  and attach 
two pendula, one at each end, with lengths 1l  and 2l , 
having small angles 1  and 2  with respect to the ver-
tical. If we project Newton law with gravity g  on the 
perpendicular to each pendulum in order to eliminate the 
tension of the threads and denote the time derivative with 
a dot, we get the two equations: 

1 1 1 2 2 20,  0x l g x l g            

As an experimental fact, starting from an arbitrary 
movement of the pendula, we can stop them by moving 
the bar if and only if 1 2l l  and we say that the system 
is controllable. 

More generally, we can bring the OD equations de-
scribing the behaviour of a mechanical or electrical sys-
tem to the Kalman form y Ay bu   with input 

 1, , pu u u   and output  1, , my y y  . We say 
that the system is controllable if, for any given  

   0 ,  ,  <y y T T  , 

one can find  u t  such that a coherent trajectory  y t  
may be found. In 1963 [21], R. E. Kalman discovered 
that the system is controllable if and only if  

 1, , , mrk B AB A B m  . 

Surprisingly, such a functional definition admits a 
formal test which is only valid for Kalman type systems 
with constant coefficients and is thus far from being in-
trinsic. In the PD case, the Spencer form will replace the 
Kalman form. 

EXAMPLE 3.2: 

   
       

0

0 0

y u y t u t c cst

u T u y T y

     

   

 
 

can always be achieved and the system is thus controlla-
ble in the sense of the definition but 0z y u z     
is not controllable in the sense of the test. 

EXAMPLE 3.3:  

 1 2 3 1 2 30,  0y a t y y y y y         . 

Any way to bring this system to Kalman form provides 
the controllability condition  1 0a a    if a cst  
but nothing can be said if  a a t . Also, getting 1y  
from the second equation and substituting in the first, we 
get the second order OD equation  

 2 3 3 2 0y y y a t y       

for which nothing can be said at first sight. 
PROBLEM 1: Is a SYSTEM of OD or PD equations 

“controllable” (answer must be YES or NO) and how 
can we define controllability? 

Now, if a differential operator  


 is given, a  

direct problem is to find (generating) compatibility  

conditions (CC) as an operator 
1

 


 such that  

1 0      . 

Conversely, the inverse problem will be to find 
1

 



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such that   generates the CC of 1  and we shall say 
that   is parametrized by 1 . Of course, solving the 
direct problem (Janet, Spencer) is necessary for solving 
the inverse problem. 

EXAMPLE 3.4: When 2n  , the Cauchy equations 
for the stress in continuum mechanics are  

11 21 12 22
1 2 1 20,  0             

with 12 21  .  
Their parametrization 

11 12 21 22
22 12 11,  ,                

has been discovered by Airy in 1862 and   is called the 
Airy function. When 3n  , Maxwell and Morera 
discovered a similar parametrization with 3 potentials 
(exercise). 

EXAMPLE 3.5: When 4n  , the Maxwell equations 
0dF   where 2 *F T  is the EM field are pa-

rametrized by dA F  where *A T  is the 4-potential. 
The second set of Maxwell equations can also be pa-
rametrized by the so-called pseudopotential which is a 
pseudovector density (exercise). 

EXAMPLE 3.5: If 4n  ,   is the Minkowski 
metric and GM r   is the gravitational potential, 
then 2 1c   and a perturbation   of   may sat-
isfy in vacuum the 10 second order Einstein equations 
for the 10  : 

 
  0

rs
ij rs rs ij ri sj sj ri

rs uv ru sv
ij rs uv rs uv

d d d d

d d



    

      

    
 

The parametrizing challenge has been proposed in 
1970 by J. Wheeler for 1000 $ and solved negatively in 
1995 by the author who only received 1 $. 

PROBLEM 2: Is an OPERATOR parametrizable 
(answer must be YES or NO) and how can we find a 
parametrization? 

Let A  be a unitary ring, that is  

1, , , ,1a b A a b ab A a a      

and even an integral domain, that is  

0 0ab a    or 0b  . 

We say that AM M  is a left module over A  if  

, ,  ,  x y M ax x y M a A       

and we denote by  hom ,A M N  the set of morphisms  

NMf :  such that    f ax af x . 

DEFINITION 3.6: We define the torsion submodule  

   0 , 0t M x M a A ax M       . 

There is a sequence  

    0 hom hom , ,A At M M M A A


    

where the morphism   is defined by  

      , , hom ,Ax f f x x M f M A       

because we have at once  

         0 0 keraf x f ax f t M      . 

PROBLEM 3: Is a MODULE M  torsion-free, that 
is   0t M   (answer must be YES or NO) and how can 
we test such a property? 

In the remaining of this paper we shall prove that the 
three problems are indeed identical and that only the 
solution of the third will provide the solution of the two 
others [1,22-24]. 

Let K  be a differential field, that is a field  

 1a K a K    

with n  commuting derivations  1, , n   with 

,  , 1, ,i j j i ij i j n           

such that  

 i i ia b a b       

and 

    ,  ,i i iab a b a b a b K       . 

Using an implicit summation on multiindices, we may 
introduce the (noncommutative) ring of differential 
operators  

   1, , nD K d d K d   

with elements P a d   such that <   and id a   

i iad a  . Now, if we introduce differential indeter- 
minates  1, , my y y  , we may extend 1

k k
i i

d y y   
to  

1

di
k k k

k i k i ki
a y d a y a y    

          

for 1, , p   . Therefore, setting  
1 m mDy dy Dy D    , 

we obtain by residue the differential module or D - 
module M Dy D  . Introducing the two free differ-
ential modules 0 1,  m pF D F D  , we obtain equiva-  

lently the free presentation 1 0 0F F M  


. More  

generally, introducing the successive CC as in the pre-
ceding section, we may finally obtain the free resolution 
of M , namely the exact sequence  

2 1

2 1 0 0F F F M    
  

. 

The “trick” is to let   act on the left on column vec- 
tors in the operator case and on the right on row vectors 
in the module case. Homological algebra has been cre- 
ated for finding intrinsic properties of modules not de- 
pending on their presentation or even on their resolution. 
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EXAMPLE 3.7: In order to understand that different 
presentations may nevertheless provide isomorphic mod-
ules, let us consider the linear inhomogeneous system 

22 12,  Py d y u Q d y y v      with K  . Differen-
tiating twice, we get vvdudy  1211=  and the two 
fourth order CC: 

1122 1222 22

1112 1122 11

12 11

= 0,

= 0

= 0.

A d u d v d v u

B d u d v d u E

d B d A B

   
   

  
 

However, as QPPQ = , we also get the CC 
0=2212 uvdudC   and the two resolutions: 

2 2

2

0 0,

0 0

D D D M

D D M

    

   
 

where we can identify the two differential modules in-
volved on the right with D  because: 

12

11 22 12

,

0.

A d C C

B d C C d B d A B

 
     

 

We now exhibit another approach by defining the 
formal adjoint of an operartor P  and an operator 
matrix  : 

DEFINITION 3.8:  

   1
ad

P a d D ad P d a D
 

        

   , , divad        

from integration by part, where   is a row vector of 
test functions and  the usual contraction. 

PROPOSITION 3.9: If we have an operator E F


, 
we obtain by duality an operator  

 
* * * *

ad
n nT E T F    



 

where *E  is obtained from E  by inverting the transi-
tion matrix and EM provides a fine example of such a 
procedure [10]. 

Now, with operational notations, let us consider the 
two differential sequences: 

1

   


 

   1adad

   


 

where 1  generates all the CC of  . Then  

   1 10 0ad ad        

but  ad   may not generate all the CC of  1ad  . 
EXAMPLE 3.10: With 2 1

22 12,          for  , 
we get 2 1

1 2       for 1 . Then  1ad   is de-  

fined by 2 1
1 2,          while  ad   is de-  

fined by 1 2
12 22       but the CC of  1ad   are  

generated by 1 2
1 2       . Passing to the module 

framework, we obtain the sequences: 

1
2

( ) ( )1
2

0
ad ad

D D D M

D D D

   

 

 

 
 

THEOREM 3.11: The cohomology  1ext M  at 
2D  of the lower sequence does not depend on the 

resolution of M  and is a torsion module called the first 
extension module of M . 

Exactly like we defined the differential module M  
from  , let us define the differential module N  from 

 ad  . The proof of the next theorem is quite tricky 
and out of the scope of this paper [1,22-24]: 

MAIN THEOREM 3.12:      1ext kerN t M   . 
FORMAL TEST 3.13: The double duality test needed 

in order to check whether   0t M   or not and to find 
out a parametrization if   0t M   has 5 steps which are 
drawn in the following diagram where  1ad   gener-
ates the CC of  ad   and   generates the CC of 

1 : 

'

1

( ) ( )1

' 5

4 1

3 2
ad ad



  

  





 

 




 

 

 

THEOREM 3.14:   parametrized by  

   1
1 0 ext 0t M N         . 

COROLLARY 3.15: If 1n   and   is surjective, 
then   0t M   if and only if  ad   is injective 
[24,25]. 

EXAMPLE 3.16: (Kalman test revisited) If we multi-
ply the Kalman system 0y Ay Bu     on the left by 
a test row vector  , we obtain: 

  0

0

y A
ad

u B

 


   


 


  

Differentiating the zero order equations and using the 
first order ones, we get 0AB   and so on. Using the 
Cayley-Hamilton theorem, we stop at 1 0mA B    and 
find back exactly the Kalman test but in a completely 
different intrinsic framework. 

EXAMPLE 3.17: (Double pendulum revisited) Using 
two test functions 1  and 2 , we get: 

 

1 2

1 1
1 1

2 2
2 2

0

0

0

x

ad l g

l g

 
  
  

   
   
   

 



  
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and obtain at once the zero order equation 
2 1

1 2 0l l   . 

Differentiating twice and substituting, we also get  

   2 1
1 2 2 1 0l l l l    and  ad   is injective if and  

only if 2 1 0l l  . 
EXAMPLE 3.18: (Airy parametrization revisited) 

When 2n  , we may study the infinitesimal defor- 
mation *

2S T   by means of the Killing operator 
  2       when   is the euclidean metric. 

Then  ad   provides (up to sign and factor 2 ) the 
Cauchy equations 0rj j rs

r rs      for the stress 
tensor density [12,16,26]. The following diagram de-
scribes the Poincaré scheme: 

2 3 1

2 3 1

Killing Riemann

Cauchy Airy

GEOMETRY

PHYSICS

 

 

 . 

Accordingly, the second order Airy parametrization is 
nothing else than the adjoint of the only Riemann CC 
involved, namely 11 22 22 11 12 122 0         which is 
the linearization of the Riemann tensor of Example 1.9. 

EXAMPLE 3.19: (Einstein equations revisited) Con-
trary to the Ricci operator, the Einstein operator is self- 
adjoint because it comes from a variational procedure, 
the sixth terms being exchanged between themselves 
under ad . For example, we have: 

     
ad

ij rs rs ij rs ij
ij rs ij rs ij rsd d d           

and the adjoint of the first operator is the sixth. Accord-
ingly, one has the following diagram where   : 

10104

10104

20

EinsteinCauchy

EinsteinKilling

Riemann






 

THIRD FUNDAMENTAL RESULT: Comparing 
this diagram to the previous one proves that Einstein eq-
uations are not coherent with Janet and Spencer se-
quences as conformal geometry has not been introduced 
in this last part. 

EXERCISE 3.20: Prove that  

 2 3 3 2 0y y y a t y       

is controllable if and only if 2 0a a a    (Riccati) 
and find a parametrization. 

EXERCISE 3.21: Prove that the infinitesimal contact 
transformations of Example 1.10 admit the injective pa-
rametrization 

3 1 2
3 3

3 3 1 3 2
2 1

,  ,  

.

x

x x

    

     

     

      
 

5. Conclusion 

The mathematical foundations of General Relativity 
leading to Einstein equations are always presented in 
textbooks or papers without any reference to conformal 
geometry. However, comparing the classical Killing eq-
uations to the conformal Killing equations while con-
structing corresponding differential sequences, the Ricci 
tensor appears as the kernel of the canonical projection of 
the Riemann tensor onto the Weyl tensor. After obtaining 
such a result in a purely intrinsic way, that is without 
using indices, we have been able to introduce “diagram 
chasing” in order to relate for the first time electromag-
netism and gravitation to the Spencer  -cohomology of 
the classical and conformal Killing symbols. Accordingly, 
the mathematical foundations of general relativity are not 
coherent with jet theory and must therefore be revisited 
within this new framework along the lines we have 
sketched. Finally, the fact that Einstein equations cannot 
be parametrized, contrary to most other equations of phy- 
sics or engineering, also brings a deep structural question 
on these equations that will have to be solved in the fu- 
ture by means of algebraic analysis. 
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