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ABSTRACT

In this work, we investigate one class of Volterra type integral equation, in model case, when kernels have first order
fixed singularity and logarithmic singularity. In detail study the case, when n = 3. In depend of the signs parameters
solution to this integral equation can contain three arbitrary constants, two arbitrary constants, one constant and may
have unique solution. In the case when general solution of integral equation contains arbitrary constants, we stand and
investigate different boundary value problems, when conditions are given in singular point. Besides for considered in-
tegral equation, the solution found cane represented in generalized power series. Some results obtained in the general
model case.
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1. Introduction

Let T'= {x a<x< b} be a set of point on the real axis
and consider an integral equation

o)+ [ S (2242 . )
“ t—a)|t—a
where  p, (1 <j< n) is given constants, f(x) is
given functionin T and ¢(x) to be found.

In what follows we in detail go into case n = 3. In this
case the Equation (1) accepts the following form

O P = R = i
= f(x).

Integral Equation (1) at p, = 0, p; = 0 is model second
kind Volterra type singular integral equation with left
boundary singular point, theory construction in [1-5]. In
the case, when in (1) p; = 0 Equation (1) investigates in
[6].

As [4,5] the solution to this equation is sought in the
class of function (p(x) € C[a,b] , go(a) =0 with fol-
lowing asymptotic behavior

go(x)=0[(x—a)£}8>0atx—>a. 2)

Copyright © 2013 SciRes.

In this case the integrals in the Equation (1) are im-
proper one. Moreover ¢(a)= f(a)=0 ie. right-hand
side is necessarily zero at x =a.

In this case in Equation (1) p, = p, =0 it investi-
gates in [1]. In this case, in depend from signs p,
( 0, >0,p < O), solution integral Equation (1) is found
in explicit form. In this case at p, <0 homogeneous
integral Equation (1) has one solution and general solu-
tion no homogeneous (1) contains one arbitrary constant
and at p, >0, integral Equation (1) has unique solution.

In case of, when in (1) p;=0, p,#0, p,#0 in-
tegral Equation (1) investigates in [6]. In this case in de-
pend from corresponding characteristic equation obtained
solution integral Equation (1) by two arbitrary constants,
one arbitrary constant. Select the case, when integral
Equation (1) has unique solution. To problems investiga-
tion one dimensional and many-dimensional Volterra
type integral equation with fixed boundary and interior
singular points and singular domains in kernels dedicate
[1-7].

Support that solution integral Equation (1) function
(,/)(x)eC(3)(F). Besides, let in Equation (1) function
f (x) ec? (F) two. Then differentiating integral Equa-
tion (1) three times, we obtained the following third or-
der degeneration differential equation
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Dp(x)+ pDip(x)+ p,D.p(x) pso(x) 3
=D}f(x),
d

- (x=a)-

Homogeneous differential Equation (3) is correspond-
ing to the following characteristic equation

A+ pAp,A+2p, =0. 4)

where D,

2. Representation the General Solution

2.1. The Case, When the Roots of the
Characteristic Equation Real and Different

Let in differential Equation (3) parameters p, (1 <j< 3)
suchthat, the roots of the characteristic Equation (4) real

p(x)=(x—a)" C +(x—a)” C+(x—a)® C, + f(x +—J{ 3(x aj ﬂ«f(x_ajﬁl 3(x_a]1f(t)dt

=K, [CI,CZ,C3,f(x):|

where C; (1 <j< 3) arbitrary constants,

(R
A=Ay Ay A
2

The solutlon of the type (6) obtained in the case, when
f(x)e ct ( ), f(a)=0, solution integral ec}uatlon
(1), function go(x) exist and belong to Class C'

Immedlately testing, we see that, of 4, > 0(1 <j< 3)
f ( ) eCl ( ) f ( ) 0 with asymptotlc behavior

f(x) O|:()C a) ] o, >4,
A=max (4,4, 4)atx —>a

then function (5) satisfied Equation (1).

Be valid the following confirmation.

Theorem 1. Let in integral Equation (1) parameters
D; (1 <j< 3) such that, the roots of the algebraic Equ-
ation (4) real, different and positive, function f (x)e
C(l_"), f(a)zO with asymptotic behavior (7). Then
integral Equation (1) in class of function w(x) € C(F)

(M

o(x)=(x—a)? C,+(x-a)" C;+ f(x +—j{ MF[

=K, [C4’C5»f(x)]

where C,, C;-are arbitrary constants. _
The solution of the type (8) exist, if f(x) € C(F) ,
f (a) =0 with asymptotic behavior

Copyright © 2013 SciRes.

and different. Its denote by A4,,4,,4,. In this case, im-
mediately testing we see that, general solution homoge-
neous differential Equation (2) is given by formula

p(x)=(x—a)" C,+(x—a)" C,+(x-a)" C,,  (5)

where C; (l <j< 3) arbitrary constants.

When, 4, >0(l SjS3) , function (p(x) definable
by formula (5) satisfy homogeneous integral Equation (1).
So, function ¢(x) determined by formula (5) is given
general solution homogeneous integral Equation (1).

For obtained the solution non homogeneous integral
Equation (1), first time use the variation arbitrary con-
stants methods, we use the general solution of the differ-
ential Equation (3). After transformation, we see that, if
solution integral Equation (1) in this case exist, then we
its my be represented in the following form

t—a t—a t—a (6)

= Ao (b =)+ Ado (= 4)+ Ada (A = 4)-

vanishing in point x=a is always solvability and its
solution is given by formula (6), C,; (1 <j S3) are ar-
bitrary constants.

Characteristics 1. Let in integral Equation (1) pa-
rameters p; (1 <j< 3) , function f (x) satisfy any con-
dition of theorem 1.Then, from (6) it follows, the solu-
tion integral Equation (1) ¢(x)e C(l_"), ¢(a)=0 with
following asymptotic behavior

go(x):o[(x—a)’q, w=min(4,4,4),atx —>a.

If, the roots of the characteristic Equation (4) real, dif-
ferentand 4, <0, 4, >0, A; >0, then it follows, from
formula (6) C, =0.

In this case, if exist the solution integral Equation (1),
then it is possible is represent in following form

t—a V' (xma)? s(x-a)|1(0)
] ”z(zj %(Ej }:df @®

f(x)zo[(x_a)éz]’@ > Hys
w =min(4,, 4 )atx —>a

©)
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So, in this case have the following confirmation.

Theorem 2. Let in integral Equation (1) parameters
p; (1< j<3) such that, the roots of the algebraic Equ-
ation (4) real, different and also 4 <0, 4,>0,
>0, f(x)e C(F) ., f(a)=0 with asymptotic be-
havior (9). Then integral Equation (1) in class of func-
tion ¢(x)e C(T) vanishing in point x=a is al-
ways solvability and its solution is given by formula (8),
¢ ( j= 4,5) are arbitrary constants.

Characteristics 2. Let in integral Equation (1) pa-
rameters p, (l <j< 3), function f (x) satisfy any con-
dition of theorem 2. Then, from (8) it follows, the solu-
tion integral Equation (1) (,/)(x) € C(l:), (p(a) =0 with

o(x)=(x-a)’ C, + () +_j[ (
=K, [Co s (x)],

where C are arbitrary constant. _
The solution of the type (10) exist, if f(x) € C(F) s
f (a) =0 with asymptotic behavior

f(x)=o[(x=a)" |, &,>4 at x>a. (1)

So, we proof.

The following confirmation.

Theorem 3. Let in integral Equation (1) parameters
p; (1< j<3) such that, the roots of the algebraic Equ-
ation (4) real, different and also 4 <0, 4,<0,
>0, f(x)e C(F) ., f(a)=0 with asymptotic be-
havior (11). Then integral Equation (1) in class of func-
tion ¢(x)e C(T) vanishing in point x=a is al-
ways solvability and its solution is given by formula (10),
where C, are arbitrary constant.

Characteristics 3. Let in integral Equation (1) pa-

o) sty b 2 [

The solution of the type (12) exist, if f(x) € C(l:) s
f (a) =0 with asymptotic behavior

f(x)zo[(x—a)g],g>0atx—>a (13)

So we proof the following confirmation.

Theorem 4. Let in integral Equation (1) parameters
D; (1 <j< 3) such that, the roots of the algebraic Equ-
ation (4) real, different and positive. The function
f(x) € C(f) , f(a) =0 with asymptotic behavior
(13). Then_integral Equation (1) in class of function
(/)(x) € C(F) vanishing in point x = a have unique so-
lution, which give by formula (12).

Characteristics 4. Let in integral Equation (1) pa-

Copyright © 2013 SciRes.

j +z§(;:‘;

following asymptotic behavior
o(x) =0[(x—a)”2 J, i, =min(4,,4),atx >a

Remark 1. Confirmation similar to theorem 2 ob-
tained and in the following cases:

a) 4,>0, 4, <0, 4,>0;b) 4,>0, 4,>0, 4 <0.

If the roots of the characteristic equation (4) real and
different, 4, <0, 4,<0, A,>0, then from integral
representation (6), follows, that in order that ¢(x) is
solution integral Equation (1) in this case, it is necessary
C, =C, =0. In this case, if exist solution integral Equa-
tion (1), then it will be represented in following form

j A %(%T+@C:Z] k‘(a) .

rameters  p; (l <j S3) , function f (x) satisfy any
condition of theorem 3. Then the solution of the integral
Equation (1) in point x=a vanish and its asymptotic
behavior determined from formula

q)(x):o[(x—a)/l}]atx—)a.

Remark 2. Confirmation similar to theorem 3, ob-
tained and in the following cases:

a) 4,>0, 4,<0, 4,<0;b) 4 <0, 4,>0, 4, <0.

If the roots of the characteristic Equation (4) real, dif-
ferent and 4, <0(1</<3), then from integral repre-
sentation (6) follows, in order that go(x) is solution
integral Equation (1) in this case, it is necessary C; = C;
= (5 = 0. In this case, if exist solution integral Equation
(1), then its will be represented in form

xX—a t

jﬁzﬂs(,__aj/s}f()dt K[ /()] (12)

rameters p; (1 <j< 3) , function f (x) satisfy any con-
dition of theorem 4. Then the solution of the integral
Equation (1) in point x=a vanish and its asymptotic
behavior determined from formula

gp(x):o[(x—a)g],g>0atx—>a .

2.2. The Case, When the Roots of the
Characteristic Equation Real and Equal

Let in integral Equation (1) parameters p; (1 <j< 3) ,
such that, the roots of the characteristic Equation (4) real
and equal.

In this case we have the following confirmation:
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Theorem 5. Let in integral Equation (1) parameters
D; (1 <j< 3) such that, the roots of the characteristic
Equation (4) real, equal and positive, that is 2, =4, =
A =A>0 . Assume that a function f(x) € C(F) s
f(a) =0 with the following asymptotic behavior

f(x)zo[(x—a)ﬁ“], 6,>Aatx —>a.

Then homogeneous integral Equation (1) in class of

N. RAJABOV

function (p(x) € C(l_") vanishing in point x=a, have
three linear independent solutions the type
0. (x)=(x-a)", ¢,(x)=(x~a) In(x~a).
0, (x)=(x—a)" In*(x—a).
Non homogeneous integral Equation (1), always solv-

able. Its general solution contain three arbitrary con-
stant and given by formula

(p(x):(x—a)l [Cl +In(x-a)C, +1n’ (x—a)C3]+f(x)

A
X - - - t
+ij{6+6/11n(x “szlnz(’“ “H(’C aj S 4
29 t—a t—a t—a) t-a

EK; I:Clsczscl’-f(x):l’

Were C; (1 <j< 3) -arbitrary constants.

Characteristics 5. In this case, when in integral Equa-
tion (1) parameters p; (l Sjs3), function f(x) sat-
isfy any condition of theorem 5, then solution integral
Equation (1) in point x=a vanish and its asymptotic
behavior determined from formula

go(x):f(x)+%jr[6+6/lln(x_aj+/12 1n2(

Y t—a
The solution of the type (15) exist, if f(x)e C(l:) ,
f(a)=0 with the following asymptotic behavior

f(x)zo[(x—a)g}, >0, at x >a. (16)

So in the case, when A =4, =1, =1<0, proof the
following confirmation.

Theorem 6. Let in integral Equation (1) parameters
p; (1 <j< 3) such that, the all roots of the characteris-
tic Equation (4) real, equal and negative, that is A, = A,
=4 =A<0. Assume that a function f(x)e C(f‘) ,
f(a) =0 with the asymptotic behavior (16). Then, in-
tegral Equation (1) in class C (F ) have unique solution
and give by formula (15).

Characteristics 6. In this case, when fulfillment any
condition theorem 6, then solution integral equation in
point x=a vanish and its asymptotic behavior deter-
mined from formula

w(x)zo[(x—a)g], >0, at x> a.

(14

A-g
o(x)=o[ (x-a)"].
>0, atx > a.
From integral representation (14) follows. If solution
integral Equation (1) at 4, =4, =4, =4<0 exist, then
we may be represented it’s in form

x_aﬂ(t_ajﬁf(t)d’ (15)
t—a xX—a t—a

2.3. The Case, When One Roots of the
Characteristic Equation Real and Two
the Roots of the Characteristic Equation
Complex and Conjugate

K[ /()]

Let in integral Equation (1) parameters p, (1< /<3)

such that, the one roots of characteristic Equation (4) real
and two the roots of the characteristic equation complex
conjugate. Correspondingly its denote by 4, A4, = A+iB,
Ay, =A—iB. When A, >0,4>0, then by this roots cor-
responding following particular solution homogeneous
integral Equation (1):

0, (x)=(x-a)",
o (x)=(x—a)’ cos| Bln(x—a)]
o, (x)=(x—a)" sin[ Bln(x—a)].

In this case, if solution integral Equation (1) exist, then
it will be represented in form

(amn

¢)(x):(x—a)l‘ C +(x—a)A [CZ cos[Bln(x—a)]+C3 sin[Bln(x—a)ﬂ+f(x)

17 3 X—d 5 x—a
el e R
EK;[Cl,C27C3’f(x):|

Copyright © 2013 SciRes.

jA D, sin{Bln(::zﬂ+D2 cos[Bln(:__Z H} f_(ta) dt

(18)

AM
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where

A, =2A4BA - A'B—B(4’ +B*)#0,
D =B'-A'- A} (3B - 4°),
D, =24B( 4’ +B*)+ B4 (B -34°).

The solution of the type (18) exist, if 4 >0, 4>0,
f(x)eC (F) , f(a)=0 with the following asymptotic
behavior

f(x)=o0|(x=a)" |, & >max(2,4) at x>a. (19)

So in this case we have the following confirmation.

Theorem 7. Let in integral Equation (1) parameters
p; (1 <j< 3) such that, one the roots of the character-
istic Equation (4) real positive, two out of its complex
conjugate (A, = A+iB, A, = A—iB). Besides let
A=Reall, >0.

Assume that a function f(x) € C(l:), f(a) =0 with
asymptotic behavior (19). Then homogeneous integral
Equation (1), in class C(F) vanishing in point x=a,
has three linear Independent solution of the type (17).
Non homogenous integral Equation (1) always solvable,
its general solution contain three arbitrary constants and
given by formula (18), where C, (lSjS3) -arbitrary
constants.

Characteristics 7. In the case, when fulfillment any
condition theorem 7, then solution integral Equation (1)
in point x=a vanish and its behavior determined from
following asymptotic formula

¢)(x):o[(x—a)56} 8, >min(4,A) atx - a.

From integral representation (18) follows, if the roots
of the algebraic Equation (4) satisfy condition of the
theorem 7, besides 4, >0, 4>0. If 4, <0, 4>0,
then if exist solution integral Equation (1) in this case,
then its represented in following form

p(x)= (x—a)A [CQ cos[Bln(x—a)]+ C, sin[Bln(x—a)ﬂ +f(x)

- M{B(;__ZJ{;C:ZMD Sin{Bln(f:Zﬂ+D2cos{Bln(f:zjﬂ}%dt 20)

=K |:C2,C3,f(X)}

In this case for convergence integrals in right part (20),
necessary [ (x)e C(F) , f(a)=0 with asymptotic
behavior

f(x)=0[(x—a)57], 6, >Aatx >a. 2n

So, we proof. the following confirmation.

Theorem 8. Let in integral Equation (1) parameters
D; (1 <j< 3) satisfy condition theorem 7, besides A, >
0, A>0. Let A4 <0, A4>0. Function f(x)eC(l:),
f (a) =0 with asymptotic behavior (21). Then homo-
geneous integral Equation (1), in class C (F ) vanishing
in point x =a , has two linear Independent solution

@, (x)= (x—a)A cos[Bln(x—a)] ,
o, (x)=(x-a)" sin[ Bln(x—a)].

Non homogenous integral Equation (1) always solv-
able and its general solution from class C (F) is given
by formula (20), where C; (2Sj£3) -arbitrary con-
stants.

Characteristics 8. In the case , when fulfillment any
condition theorem 8, then solution integral Equation (1)
in point x=a vanish and its behavior determined from
following asymptotic formula

¢)(x)=0[(x—a)q atx—>a.

Now suppose, that the roots of the algebraic Equation
(4) satisfy condition of the theorem 7, besides 4, >0,
A>0.Let 4, >0, A<0. Then, if exist solution inte-
gral Equation (1) in this case, then its represented in fol-
lowing form

o(x)=(x-a)"C +f(x)—ALOHAfB (%)AI +(;:‘;jA [Dl sin {Bln(::Zﬂ+D2 co{Bln(f:;’ jﬂ} {_(ta) d )

=K, [Cl,f(x)].

In this case for convergence integrals in right part (22),
necessary [ (x)e C(F) , f(a)=0 with asymptotic
behavior

Copyright © 2013 SciRes.

f(x)zo[(x—a)dg} O > A atx > a. (23)

So, we proof. the following confirmation.
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Theorem 9. Let in integral Equation (1) parameters
D; (1 <j< 3) satisfy condition theorem 7, besides 4 >
0, 4>0. Let 4 >0, A<0. Function f(x)eC(F),
f(a)=0 with asymptotic behavior (23). Then homo-
geneous integral Equation (1), in class C (F) vanishing
in point x = a, one solution @, (x) =(x—a)/11 . Non ho-
mogenous integral Equation (1) always solvable and its
general solution from class C (F) is given by formula

(22), where C, -arbitrary constant.
Characteristics 9. In the case, when fulfillment any

I

In this case for convergence integrals in right part (24),
it is sufficient f(x) € C(F) , f(a) =0 with asymp-
totic behavior

t—a

o(x)

t—a
—-a

X X

oo
=K, [f(x)}

f(x)zo[(x—a)g}, £>0,at x > a. (25)

So, we proof. the following confirmation.

Theorem 10. Let in integral Equation (1) parameters
D; (1 <j< 3) satisfy condition theorem 7, besides 2, >
0, 4>0. Let 4, <0, A<0. Function f(x)eC(T),
f (a) =0 with asymptotic behavior (25). Then integral
Equation (1), in class C(F) vanishing in point x=a,
have unique solution, which given by formula (24).

Df(;)(x):ﬂl(x—a)ﬂ‘ C, +12(x—a)l2 C,+ A (x—

o

N. RAJABOV

condition theorem 9, then solution integral Equation (1)
in point x=a vanish and its behavior determined from
following asymptotic formula

¢)(x):0[(x—a)i' J,
atx —>a

In the case, when A4, <0, 4<0, then from integral
representation (18) follows, that, if exidt solution integral
Equation (1) in this case, then it is possible in following

)l

Characteristics 10. In the case, when fulfillment any
condition theorem 10, then solution integral equation (1)
in point x=a vanish and its behavior determined from
following asymptotic formula

X—a

ﬂmz BH_

t—a

X—a

£(0)

t—a

dr

—a

24

¢(x)=o[(x—a)1, e>0atx—>a

3. Property of the Solution

Let fulfillment any condition of the theorem 1. Differen-
tiating the solution of the type (6), immediate verification,
we can easily convince to correctness of the following
equality:

a)® C,+ D f (x)

3,23, 43 1o afx—a A J(x-a X J(x—a 8 fl(t (26)
+ﬁ1 +220+;L3 f(x)+A—L{ﬂ1 (EJ + (:) + (:j L_(a)dt,
where D! =(x—a)%.
In an analogous way differentiating the expression (26), we have
(D) 0(x) =4 (v=a)" G+ 2 (x=a)* 23 (x=a)” €+ (2] £ (x)+ 22225 i ()
4 4 4 1 A . i Of(t) 27)
O M R s
From Equality (6), (26), (27) we find
¢ =il () o) (2 2)D20(3) 20 () ]| = 2B im o), 29)
¢, =B il icmay (1) o) (3 20010 20 (0) | =B i), 9
€= BBl ey [(02) o(3) (2 + ) D20(5) ()] | = B im0
AM

Copyright © 2013 SciRes.
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Differentiating the solution of the type (8), immediate verification, we can easily convince to correctness of the fol-
lowing equality:

Do (x)= 4 (x—a)? C,+ 2 (x—a)" C, +D;’f(x)+ﬂ“+Aﬂf(x)

€1y
! 4 X—a & 4 X—a - f(t)
+—f{ (R = Rty }:d‘
From equality (8) and (31) we find

-1. 4
C :A_}EZ{(X a)’ [cho(X)—ﬂa(ﬂ(X)]}=A—011513Tx¢(X)’ (32)

1 .. 25 a 1. s
CS:A—O£1£1{}{(x—a) ’[Dx(p(x)—/ﬁtz(/?(xﬂ}:A—OEET;:(P(X)- (33)

From integral representation (10) it follows that if parameters p, (1< j<3) and function f(x) in Equation (1)
satisfy all condition of theorem 3, then the solution of the type (10) has the property

[(x-a)"0(x)] =c,. (34)
From integral representation (14) it follows that
qu)(x)z(x—a)‘[ﬂcl+(1+/11n(x—a))C +(21n(x a)+An’(x C3]+D“
(35)
A - 3.2 AT
+3/1f(x)+5L{12/1+8/11n(j_§j+/1 In (;‘_Zﬂ(i a] {()
(D) p(x)=(x—a)' [ 22C, +(24+ 2 In(x=a)) C, +(2+42In(x—a) + 2> In* (x—a)) C; |+ D (x)+ 34D f ()
X—a xX—a * f(t) (36)
+22f (x —j [8/1+12/12 (8/12+2/13)1n(—J+/141n2[ ﬂ[ j dr.
t—a t—a t—a t—

Using the formulas (14), (35) and (36), we easily see that, when fulfillment any condition of theorem 5, then solution
of the type (14) has the following properties:

C = {}_i_r)ral(x—a)_l [ln2 (x—a)((o(x))—21n(x—a)(1+1n(x—a))(Df )2

(37)
-D? (gp(x))+(2+ 2AIn(x—a)-2A"In? (x—a))¢(x)]} = lrlilz':]jf (o(x))
C, = —iiz)rg{(x—a)_l [21n(x—a)(D)‘cZ )2 (o(x))-(2+2In(x—a)
(38)
(22-1)+1n’ (x—a)(/i2 —A)Df (¢7(x))+(2/1+2/12 ln(x—a))go(x)]} = _,IYTJT; (o(x))
¢, =timf(r—a) “[ (D7) (p() ~24D% (p(x)) + () | =timT (o (). (39)
From integral representation (18) it follows that
Dip(x)=4 ()c—a);bl C +(x—a)A :
{[Cz (Acos[Bln(x—a)]—Bsin[Bln(x—a)]) +C, (Asin[Bln(x—a)]+Bcos[Bln(x—a)])]}—%f(x)+Df’f(x)

U%HW{::ZT{: aj [(AD DB)sm[Bln[t_::j}r(ADz+DIB)cos{Bln(%jﬂ}{T(2dt, (40)

Copyright © 2013 SciRes. AM
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(D) ¢(x) =4 (x=a)’* €, +(x=a)"{[ &, ([ 4~ B Joos[ BIn(x~a)]~24Bsin BIn(x~a)])

+C3 ([A2—32]+2AB Sin[Bln(x—a)]+BCOS|:Bln(x—a):|):|}
x—ajil+(x—a)A (41)
t—a t—a

AP D, p () AP e () fff(x)‘ﬂ{”“*(
£~ B\ —24D,8)sin Bin[ =9+ ([ 4 - 8 |D, +24D.B)cos BIn[ 2= | 1L,
(L 2am (2 [ 2amafesin( 2 1

AO A0
t—a

Using the formulas (18), (40) and (41), we easily see that, when fulfillment any condition of theorem 7, then solution
of the type (18) has the following properties:

G :Aiom{(x-a)ﬂl [B(D2) p(x)-248Dp(x)+ B( 4 +BZ)¢(x)]}EAanT1°( (x). @

C, :ilim{(x—a)% [(Df )2 (/J()c)|:(/i1 —A)sin[Bln(x—a)]—BcosB[ln(x—a)ﬂ

A, ¥a

+Df¢)(x)[{A2—Bz—ﬂqz}sin[Bln(x—a)}+2ABcos[Bln(x—a)]]+(p(x). (43)

[{quA—/?q(Az_BZ)}sin[Bln(x—a)]-i-{ﬂ,fB—2AB}cos[Bln(x—a)ﬂz%&%@l(w(x)),
C3=Aiolr1£rj{(x a) l:(Df)zgo(x)[(A—/@)cos[Bln(x—a)]—Bsin[Bln(x—a)]]

_D‘f(p(x)[{Az -B? —ﬂf}cos[B In(x —a)}+2AB sin[B In(x —a)ﬂ -o(x). (44)

[{,11214_11(/12—BZ)}COS[Bln(x_a)]—{%ZB_ZAB}COSBDH(’C_“)H—A—£EET‘2(¢(X)),

Differentiating the solution of the type (20), immediate verification, we can easily convince to correctness of the fol-
lowing equality:

ngo(x) = (x—a)A [Cz (Acos[Bln(x—a)]—Bsin[Bln x—a)])

+C,(4sin Bin(x—a)]+ Beos[ BIn(x-a)]) |- %BAJ;DZf( x)+ D7 f(x)
——I{ (r aj (j:sz{(ADl_BDz)sin{Bln(j__Zj}r(ADz+BD)cos{Bln(z ﬂ}{(a)

(45)

Using the formulas (20) and (45), we easily see that, when fulfillment any condition of theorem 8, then solution of
the type (20) has the following properties:

C, :llim{(x—a)fA [Asin[Bln(x—a)]+ Bcos[Bln(x—a)}(p(x)—sin[Bln(x—a)Jngp(x)]}

B x—a (46)

1
= lim7” (¢(x)).

C, = llim{(x—at)fA [—[Acos[Bln(x—a)]+ Bsin[Bln(x—a)]go(x)+cos[Bln(x—a)]ngo(x)ﬂ} w

Copyright © 2013 SciRes. AM
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From integral representation (22) it follows that if pa-
rameters p, (1< j<3) and function f(x) in equation
(1) satisfy all condition of theorem 9, then the solution of
the type (22) has the property

[(x=a) " o(x)| =0 (48)

4. Boundary Value Problems

When, the general solution constants, arbitrary constants
higher mentioned properties of the solution the integral
Equation (1) give possibility for integral Equation (1) put
and investigate the following boundary value problems:

Problem N;. Is required found the solution of the in-
tegral Equation (1) from class C(l:) , when the roots the
algebraic Equation (4) real, different and positive by
boundary conditions

[T:(D(X)J =4

xX=a

[Tlp(x)] =4, (49)

x=a

[TS(P(X)] =4,

x=a

where A, A1», Aj3-are given constants.

Problem N. Is required found the solution of the in-
tegral Equation (1) from class C(F) , when the roots the
algebraic Equation (4) real, different and also A4, <0,
A, >0, A, >0, by boundary conditions

|:TX4¢(X):L_:(1 =4,
[Tf(ﬂ(x)l:a =4y,

where A,;, Ay-are given constants.

Problem Ns. Is required found the solution of the in-
tegral Equation (1) from class C(F) , when the roots the
algebraic Equation (4) real, different and also A4, <0,
A, <0, A, >0 by boundary conditions

[(x-a)" o(x)]|

where A3;-are given constant.

Problem Nj,. Is required found the solution of the in-
tegral Equation (1) from class C(F) , when the roots the
algebraic Equation (4) real, equal and positive, that is
A =4 =4,=1>0 by boundary conditions

|:TX6§D(x):|x:a =4,
|:T;(0(x)lta =4, (52)
[Tio(x)]_ =4,

where Ay, A4, Asz-are given constants.

Problem Ns. Is required found the solution of the in-
tegral Equation (1) from class C(F) , when the one roots
of the algebraic Equation (4) real positive, two out of its

(50)

Ay (51

=a

Copyright © 2013 SciRes.

complex-conjugate. Besides 4 =Reall, >0, by bound-
ary conditions

[To(x)] =4
= Asz (53)

[7C0(x)]
[TVo(x)] =4,

where A5, Asy, Asz-are given constants.

Problem Ng. Is required found the solution of the in-
tegral Equation (1) from class C(F) , when the one roots
of the algebraic Equation (4) real positive, two out of its
complex-conjugate. Besides 4, <0, 4 =Reald, >0, by
boundary conditions

[TJZ@(X):L:[; = 4g
[TPp(x)] =4,

where Ag;, Agp-are given constants.

Problem Nj. Is required found the solution of the in-
tegral Equation (1) from class C(F) , when the one roots
of the algebraic Equation (4) real positive, two out of its
complex-conjugate. Besides, 4, >0, 4=Reall, <0, by
boundary conditions

[(x—a)fi] go(x)l_:a =4,, (55)

(34

where A7;-are given constant.

Solution problem Nj. Let fulfillment any condition of
theorem 1. Then using the solution of the type (6) and its
properties (28)-(30) and condition (49), we have

G :(%_%)Amcz :(/11 _/%)AlzsCQ :(%_%)Am

A, A A,

Substituting obtained valued C;, C, and C; in formula
(6), we find the solution of problem N, in form

o(x)

:Kl.{(ﬂg—ﬂz)/lm(ﬂq—ﬂs)Am(ﬂz—ﬂs)
A0 A0 A0

AB,f(x) .

(56)

So, we proof.

Theorem 11. Let in integral Equation (1) parameters
p; (l <j< 3) , function f(x) satisfy any condition of
theorem 1. Then Problem N, has a uniquesolution which
is given by formula (56).

Solution problem N,. Let fulfillment any condition of
theorem 2. Then using the solution of the type (8) and its
properties (32), (33) and condition (50), we have:

1 1 - .
C, = X 4,, Cs= A_A22 . Substituting this valued Cj,

0 0
Cs in formula (8), we find the solution of problem N, in
form

AM
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o(x)=K; {—iAzpiAzz,f(x)}. (57)
A0 A0

So, we proof.

Theorem 12. Let in integral Equation (1) parameters
D; (1 <j< 3) , function f(x) satisfy condition of
theorem 2. Then problem N, has unique solution which is
given by formula (57).

Solution problem Nj. Let fulfillment any condition of
theorem 3. Then using the solution of the type (10) and
its properties (32) and condition (51), we have: C; = 4;,.
Substitute this valued Cg in formula (10), we find theso-
lution of problem Nj; in form

(p(x)zK; [Awf(x)]- (58)

So, we proof.

Theorem 13. Let in integral Equation (1) parameters
p; (1 <j< 3),ﬁmction f(x) satisfy condition of Theo-
rem 3. Then problem N; has unique solution, which is
given by formula (58).

Solution problem N,. Let fulfillment any condition of
theorem 5. Then using solution of the type (14) and its
properties (37)-(39) and condition (52), we have: C, =
4,, C,=4,, C =4, Substituting this valued C,,
C, and C, in formula (14), we find thesolution of
problem N, in form

o(x)=K; [A41’A42’A43»f(x)}- (59)

So, we proof.

Theorem 14. Let in integral Equation (1) parameters
D; (1 <j< 3),function f(x) satisfy condition of theo-
rem 5. Then problem Ny has unique solution, which is
given by formula (59).

Solution problem Ns. Let fulfillment any condition of
theorem 7. Then using solution of the type (18) and its
properties (42)-(44), and condition (53) we have:

C :ALAH , C, :ALA52 , G :LA53 . Substituting

0 0 0
this valued C;, C, and C; in formula (18) we findthe so-
lution of problem Ns in form

o(x)=K; [ Ay, Ay, Ay, f (x) ] (60)

So, we proof.

Theorem 15. Let in integral Equation (1) parameters
D; (1 <j< 3) , function f(x) satisfy condition theorem
7. Then problem Ns have unique solution, which is given
by formula (60).

Solution problem Ng. Letfulfillment any condition of
theorem 8. Then using solution of the type (20) and its
properties (46), (47) and condition (54) we have:

1 1 o .
C, = EAM , = EAGZ . Substituting this valued C, and

Copyright © 2013 SciRes.

C; in formula (20) we find the solution of problem Ny in
form

o (x) =Ky [ 4 4 /(%) ]- (61)

So, we proof.

Theorem 16. Let in integral Equation (1) parameters
p; (l <j< 3) , function f(x) satisfy condition theorem
8. Then problem Ng have unique solution, which is given
by formula (61).

Solution problem N;. Let fulfillment any condition of
theorem 9. Then using solution of the type (22) and its
properties (48) and condition (55) we have: C, =4,,.
Substituting this value C; in formula (22) we find the
solution of problem N5 in form

(P(x):K; [Aﬂaf(x)]' (62)

So, we proof.

Theorem 17. Let in integral Equation (1) parameters
p; (1 <j< 3) , function f(x) satisfy condition theorem
9. Then problem N, have unique solution, which is given
by formula (62).

5. Presentation the Solution of the Integral
Equation (1) in the Generalized Power
Series

Suppose that f(x) has uniformly convergent power
series expansion on I :

f(x)=2r (x=a)7 fi, (63)

where y =constant >0 and f;, £=0,1,2,---, are given
constants. We attempt to find a solution of (1) in the
form

p(x)=Y (x—a) 7 o (64)

where the coefficients, ¢, (k=0,1,2,---) are unknown.

Substituting power series representations of value
f(x) and ¢(x) into (1), equating the coefficients of
the corresponding function, and for ¢, , we obtain

(k+;/)3 7
(k+7) +p,(k+y) +p, (k+y)+2p, o (65)
k=0,1,2,3,--.

If (k+}/)3 +p (k+)/)2 +p,(k+y)+2p;#0 for in
all k=0,1,2,---, putting the found coefficients back into
(64), we arrive at the particular solution of (1).

O =

~ B (k+7/)3
(k+7) +p,(k+7) +ps(k+7)+2p, "
(66)

If, for some values k=k, k=k, and k=k,, con-

AM
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stants 7, p; (1 <j< 3) satisfy

(k+)/)3+pl(k+}/)2+p2(k+}/)+2p3 =0,

then the solution to integral Equation (1) can be repre-
sented in the form (64) it is necessary and sufficiently
that fk =0, j=1,2,3, that is, it is necessary and suf-
ﬁ01ently that function f ( ) in point x=a satisfies

the following three solvability condition
k
[[(x—a)‘7 f(x)J( ’)} -0, j=1,2,3. (67

In this case the solution of the integral Equation (1) in
the class of function can be represented in form (64) is
given by formula

(k-i—}/)3

o(x)=2, (x=a)”

(k+}/)3+p1(k+}/)2+p2(k+}/)+2p3 g

(k+;/)3

+ 2 a(v=a)”

(k+}/)3+p](k+}/)2+p2(k+}/)+2p3 * (68)

(k+}/)3

Y alx-a)”

+o, (x—a)k‘ +, (x—

where ¢, , ¢, ¢, arbitrary constants.

Immediately testing it we see that, if converges radius
of the series (63) is defined by formula R =% ,
|f;1+1 |

n

/=1lim

n—0

, then converges radius of the series (66),

(68) are also defined by this formula. So, we prove the
next result.

Theorem 18. Let in integral Equation (1), function
f (x) represent in formuniformly-converges general-
ized power series type (63) and

(k+}/)3+p1(k+}/)2+p2(k+7/)+2p3 #0,

for k=0,1,2,---. Then integral Equation (1) in class of
function (p(x) represented in form (64) has a unique-
solution, which is given by formula (66). For values
k=k,, j=123,

(k-i—)/)3+pl (k+7)2+p2(k+7/)+2p3 =0,

the existence of the solution of Equation (1) can be rep-
resented in form (64) it is necessary and sufficiently ful-
fillment three solvability condition type (67). In this case
integral Equation (1) in class of function represented in
form (63) is always solvability and its general solution
contain tree arbitrary constants and is given by formula
(68).

6. General Case

In general case to integral Equation (/) corresponding the

following algebraic equation
A"+ p AT+ p, AT 21 p A n
+31p, A" 4+ (n=1)p, =0.

Copyright © 2013 SciRes.

(k+7/)3+p1 (k+7/)2+pQ(k+;/)+2p3 g

a)kz +o, (x—ot)k3

Some results obtained in the general case to. Example
in the case, when the roots of the Equation (/) real, dif-
ferent and positive have the following confirmation.

Theorem 19. Let in integral Equation (I) parmeters
p; (1 <j< n) such that, the roots of the algebraic Equa-
tion (II) real, different and positive, function f (x) €
C(I:) s f(a) =0 with asymptotic behavior

f(x)zo[(x—a)él} o, >4,
A=max (4,4, ,4,) atx >a,

Then integral Equation (1) in class of function go(x) €
C(F) vanishing in point x=a is always solvability
and its solution is given by formula

o(x)=X (x-a)" C,
+f(x) I{Zilzs(t_aj }f(’)dr W
C,of (x)].

where C,(1<k <n)-arbitrary constants,
L1 1
Ay 4,
jqz g; e Q2

=K, [C.C,,C;,

n-1 n-1 n-1
ﬁ“l > ﬂ‘Z ERRE ﬂ’n

7. Conclusions

So, in this article we consider new class Volterra type
integral equation, which no submitting exists Fredholm
theory (Theory Volterra type integral equation in class

AM
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C (l_") , L, (1:) ), that is for this type integral equation,
homogeneous integral equation may have non-zero solu-
tion. In particular in certain cases (Example, when all
roots of the characteristic Equation (4) or (I/) real, dif-
ferent negative or real, equal and negative) the theory
this type integral equation coincides to the theory Fred-
holm integral equation.

By means methods (example [5]) in the theory one
dimensional singular integral equation, problem finding

the solution general equation

o(x)+ I:[ZZ,-l K, (x)In"" [%ﬂ ?—(2 “
= f(x),

reduces to finding solution Volterra type integral equa-
tion with weak singularity. On this basis, in depend from
roots of the algebraic equation

A"+K (a,a) A" +K, (a,a) A" + 21K, (a,a) A" +31K, (a,a) A" +---+(n-1)!K, (a,a) =0, 4

K, (a,a)#0(1<m<n), select cases, when general so-
lution equation contains n,n—1,n—2,---,1 arbitrary
constants, and cases when Equation (/) has unique solu-

o(x)+ j:{z; K, (a,a)ln’"l(

where

tion.
In this case, integral Equation (7V), we represented to
following form

ﬂﬂﬂmzm), @)

t—a

t—a

F(x)= £ (x)- L‘{z; (K, (1)~ K, (a.0)) 0™ (ﬂﬂﬂ’)m | Wi

According to the mentioned above, writing the solu-
tion integral Equation (V) in depend to the roots of the
characteristic Equation (V) or (/I), after substituting for
F (x) from formula (V1) we arrive at the solution of the
new type integral equation. At specific condition to func-
tions K, (x,t)—Km (a,a) and f(x) this integral equ-
ation will be Volterra type integral equation with weak
singularity in point = a. In this basis the problem inves-
tigation integral Equation (/V), reduce to problem inves-
tigation Volterra type integral equation with weak singu-
larity in point x=a .
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