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ABSTRACT 

Insulin resistance, closely linked to inflammation, is recognized as a key factor in the onset and aggravation of diabetes, 
cardio-renal syndrome, hypertension, and obesity. In the renal proximal tubule, insulin resistance may increase renal so- 
dium reabsorption, leading to hypertension, edema and sometimes heart failure. Recently some anti-diabetic agents 
have been shown to have effects on the transporters in renal proximal tubule. Because renal proximal tubule mediates 
about 70% of sodium reabsorption, it is quite important to clarify the function of renal proximal tubule under insulin 
resistance and inflammation. 
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1. Introduction 

The relationship between inflammation and diabetes had 
been described long ago by the fact that anti-inflamma- 
tory drugs such as salicylates decrease blood glucose 
level [1]. About more than a century ago sodium salicy- 
late was known to reduce or totally eliminate the diabetic 
symptoms [2,3]. Only recently the relationship between 
inflammation and insulin resistance began to be investi- 
gated vigorously, when Hotamisligil et al. [4] found that 
a proinflammatory factor tumor necrosis factor (TNF)-α 
could induce insulin resistance. Karasik et al. [5] re- 
ported that TNF-α suppressed insulin-induced tyrosine 
phosphorylation of insulin receptor and its substrates, 
resulting in attenuated insulin effect and insulin resis- 
tance. 

To date there seems to be mainly two ways from in- 
flammation to insulin resistance [1]. One is c-Jun N- 
terminal protein kinases (JNK) pathway [6,7], which, 
through the activator protein 1 (AP-1) transcription factor 
in the nucleus, enhances the transcription of inflamma- 
tory genes. JNK pathway also induces serine phosphory- 
lation of insulin-related substrate (IRS-1) [8-11]. Phos- 
phorylated IRS-1 itself induces insulin resistance by di- 
rect blocking of insulin signaling pathway through IRS-1 
[10,11]. Recently Davis et al. showed that obesity-in- 

duced insulin resistance and inflammation are promoted 
by JNK in macrophage [12]. They produced mice with 
selective JNK deficiency in macrophages, which showed 
improved insulin sensitivity under high-fat diet. 

The other is via IκB kinase-β (IKKβ)/NFκB pathway 
[13]. The signals from proinflammatory factors such as 
TNF-α and interleukin (IL)-1, via IKKβ complex, acti- 
vate NFκB complex. Then NFκB works as a transcription 
factor [1]. NFκB is a primary regulator of inflammatory 
response [14] and requires IKKβ for its activation [15]. 
IKKβ has been shown to link inflammation to obesity- 
induced insulin resistance [16]. IKKβ/NFκB pathway is 
triggered by PI3K/AKT signaling [17-19].  

These pathways inducing insulin resistance are trig- 
gered by such factors as TNF-α, IL-1, endoplasmic re- 
ticulum (ER) stress, oxidative stress, and lipids [1]. The 
details of the pathways from these factors to the emer- 
gence and aggravation of insulin resistance still remain to 
be clarified. Figure 1 summarizes the main pathways 
from inflammation to insulin resistance. 

2. TNF-α and Sodium Reabsorption in 
Nephron 

TNF-α was originally discovered as an anti-tumor factor 
[20,21]. At first TNF-α was thought to be produced only 
by immune cells [22,23]. Now epithelial cells and endo-  *Corresponding author. 
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Figure 1. The major pathways from inflammation to insulin 
resistance. This figure focuses on the two main pathways 
dependent on JNK or IKK. 
 
thelial cells have been also found to produce TNF-α [24]. 
TNF-α is generated by tubular epithelial cells and me- 
sangial cells in the kidney [25-27]. 

The receptors of TNF-α consist of two major subtypes; 
TNFαR1 (p55) and TNFRα2 (p75) [28,29]. In the kidney 
TNFαR1 is predominantly expressed in renal vessels and 
glomeruli, while TNFαR2 is expressed mainly in renal 
tubules [30].  

The role of these two receptors is not clear, although 
TNFαR1 may mediate the cytotoxic and inflammatory 
responses of TNF-α, while TNFαR2 may mediate protec- 
tive effects of this cytokine [31,32]. For example, in car- 
diomyocytes TNFαR1 mediates ischemic injury, whereas 
TNFαR2 mediates cardioprotective effects of TNF-α [33, 
34]. In the kidney TNFαR1 is supposed to mediate acute 
renal vasoconstriction and natriuresis in response to high 
dose of TNF-α [35].  

Using TNFαR1 or TNFαR2 knockout (KO) mice Ma- 
jid and colleagues showed that these receptors play dif- 
ferent roles in renal hemodynamic and natriuretic re- 
sponses to high dose of TNF-α infusion [35]. After TNF- 
α infusion, the mean arterial pressure slightly decreased 
from the baseline but renal vascular resistance increased 
in WT mice. In both KO mice the blood pressure also 
decreased, while urinary Na+ excretion increased in WT 
and TNFαR2 KO mice but did not change in TNFαR1 
KO mice. These results indicate that TNFaR1 mediates 
the natriuretic response to high-dose TNF-α. 

By contrast, the chronic inflammatory effects of 

lower-dose TNF-α in the kidney was shown to be medi- 
ated by TNFαR2 [36]. Gesek and colleagues showed that 
chronic TNF-α exposure induced sodium retention by 
activating ENaC in diabetic rats [37]. They also reported 
that chronic exposure to low-dose TNF-α stimulates Na+ 
uptake in isolated rat distal tubule cells [38]. In LLC- 
PK1 cells, the model of renal proximal tubule (PT) cells, 
TNF-α stimulates Na+-K+-ATPase [39]. TNFαR1−/− mice 
showed enhanced tubular Na+ reabsorption in response to 
chronic angotensin II infusion, suggesting that upregula- 
tion of TNFαR2 could contribute to this renal response 
[40]. TNF-α might be one of the therapeutic targets in 
hypertension and its complications. 

3. IRS-1, Insulin Resistance and Renal 
Proximal Transport 

PT plays important roles in the regulation of acid-base 
and electrolytes homeostasis [41-43]. As for acid-base 
homeostasis, the Na+- 3  cotransporter NBCe1 in 
the basolateral side and the Na+/H+ exchanger NHE3 in 
the apical side of the PT are mainly involved in Na+ cou- 
pled 3

HCO

HCO  reabsorption. Na+-K+-ATPase gives a driv- 
ing force for Na+ reabsorption. Insulin is known to be 
uptaken into proximal tubule [44-46]. Insulin enhances 
sodium reabsorption from PT [47,48] by stimulating 
NHE3 [49], Na+-K+-ATPase [50-52], and NBCe1 [53]. 

By using IRS-1 and IRS-2 knockout mice we have 
clarified [54] that the stimulation of proximal transport 
by insulin is mediated by IRS-2, not by IRS-1. Signal 
transduction via Akt, which is thought to mediate the 
effect of insulin in proximal tubule, is preserved in IRS-1 
KO mice but attenuated in IRS-2 KO mice. In insulin 
resistance signal transduction via IRS-1 is frequently 
attenuated [55-58]. IRS-2 dependent stimulation of so- 
dium absorption from PT may play an important role in 
the occurrence of hypertension in insulin resistant status. 
We recently confirmed that the stimulatory effect of in- 
sulin on Na+ absorption from PT is preserved in rats and 
human species with insulin resistance (“Stimulatory Ef- 
fect of Insulin on Renal Proximal Na Transport Is Pre- 
served in Insulin Resistance” 2012 Annual Meeting of 
American Society of Nephrology).  

These results strongly suggest that in insulin resistance 
the stimulatory effect of insulin on PT transport is pre- 
served via IRS-2. While defects in IRS-1 dependent sig- 
naling in insulin resistance may induce impaired vaso- 
dilation [59], IRS-2 dependent sodium retention from the 
kidney may play an important role in the onset and ag- 
gravation of hypertension in diabetes. 

4. Insulin Resistance and Distal Tubules 
Transporters and Kinases 

Insulin also acts on distal tubule, where Na+-Cl− co- 
transporter (NCC) is located in the luminal side. NCC is 
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regulated by with-no-lysine (WNK) kinase oxidative 
stress-responsive kinase-1 (OSR1)/STE20/SPS1-related 
proline-alanine-rich kinase (SPAK) system [60].  

WNK was originally discovered as a serine-threonine 
kinase with an atypical lysine alignment [61]. WNK has 
five subtypes, WNK1, WNK2, WNK3, WNK4 and tran- 
script variant of WNK1, KS-WNK [62]. The mutations 
in WNK kinases cause Gordon syndrome (also known as 
familial hyperkalemic hypertension, FHH or pseudohy- 
poaldosteronism type II, PHAII) [63].  

At first WNK4 was thought to suppress the NCC ac- 
tivity by reducing its expression in the plasma membrane 
[63-67]. WNK1 was shown to suppress WNK4 but not 
directly inhibit NCC [65,67]. On the other hand, disrup- 
tion of WNK4 gene was shown to decrease phosphoryla- 
tion of NCC, inducing enhanced Na+ excretion and lower 
blood pressure [68]. Furthermore, overexpression of 
WNK4 was recently shown to induce PHAII phenotypes, 
suggesting that WNK4 might actually stimulate the NCC 
activity [69]. 

NCC was recently shown to be regulated by insulin via 
WNKs. In cultured mouse distal tubule cells (mpkDCT 
cells), insulin increased SPAK and NCC phosphorylation. 
In mpkDCT cultured cells and mouse kidney, insulin 
induced OSR1/SPAK phosphorylation and consequent 
NCC phosphorylation. The insulin-induced NCC phos- 
phorylation was lost in SPAK knockout mice [70]. In 
hypertensive and hyperinsulinemic db/db mice, WNK- 
OSR1/SPAK-NCC is phosphorylated by PI3K/Akt sig- 
naling pathway [71]. Moreover, NCC is functionally ac- 
tivated by insulin [72].  

These results suggest that the insulin/WNK-OSR1/ 
SPAK-NCC system may play an important role in Na+ 
retention and hypertension, and may be another thera- 
peutic target in hypertension associated with insulin re- 
sistance. 

5. PPARγ, Thiazolidinediones and Kidney 

Peroxisome-proliferator-activated receptors (PPARs) were 
first discovered in 1990s. PPARs belong to the nuclear- 
receptor superfamily and regulate gene expression in 
response to binding of the ligands such as fatty acids and 
oxysterols [73]. PPAR variants include PPARα, β, γ, and 
δ, among them PPARγ is implicated in the onset of insu- 
lin resistance. It is expressed most abundantly in adipose 
tissue and liver but also exists in pancreatic β cells, vas- 
cular endothelial cells and macrophages. PPARγ is a tar- 
get of thiazolidinediones (TZDs), an insulin sensitizing 
drug. 

Although TZDs are quite effective in improving insu- 
lin resistance, they have notorious side effects such as 
fluid retention leading to heart failure [74,75], and an 
elevated risk of bladder cancer [76]. The side effect of 
fluid retention is quite important because diabetic pa- 

tients are under the risk of heart failure. The mechanism 
of TZDs-induced fluid retention has been in dispute for a 
while. The fluid retention effect of TZDs was shown to 
be dependent on PPARγ in collecting ducts. In particular, 
the epithelial Na+ channel (ENaC) in collecting ducts was 
first thought to be the main cause of TZDs-induced fluid 
retention [77,78]. In addition, TZDs were shown to en- 
hance ENaCα subunit expression through the glucocor- 
ticoid inducible kinase SGK1 [79]. On the contrary, the 
other studies showed that TZDs did not alter ENaC ex- 
pression and activity [80,81]. Though amiloride, an 
ENaC inhibitor, prevented TZDs-induced volume expan- 
sion in mice [78], it failed to prevent volume expansion 
induced by GI262570, a non-TZD PPARγ agonist in rats 
[82]. In mice lacking ENaCα subunit selectively in col- 
lecting ducts, TZDs-induced fluid retention was not at- 
tenuated [83]. This strongly suggests that ENaC stimula- 
tion is not responsible for TZDs-induced fluid retention. 
On the other hand, some reports suggested that PT trans- 
port is stimulated by TZDs both in human [84] and rabbit 
[85].  

We hypothesized that PT may be another important 
target of TZDs and have proved that TZDs significantly 
stimulate PT transport within several minutes [86]. This 
rapid stimulation is dependent on PPARγ-Src-EGFR- 
ERK pathway in rabbit, rat and human PTs. However, 
this rapid stimulation was not observed in mouse PTs, 
because of constitutive activation of Src/EGFR. The 
truncated construct representing the ligand-binding do- 
main of PPARγ was also able to mediate the similar sig- 
naling, suggesting that the TZDs-induced PT transport 
stimulation is independent of transcriptional activity of 
PPARγ. Our work may help to develop new TZDs with 
fewer side effects. Recently another study showed that 
TZDs do not increase the ENaC activity and its mRNA 
expression in the kidney [87], confirming that ENaC is 
not a main target of TZDs. The actual target of TZDs on 
distal Na+ transport remains to be determined. Figure 2 
shows the proposed mechanisms by which TZDs induce 
Na+ and fluid retention. 

6. PPARγ, TZDs, Insulin Resistance and 
Inflammation 

As described above, insulin resistance is closely related 
to inflammation. Expansion of adipocyte induces in- 
flammatory reactions such as proliferation of macro- 
phage and release of inflammatory cytokines like TNF-α 
and IL-1, triggering the onset of insulin resistance [88].  

Patients with dominant negative mutations of PPARγ 
have severe insulin resistance, diabetes and even hyper- 
tension [89]. On the other hand, human PPARγ poly- 
morphism Pro12Ala leads to improved insulin sensitivity 
and glucose tolerance [90]. Moreover, in mice, increased 
PPARγ activity prevented insulin resistance due to obesity  
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Figure 2. The proposed mechanisms by which TZDs induce 
Na+ and fluid retention. TZDs may induce acute stimulation 
of PT transport by non-genomic mechanism, while they 
induce chronic stimulation of distal transport by activation 
of undefined Na transporter(s). 
 
obesity [91], while lack of PPARγ in fat, muscle, or liver 
predispose mice to developing insulin resistance [92-95]. 
Therefore, PPARγ plays important roles in glucose ho- 
meostasis [96].  

TZDs can reduce blood glucose by improving insulin 
resistance [97]. Upon binding to TZDs, PPARγ makes 
heterodimers with retinoid-X receptors (RXRs). This 
complex binds to specific DNA sequence known as per- 
oxisome proliferator response elements (PPREs) on the 
promoters of PPARγ target genes. These genes are trans- 
activated after binding of PPARγ/RXR complex. Some 
of these genes are involved in metabolic homeostasis 
[98]. Moreover, PPARγ also regulates inflammatory re- 
sponse genes [99]. TZDs might prevent the onset of insu- 
lin resistance and improve glucose tolerance, by either 
improving metabolic homeostasis or preventing inflam- 
mation. 

Several studies showed that TZDs exert renoprotective 
effects [100] and anti-inflammatory effects [101] in the 
kidney. Moreover, Troglitazone and other PPARγ ago- 
nists inhibit inflammation-related chemokine expression 
in human tubular epithelial cells HK2 [102]. TZDs might 
have direct anti-inflammatory effects and ameliorate in- 
sulin resistance in PTs. Future studies are required to 
clarify the detailed mechanisms underlying the renopro- 
tective effects of TZDs. 

7. Conclusions and Prospectives 

We have discussed the relationship between insulin re- 
sistance and inflammation in the context of the onset of 
hypertension. Insulin resistance, caused by inflammation 
mainly in adipose tissue, is implicated in unfavorable 
effects on various organs including kidney, resulting in 
increasing mortality and morbidity in all over the world.  

In the kidney, insulin-induced Na+ retention may be 
causally linked to hypertension. In PT, IRS-2 dependent 
Na+ reabsorption may be enhanced, even in insulin resis- 
tance with defective IRS-1 signaling. In the distal tubule, 
a WNK-SPAK/OSR1-NCC system may be also activated 
by insulin.  

TZDs can significantly improve insulin sensitivity. 
However, TZDs-induced fluid retention is a serious prob- 
lem in diabetes treatment. The development of medica- 
tions that improve insulin resistance without inducing the 
serious side effects is expected. 
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