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ABSTRACT 

By analyzing the Einstein-box thought experiment with the principle of relativity, it is shown that Abraham’s light mo-
mentum and energy in a medium cannot constitute a Lorentz four-vector, and they consequentially break global mo-
mentum and energy conservation laws. In contrast, Minkowski’s momentum and energy always constitute a Lorentz 
four-vector no matter whether in a medium or in vacuum, and the Minkowski’s momentum is the unique correct light 
momentum. A momentum-associated photon mass in a medium is exposed, which explains why only the Abraham’s 
momentum is derived in the traditional “center-of-mass-energy” approach. The EM boundary-condition matching ap-
proach, combined with Einstein light-quantum hypothesis, is proposed to analyze this thought experiment, and it is 
found for the first time that only from Maxwell equations without resort to the relativity, the correctness of light mo-
mentum definitions cannot be identified. Optical pulling effect is studied as well. 
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1. Introduction 

The momentum of light in a medium is a fundamental 
question and has kept attracting extensive interest [1-15]. 
There are different ways to define the light momentum, 
which all have their own merits [1,4,10]. However in this 
paper, the light momentum is defined as single photon’s 
momentum or electromagnetic (EM) momentum. Ac- 
cording to this definition, the single photon’s momentum 
and energy are the direct result of Einstein light-quantum 
hypothesis of EM momentum and energy. 

The plane-wave model is the simplest physical model 
for studying light momentum, and it can be strictly 
treated mathematically in the Maxwell equation frame; 
however, the physical results obtained are fundamental. 
For example, the Lorentz transformation of photon den- 
sity in the isotropic-fluid model treated by sophisticated 
field theory is exactly the same as that in the plane-wave 
model [15]. 

As a fundamental hypothesis in the special theory of 
relativity, the principle of relativity requires that the laws 
of physics be the same in form in all inertial frames of 
reference. Therefore, all inertial frames are equivalent 
and there is no preferred inertial frame for descriptions of 
physical phenomena. For example, Maxwell equations, 
Fermat’s principle, and the conservation laws of global 

momentum and energy are all valid in any inertial frames, 
no matter whether the medium is moving or at rest, and 
no matter whether the space is partially or fully filled 
with a medium. 

For an ideal plane wave (phase velocity equal to group 
velocity or energy velocity), the phase function charac- 
terizes the propagation of energy and momentum of light. 
1) The light momentum is parallel to the wave vector, 
and 2) the phase function is a Lorentz invariant. As 
physical laws, according to the principle of relativity, the 
above two basic properties are valid in any inertial 
frames. From this we can conclude that the correct light 
momentum and energy must constitute a Lorentz co- 
variant four-vector, and the Minkowski’s momentum is 
the unique correct light momentum [15]. 

Why should the light momentum be parallel to the 
wave vector? Conceptually speaking, the direction of 
photon propagation is the direction of photon’s momen- 
tum and energy propagation. The plane-wave phase 
function defines all equi-phase planes of motion, with the 
wave vector as their normal vector. From one equi-phase 
plane to another equi-phase plane, the path parallel to the 
normal vector is the shortest. Fermat’s principle indicates 
that, light follows the path of least time. Thus the direc- 
tion of photon propagation must be parallel to the wave  
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vector, and so must the light momentum. The phase 
function is Lorentz symmetric, namely it has exactly the 
same form in all inertial frames. Consequently, this 
property of light momentum must be valid in all inertial 
frames. 

In a recent Letter by Barnett [7], a widely-accepted to- 
tal-momentum model is analyzed for resolution of the 
Abraham-Minkowski debate, where both Abraham’s and 
Minkowski’s momentums are shown to be the correct 
light momentums, with the former being the kinetic mo- 
mentum and the latter the canonical momentum. 

In this paper, by analyzing the total momentum model 
[7] with the principle of relativity for a dielectric-me- 
dium Einstein-box thought experiment (also called 
“Balazs thought experiment”) [11,12], it is shown that 
the Abraham’s momentum and energy in a medium can-
not constitute a Lorentz four-vector, and they consequen- 
tially break the global momentum and energy conserva- 
tion laws when a photon enters the medium box from 
vacuum. Accordingly, it is not justifiable to take the 
Abraham’s momentum as the correct light momentum. In 
contrast, Minkowski’s momentum and energy always 
constitute a Lorentz four-vector no matter whether in a 
medium or in vacuum; thus the Minkowski’s momentum 
is the unique correct light momentum. A new kind of 
mass, momentum-associated photon mass in a medium is 
exposed, which explains why the Abraham’s momentum 
is obtained in the traditional “center-of-mass-energy” 
analysis of this thought experiment [7]. The EM bound- 
ary-condition matching approach, combined with Ein- 
stein light-quantum hypothesis, is proposed to analyze 
this thought experiment, and it is found for the first time 
that only from Maxwell equations without resort to the 
principle of relativity, the correctness of light momentum 
definitions cannot be identified. Optical pulling effect is 
studied as well. 

2. Abraham’s Photon Momentum Breaking 
the Global Momentum and Energy 
Conservation Laws 

As a physical law, according to the principle of relativity, 
the total momentum model [7] should be valid in any 
inertial frames. When applying this model to the Ein- 
stein-box thought experiment, with a slightly different 
process from that in [7], where a single photon has 
entered a block of transparent medium with a dimension 
much larger than the photon’s wavelength, observed in 
the medium-rest frame the total momentum is equal to 
Abraham’s photon momentum, because the medium ki- 
netic momentum is zero. However, as shown in Appen- 
dix A, the Abraham’s photon momentum cannot be used 
to constitute a Lorentz covariant momentum-energy four- 
vector; consequently, the total momentum cannot either. 

Similarly, observed in the lab frame, the momentum and 
energy of the medium box independently constitute a 
four-vector while the Abraham’s photon momentum and 
energy do not. Thus the four-vector Lorentz covariance 
of the total momentum and energy is questionable. 

It is a well-known postulate that the total (global) mo- 
mentum and energy are conservative for an isolated phy- 
sical system [13], which is valid in all inertial frames. 
The photon and the medium box form an isolated system 
in the Einstein-box thought experiment. Based on the 
Lorentz property of Abraham’s photon momentum, we 
have shown in above that the total momentum and en- 
ergy cannot constitute a Lorentz four-vector after the 
photon has entered the medium box. In fact, by taking 
advantage of the initial conditions, we can further show 
that the Abraham’s photon momentum in a medium is 
not compatible with the momentum and energy conser- 
vation laws. The derivations are given below. 

1) Suppose that before the photon enters the medium 
box, the photon initially is located far away from the 
medium box in vacuum. Thus initially the photon’s 
Abraham (= Minkowski) momentum and energy  

 Abr Abr before
, E cp  constitute a Lorentz four-vector. 

2) The medium box is made up of massive particles, 
and its kinetic momentum and energy  med med

kin , E cp  
constitute a Lorentz four-vector no matter before or after 
the photon enters the medium box. 

3) From 1) and 2), initially the total momentum and 
energy constitute a four-vector, namely 

   
 

total total Abr Abrbefore before

med med
kin before

, ,

,

E c E c

E c





p p

p
 

is a four-vector. 
4) According to the momentum and energy conserva- 

tion laws, the total momentums and energies are equal 
before and after the photon enters the box, namely 

   total total total totalafter before
, ,E c E cp p . 

From 3), we know that  total total before
, E cp  is a four- 

vector, and thus 

   
 

med med
total total kinafter after

Abr Abr after

, ,

,

E c E c

E c





p p

p
 

also is a four-vector. Further, because  med med
kin after

, E cp   

is a four-vector resulting from 2),  Abr Abr after
, E cp   

must be a four-vector. However  Abr Abr after
, E cp   can-  

not be a four-vector according to the principle of relative- 
ity [confer Equation (A-3) in Appendix A]. Thus we 
conclude that the Abraham’s photon momentum con- 
tradicts the momentum and energy conservation laws in 
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the principle-of-relativity frame, which means that the 
Abraham’s photon momentum cannot make the conser- 
vation laws holding in all inertial frames—the direct 
physical consequences of Abraham’s light momentum. 

From the above relativity analysis of Einstein-box 
thought experiment, we can see that the correct light 
momentum and energy must constitute a Lorentz four- 
vector when the global momentum and energy conser- 
vation laws are taken to be the fundamental postulates 
[13], which actually is a criterion of identifying the cor- 
rectness of light momentum definitions. This conclusion 
is completely in agreement with that obtained from a 
plane wave in a moving uniform medium [15], as stated 
in Section 1. 

It is interesting to point out that, it is the Fermat’s 
principle and the principle of relativity that require the 
light momentum and energy to constitute a Lorentz four- 
vector for a plane wave in a moving uniform medium 
where there is no momentum transfer taking place [15], 
while it is the global momentum and energy conservation 
laws that require the light momentum and energy to con- 
stitute a Lorentz four-vector in the Einstein-box thought 
experiment where there is a momentum transfer taking 
place when the photon goes into a medium box. 

3. Einstein-Box Thought Experiment 
Analyzed by EM Boundary-Condition 
Matching Approach 

It has been shown that the Abraham’s light momentum 
and energy for a plane wave in a uniform medium is not 
Lorentz covariant [15]. The plane wave is a strict solu- 
tion of Maxwell equations in the macro-scale electro- 
magnetic theory, and this solution indicates that the 
Minkowski’s momentum density vector D B  and 
energy density   D E B H  constitute a Lorentz four- 
vector in the form of 1 ,pP N c   D B D E  , with 

pN  the “EM-field-cell density” or “photon density” in 
volume [15], and c the vacuum light speed. When 
Einstein’s light-quantum hypothesis 1

pN    D E  is 
imposed, P  is restored to a single photon’s momen-  

tum-energy four-vector, namely  c1 ,pN  D B D E   

 ,dn   k c , with d  the wave vector; thus n k
D B  denotes the unique correct light momentum. For 

the plane wave in a uniform medium,  D B  
  ˆcdn D E n  holds in all inertial frames, where d  

is the refractive index and  is the unit wave vector 
[15]. 

n
n̂

Now let us apply the Minkowski’s momentum to 
analysis of a plane-wave light pulse perpendicularly 
incident on the above transparent medium box without 
any reflection [12,14]. The pulse space length is assumed 
to be much larger than the wavelength but less than the 
box length. To eliminate any reflection, the wave-impe- 

dance matching must be reached between vacuum and 
the medium [12], namely the wave impedance  1 2   
with   B H  and   D E  is continuous on the 
boundary (confer Figure A1 in Appendix B). 

Since there is no reflection, there is no energy accu- 
mulation in the sense of time average. Thus “no-reflec- 
tion” can be expressed as “equal energy flux density” on 
the both sides of the vacuum-medium interface inside the 
light pulse, given by 

   vac med
d

c
c

n
  D E D E , 

or 

  med vacdn  D E D E  .           (1) 

The above Equation (1) is indeed equivalent to the 
wave-impedance matching condition 

   med vac
     

when the perpendicularly-incident plane-wave boundary 
condition    vac

  E E E E
med

 is considered, because 
in such a case we have 

   
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                 ,

d

d

n

n



  

  

  

 

   
 

D E E E

E E

E E

D E

 

namely Equation (1), where    1 2 1 2

med vacdn   is em- 
ployed. 

From Equation (1), we have 

   
   

med med

2 2

vac vac

ˆ

ˆ

d

d d

n c

n c n

    
     

D B D E n

D E n D B
  (2-1) 

namely 

  2

med vacdn  D B D B .          (2-2) 

The momentum flux density in the medium is 
   med d ˆc n   D B n , while the momentum flux den- 

sity in the vacuum is  vac
ˆc   D B n . Thus from Equa- 

tion (2-2) we have 

   med vac

ˆ
ˆ d

d

c
n c

n

 
        

 

n
D B D B n .   (3) 

Equation (3) tells us that, after the Minkowski’s EM 
momentum (in unit area and unit time) flows into the 
medium from vacuum, the momentum grows by d  
times. To keep the total momentum unchanged, there 
must be a pulling force acting on the medium when the 
plane-wave light pulse goes into the medium box (see 
Appendix B), which is the result from macro-electro- 
magnetic theory based on the assumption of “no reflec- 

n
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tion”. This pulling force can be qualitatively explained as 
the Lorentz force produced by the interaction of the 
dielectric bound current with the incident light pulse 
[12]. 

Now let us examine the result from Einstein light- 
quantum theory. The photon energy (frequency) is sup- 
posed to be the same no matter whether in vacuum or in 
a medium. Einstein light-quantum hypothesis requires 
that 

   med

med pN   D E  and    vac

vac pN   D E , 

with  the photon density in medium and  
the photon density in vacuum. Inserting them into 
Equation (1), we have 

)(med

pN  vac
pN

   med vac
p d pN n N .               (4) 

Supposing that  and  Min
med photonp  vac photon ˆc  p n  

are the photon momentums in medium and in vacuum 
respectively, from the definition of momentum density 
we have 

     med Min
med photonmed pN  D B p            (5-1) 

   vac
vac photonvac pN  D B p .            (5-2) 

Inserting Equations (4) and (5) into Equation (3), we 
have the photon momentum in the medium, given by 

 Min
med photon vac photon dn p p , 

or 

 Min
med photon ˆdn

c


 


p n .              (6) 

From Equation (6) we can see that when a single 
photon goes into the medium box, the medium box also 
gets a pulling force to keep the total momentum un- 
changed. 

From Equation (3) and Equation (6) we find that a 
light pulse and a single photon in the medium-box 
thought experiment both have the pulling effect. How do 
we explain the fiber recoiling experiment then [5]? The 
recoiling could be resulting from the transverse radiation 
force because of an azimuthal asymmetry of refractive 
index in the fiber [9]. 

4. Implicit Assumption of Photon’s Mass in 
the Traditional “Center of Mass-Energy” 
Argument 

It is worthwhile to point out that, the widely-recognized 
“center of mass-energy” argument for Abraham’s photon 
momentum [7] is questionable. As shown in Appendix C, 
this argument neglects the difference between the “mo- 
mentum-associated mass” and “energy-associated mass” 
for a photon in a medium. Specifically speaking, this 

argument has implicitly assumed that the relation be- 
tween photon’s “momentum-associated” mass and its 
momentum in a dielectric is the same as that in vacuum. 
The photon momentum-associated mass in vacuum, for- 
mulated by 2c , is derived from “vacuum” Ein- 
stein-box thought experiment [16,17], and whether the 
formulation still holds in a “dielectric” remains to be 
confirmed. Now that this assumption has already resulted 
in contradictions with the covariance of relativity, the 
justification of the assumption should be re-considered. 

5. Conclusion 

In summary, by analysis of the total momentum model [7] 
with the principle of relativity for a medium Einstein-box 
thought experiment, we have shown that the Abraham’s 
light momentum and energy in a medium do not con- 
stitute a Lorentz four-vector, and they break the global 
momentum-energy conservation law; accordingly, it is 
not justifiable to take the Abraham’s momentum as the 
correct light momentum. In contrast, Minkowski’s mo- 
mentum and energy always constitute a four-vector no 
matter whether in a medium or vacuum, and the Min- 
kowski’s momentum is the unique correct light mo- 
mentum. This result of the relativity principle is im- 
portant, because only based on the Maxwell equations 
one cannot judge which formulation of light momentum 
is correct. For example, inserting 

   2 2

med meddn c  D B E H  

and 

   2

vac vac
c  D B E H  

into Equation (3), we directly obtain the conversion 
equation for Abraham’s momentum flux density from 
vacuum to medium, given by 

2 2
med vac

ˆ 1
ˆ

d d

c
c

c n n c

                    

E H n E H
n ,  (7) 

and similarly, inserting 

     med Abr2
med photonmed pc N  E H p , 

   vac2
vac photonvac pc N  E H p , 

and  into above Equation (7), we have 
the Abraham’s photon momentum in medium, given by 

   med vac
p d pN n N

 Abr
med photon vac photon

1

dn p p , 

or 

 Abr
med photon ˆ

dn c


 


p n .               (8) 
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[14] I. Brevik and S. A. Ellingsen, Physical Review A, Vol. 86, 
2012, p. 025801.  
doi:10.1103/PhysRevA.86.025801  

Thus in the Maxwell-equation frame, the medium 
Einstein-box thought experiment supports both light mo- 
mentum formulations, instead of just Abraham’s [7]. 
However, the two formulations cannot be “both correct”; 
otherwise it is not determinate whether the medium box 
gets a pulling force or a pushing force when a specific 
photon goes into the medium from vacuum. In other 
words, without resort to the principle of relativity, this 
thought experiment cannot be used to identify the cor- 
rectness of light momentum definitions. 

[15] C. Wang, “Plane Wave in a Moving Medium and Reso- 
lution of the Abraham-Minkowski Debate by the Special 
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[18] According to the principle of relativity, all inertial frames 
are equivalent for descriptions of physical laws, and 
Maxwell equations have the same form in all inertial 
frames. Accordingly, the Abraham EM momentum den- 
sity vector 2cE H  and energy density 0.5( )  D E B H  
must have the same definitions in all inertial frames 
(although observed in the medium-rest frame the medium 
is stationary and the refractive index dn  is isotropic 
while observed in the lab frame the medium is moving 
and the index dn  is anisotropic). Consequently, the Abra- 
ham photon momentum and energy, given by Equation 
(A-3), must have the same form in all inertial frames. In 
addition, keep in mind (the basic mathematical result of 
Lorentz transformation) that the scalar product of any two 
of four-vectors is a Lorentz invariant. Thus if Equa- 
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Appendix A. Lorentz Property of the 
Abraham’s Photon Momentum and Energy 

In this Appendix, by analysis of the Lorentz property of 
the total momentum model in the dielectric-medium Ein- 
stein-box thought experiment [7], a specific proof is 
given of why the Abraham’s photon momentum and en- 
ergy cannot constitute a Lorentz four-vector. 

According to the total-momentum model [7], the total 
momentum and the total energy are assumed to consti- 
tute a momentum-energy four-vector. 

Suppose that the total momentum total  and the total 
energy  in the lab frame are written as 

p

totalE
med

total kin Abr p p p , , med
total AbrE E E 

with total
total ,

E
P

c
  

 
p






 a four-vector,   (A-1) 

where  and  are, respectively, the 
medium-box kinetic momentum and energy, while Abr  
and Abr  are, respectively, the Abraham’s photon mo- 
mentum and energy. 

med
kinp medE

p
E

After the single photon has entered the Einstein’s 
medium box, according to the principle of relativity (the 
laws of physics are the same in form in all inertial 
frames), the total momentum and energy in the medium- 
rest frame can be written as 

med
total kin Abr  p p p , med

total AbrE E E    , 

with total
total ,

E
P

c
    

 
p   a four-vector,   (A-2) 

where  and  are, respectively, the 
medium-box kinetic momentum and energy, while Abr

med
kinp medE

p  
and Abr  are, respectively, the Abraham’s photon 
momentum and energy. 

E

Since P  is assumed to be a Lorentz four-vector,  

 total total,P E  p c  

can be obtained from  

 total total,P E   p c  

by Lorentz transformation. 
Now let us examine whether the total momentum 

 [7] can really make med
total kin Abr p p p  total total, E cp  

become a Lorentz four-vector. 
In the medium-rest frame, the medium kinetic 

momentum is equal to zero, namely , and the 
total momentum is reduced to  

med
kin 0 p

med
total kin Abr Abr     p p p p . 

1) The medium-box kinetic momentum med
kin 0 p  

and its rest energy  independently constitute a 
Lorentz four-vector, namely 

medE
 med med

kin , E c

2) The Abraham’s photon momentum and energy is 
given by 

Abr
Abr ˆ,

d

E

c n c c
,

            

 
p  n ,       (A-3) 

where dn  is the refractive index of medium,   is the 
photon’s frequency, ˆn  is the unit vector of the 
photon’s moving direction, and  is the Planck 
constant. We have known that, the wave four-vector 



  ˆ ,dn c c      K   


n  must be a Lorentz four-vector 
and the Planck constant  must be a Lorentz invariant 
[15], and thus the Abraham’s photon momentum and 
energy Equation (A-3) cannot be a four-vector; otherwise, 
contradictions would result mathematically [18]. 

From 1) and 2) we conclude that the total momentum 
and energy  total total, E c p , which are the combinations 
of two parts respectively, cannot be a Lorentz four- 
vector. 

If  total total, E c p  is not a Lorentz four-vector ob- 
served in one inertial frame, then it is never a Lorentz 
four-vector observed in any inertial frames. 

The above reasoning is based on the following facts: 
1) General math results. a) If A  and B  are both 

Lorentz four-vectors, then A B   must be Lorentz 
four-vectors. b) If A  is a known Lorentz four-vector 
in one inertial frame, then it is always a Lorentz four- 
vector observed in any inertial frames. 

2) In the medium Einstein-box thought experiment, 
like a massive particle the medium-box kinetic momen- 
tum and energy independently constitute a Lorentz four- 
vector because the medium box is made up of massive 
particles, of which each has a kinetic momentum-energy 
four-vector. 

In summary, when applying the principle of relativity 
to the total momentum model [7] for the dielectric- 
medium Einstein-box thought experiment, we obtain the 
following conclusion. Observed in any inertial frames, 

1) The total momentum and energy is the combination 
of the medium-box and Abraham’s momentums and 
energies, namely  

     med med
total total kin Abr Abr, , ,E c E c E c p p p ; 

2) The medium-box momentum and energy 
 med med

kin , E cp  must be a Lorentz four-vector; 
3) The Abraham’s photon momentum and energy 

 Abr Abr, E cp  cannot be a Lorentz four-vector. 
Therefore, the total momentum and energy 

 total total, E cp  is not a Lorentz four-vector. 
One might argue that in stead of Equation (A-3) the 

photon’s momentum and energy should be  

   ˆ ,d dn c n c        n , 
 p  is a four- 

vector. where the photon energy is replaced by Chu’s energy 
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dn   [13]. However it can be shown that this kind of 
momentum and energy also contradicts the wave four- 
vector K  . That is because the Lorentz transformation 
of frequency (Doppler formula) and the transformation 
of refractive index are already defined by K   [15]. 
Defining a four-momentum will introduce new Lorentz 
transformations of the frequency and refractive index, 
which contradict the formers unless the four-momentum 
is compatible with K  . The Minkowski’s four-mo- 
mentum K  , no matter whether in a medium or in 
vacuum, is only different from K   by a Planck con- 
stant , which is a Lorentz scalar [15], and it is com- 
pletely compatible with 


K  . Thus only the Minkow- 

ski’s momentum is the unique correct light momentum in 
the Einstein-box thought experiment. 

One might question whether a) the medium-box 
kinetic momentum  and energy  can really 
independently constitute a Lorentz four-vector and b) 
there is any medium-rest frame, because there must be 
relative motions between the elements of medium (fluid), 
which, even if quite small, could not be ignored in the 
sense of strict relativity. 

med
kinp medE

In fact, even if there are relative motions between the 
elements of the dielectric medium, the medium-box kine- 
tic momentum and energy also independently constitute 
a four-vector, which is elucidated below. 

According to the total momentum model [7, Equation 
(7) there], the total momentum and energy are given by  

med
total kin Abr p p p

med

 and , which are  med
total AbrE E E 
medconservative. kin  and  denote the medium kine- 

tic momentum and energy, and they are only contributed 
by all the massive particles of which the dielectric me- 
dium is made up, while Abr  and Abr  denote the EM 
kinetic momentum and energy and they are only con- 
tributed by all EM fields or waves. 

p E

p E

One essential difference between massive particles 
and photons is that any massive particle has its four- 
velocity defined by  d , dct x  with   its proper 
time, while the photon does not [15]. Because the me- 
dium box is made up of massive particles and each of the 
particles has a four-velocity, no matter whether there are 
any relative motions between the particles, the medium- 
box total kinetic momentum  and energy  
should constitute a four-vector. For a better under- 
standing, specific calculations are given below. 

med
kinp medE

Suppose that observed in the lab frame, the four- 
velocity of a massive particle is given by d di iX   , and 
the medium-box total kinetic momentum-energy four- 
vector can be written as 

med
med med
kin 0 kin

d
( ) ,

d
i

i
i

X E
P m

c





 

  
 

 p 

where 

,     (A-4) 

med
kin 0i ui im  p u , and 

med

0i ui

E
m c

c
  ,   (A-5) 

with , and , the indiiu ,0im , ui  respectively vidual 
partic rest ass, relativistic factor, and velocity. 

Now we can define the moving velocity of the whole 
m

les’ m

edium box with respect to the lab frame, given by [19] 

0i ui im 

0i uim 
 


 

and its relativistic factor 

u
v ,                (A-6)

  and the medium-box rest 
mass Med

0M , given by 

2 2

1 0Med
0

i uim
M




  .
1 c

 
 v

,       (A-7) 

The medium-box kinetic momentum-energy four- 
vector now can be re-written as 

   
med

med med E  
  Med

kin 0kin
, ,P M c

c
 

 
p v .   (A-8) 

From above we can see that, a) the medium-box 
kinetic momentum and energy indeed independently 
constitute a four-vector, and b) there is a medium-rest 
frame for the box, which moves at the velocity v with 
respect to the lab frame defined by Equation (A-6). 

If all particles could always keep the same velocity, 
this medium box would become a “rigid body”; thus 
possibly causing the controversy of the compatibility 
with relativity. However it should be emphasized that, in 
the uniform-medium model [15], it is the dielectric 
parameters (   B H  and   D E ) that are assumed 
to be real sca ar c tants obser d n the medium-rest 
frame, instead of the medium being “rigid”; thus this 
model is completely compatible with the relativity. In 
fact, the uniform-medium model is widely used in litera- 
ture [7,20], although all atoms or molecules in dielectric 
materials used as a uniform medium are always in con- 
stant motion or vibration. Especially, the uniform-me- 
dium model is also strongly supported by the well- 
known relativity experiment, Fizeau running-water ex- 
periment, where the refractive index of the water in the 
water-rest frame is taken to be a constant [21]. 

Appendix B. Optical Pulling Effect in the 

l ons ve  i

iment for a 

me

Einstein-Box Thought Experiment 

In the medium Einstein-box thought exper
light pulse, the pulling force per unit cross-section area 
acting on the medium box can be directly obtained from 
the EM boundary conditions of “no reflection”, as shown 
below. 

The momentum flowing through the inner medium 
surface per unit area and time, observed in the “instant 

dium-rest frame”, is given by 
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   med
ˆ

c

n

 
   

 
D B n

med
d

D E ,       (B-1) 

and the momentum flowing through the
surface per unit area and time is given by 

 inner vacuum 

   vac vac
ˆc   D B n D E ,            (B-2) 

where D B  is the relativity-legitimate Minkowski’s 
mome  density, and ntum   ˆdc n n  and ˆcn  are, respec- 
tively, the propagation velocities of EM momentum and 
energy in the medium a um. Th “instant me- 
dium-rest frame” means the frame in which the medium 
is at rest from time t  to t t  . 

Considering 

nd vacu e 

   med vacdn  D E D E  given by Equa- 
tion (1), which resu ts fro e agnetic boun- 
dary conditions, we obtain 

l m th electrom
 

   
  

Equation B-1 Equation B-2

  D E D E 
   

med vac

vac
1 ,dn



  D E

 

which is the momentum gained by the light pulse in unit 
cross-section area and unit time. From this we directly 
obtain the Minkowski’s force acting on the box, as 
shown in Figure A1, given by 

    Min

vac
ˆ1 dn  f D E n  [N/m2],     (B-3) 

where means that the force
site to the rection of wave pro

 force. 

1 0dn   
di

 direction is oppo- 
pagation, namely a 

pulling
For a plane wave, after taking time average the pulling 

force is given by 

   Min 21
ˆ1 n  f E n ,        (B-4) 0 vac max2 d 

where c0 va  , and vac maxE  is 
electric field a plitude in vacuum. 

ation (B

the plane-wave 
m

Light-quantizing Equ -3) by  vac
 D E  

 vac
pN   and considering that  vacN p

mber flux density (photon number th  

c  is the photon 

nu rough unit
cross-sec uumtion area in unit time in vac ), we obtain the 
transferred momentum from a single photon to the 
medium when the photon goes into the box, given by 

 
 

   
Min

Min
transfer to box vac

ˆ1 dn
cN cp


    

f
p n .      (B-5) 

It should be indicated that the pulling f
(B-3) is obtained without any ambiguity based on the 
m

orce Equation 

omentum conservation law; however, some ambiguity 
will show up if using the surface bound current boundJ  
and the magnetic field B to calculate the force by 

bound J B , because B is not continuous on
vacuum-medium interface [12]. 

ght argue that the leading edge of the light 
pulse would also produce a forc

 the 

One mi
e to cancel out the pull- 

in

e pulse within the 
m

zation, how to appropriately approxi- 
m

g force resulting from the momentum transfer on the 
vacuum-medium interface so that no net momentum 
transfer would take place [12]. However, such an argu- 
ment does not seem consistent with the dielectric prop- 
erty of an isotropic uniform medium. 

An ideal isotropic uniform medium has no dispersion 
and losses; accordingly, any part of th

edium always keeps the same shape and the same wave 
momentum during propagation within the medium, as 
illustrated in Figure A1. Thus there is no additional mo- 
mentum transfer happening except for on the vacuum- 
medium interface. 

In calculations of the Lorentz force caused by polari- 
zation and magneti

ate a light pulse is tricky. As shown in Figure A1, the 
basic physical condition, which the pulse is required to 
satisfy, is the “moving boundary condition”, namely the 
EM fields E and B on the leading and trailing pulse 
edges must be equal to zero, because the EM fields 
 

Dielectric medium box 

n̂

L1L2

(c/nd)t

(/)vac = (/)med 

n̂

plane wave light pulse

L1L2 ct

tat time  

at time  t + t

moving pulse 
boundary  

Figure A1. Medium Einstein-box thought experiment for a 
light pulse, analyzed by EM boundary-condition matching 
approach. A plane-wave light pulse is perpendicularly 
incident on the medium box without any reflection. From 
time t  to t t  , the parts of the pulse in the box with the 
length L1 are exactly the same, and the parts in vacuum 
with e len L2 are also the same. The momentum 
difference on unit cross-section area for the pulse at t t

th gth 
   and 

t is only caused by the two parts with the lengths  dc n t  

and cΔt, which is given by    
med

×  dp D B t  c n

 
vac

× D B c t , and an equal but  

 transferred to the medium box to keep the 
 unchanged. From this we obtain the force 

acting on the box, given by  

 different sign quantity

tum is
entum

of momen
total mom

Minf p t   , namely 

Equation (B-3). In addition, on the “moving pulse 
boundary” (leading or trailing edg x, the EM 
fields are continuous because the dielectrics on the both 
sides of the “moving boundary” are exactly the same. 

e) within the bo

Copyright © 2013 SciRes.                                                                                 JMP 



C. WANG 1131

should, at least, be continuous at any locations and any 
times within a uniform medium (even if the medium had 
dispersion). As implicitly shown in the calculations by 
Mansuripur, the pulse edges, which meet the “moving 
boundary condition”, will not produce additional Lorentz 
forces in the sense of time average [12; see the author’s 
Equation (10) by setting 0 0   and T = an integer of 
wave periods]. In other words, the momentum transfer 
from the light pulse to the box only takes place on the 
vacuum-medium interface, while the pulse edges located 
inside the uniform medium do not have any contributions 
to momentum transfer. 

Appendix C. Photon’s Energy-Associated 

f 

Mass and Momentum-Associated Mass in a 
Dielectric Medium 

It is worthwhile to point out that, there are two kinds o
mass: 1) energy-associated mass Em , defined through 

2
EE m c  (Einstein’s energy-mass equivalence formula), 

and 2) momentum-associated mass pm , defined through 
m pp v , where E , p , and v  are, respectively, the 

particle energy, momentum, and velocity, with P   
 

d phot
 , , EE c m m c pp v  its four-momentum. For classical 

particles an n vacuum, ons i Em mp  holds, while 
for photons in a medium, 22 cnm d   and p

2cmE   are valid, which lead t ntz covariant 
Minkowski’s four-momentum. Thus we have P P

o a Lore
   

2 2 2 0E c p  for classical massive particles, 0P P
   

for photons in vacuum, and 0P P
   for photon  

medium. Because of 
s in a

Em mp  in a medium, the photon 
mass-vs-momentum relation ifferent from that in 
vacuum where 

is d

Em mp  holds. In other words, only 
mpv  is the Lorentz covariant photon momentum in a 
medium, instead of Em v . 

For an isolated system, the total momentum and 
energy are both conserved, namely  

consti i im   pp v  and 2E consti Eim c  , 

leading to the holding of  

consti im mEi c v . 

Thus we have the mass-energy center  

 p v

dc i i Eim m  pr r  

moving uniformly. Note that in  the momen- 
tum-associated mass 

di im p r

imp  is invol  instead of the ved,
culate energy-associated mass Eim . To cal  

dc i i Ei  pr r  m m

in the dielectric Einstein-box thought xperiment,  e imp  
should be assumed to be known, including the box’s and 
the photon’s. In the typical analysis by Barnett [7], pm  

for the photon in the medium is replaced by 

 
2m c   

(the same as that in vacuum). However if m

E  

p  for  the
ton mophoton in the medium is known, then the - pho

mentum is actually known, equal to  m c np , with no 
further calculations needed, which is the straightforward 
way used by Leonhardt, except that h s 

d

usee also Em  to 
replace mp  [20]. From above, we can see that the 
Abraham’s momentum in the dielectric Einste ox 
thought periment is derived actually by assuming an 
Abraham’s momentum in advance. 

To better understand why the Abraham’s momentum 
is derived in the traditional analysis of the Einstein-box 
th

in-b
ex

ought experiment [7], specific illustrations are given 
below. 

Figure A2 shows the thought experiment consisting of 
a short light pulse and a transparent medium box. Case-1 
is for the pulse not going through the box, while case-2 is 
for the pulse going through the box. The two cases have 
the same initial conditions and thus they have the same 
center of mass-energy. 

Case-1. Since the pulse does not go through the 
medium box and the box always keeps at rest, the mass- 
energy center for the system is given by 

 0 2 2
0

E
c c

m ct
z z

E M c c
 


        (C-1) 

where is the initial mass-energy c
energy is , and the box energy is 

0cz  enter, the pulse 
2

EE m c 2
0M c . In 

the vacuum, the pulse momentum-associated mass and 
energy-asso ass are the same, equal to ciated m Em , 

e g

and 
the pulse momentum is given by pulse vac ˆEm c p z . 

Case-2. The mass-energy center for the puls oing 
through the box is given by 

 0 2 2
0

 E
c c

m ct
z z

E M c c
 


, for   t t           (C-2) 1

   
 

1 1 1  
,

t t
 0 2 2

0

E gr M
c c

m ct m v t p t
z z

E M c c

  
 


p

for t1 ≤ t ≤ t     (C-3) 2 

  
 

  
0

1 2 1 2 1 2Et t m c t t
2 2

0

,

c c

E gr M

z z

m ct m v t t p

E M c c



  



p

for t ≥ t2           (C-4) 

where 

    

mp  
dium

se m

is the pulse momentum-associated mass in 
the me , thus leading to th  e pulse momentum given
by pul ed ˆgrm v  pp z  with grv  the pulse energy velo- 
city; the pulse energy is 2

EE m c , the same as in the 
vacu ox mom tum, with u M  is the bm; p en 0Mp M  the 
box moving velocity, wh pulse is within the 
medium bo . 

When 1t t  for the case-2, the pulse has entered the        

e e n th
x
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light pulse

t = 0 t = t1 t = t2

light pulse

t = 0 t = t1 t = t2 t = t3

t = t3

medium box

medium box

L

(t2 - t1) approximately = L/vgr

(1) Pulse not going through the box

(2) Pulse going through the box
z

Z

th
e 

sa
m

e 
di

st
an

ce

 

Figure A2. Medium Einstein-box thought experiment for a short light pulse, analyzed by traditional center-of-mass-energy 
approach. Case-1. Light pulse not going through the medium box. Case-2. Light pulse going through the medium box: the 

ft the box and goes 

pulse enters the box at 1t , and when the pulse leaves the box at 2t , the box shifts a distance of z . Both case-1 and case-2 

have the same center of mass-energy. 
 

ox, or just left the box, or has leb ton) is assumed, which leads to [7,10] 
forward an additional distance, as shown in Figure A2. 
Comparing Equation (C-1) with Equation (C-3) or 
Equation (C-4) we obtain the same equation of conser- 
vation of momentum, given by 

 or  M E gr Mp m c m v p   p

2
0 0

1 1ELm c LE c
z

  

gr grM v vM c


          

   
.      (C-7) 

However, as mentioned before, if mp  is kn
the pulse

own, then 
grm v mp Ec .    (C-5) 

Namely, the sum of the momentums of t
bo

he medium 

 momentum pulse medp  is act  known, equal 
to ˆ

ually

grm vp z , without any further calculations. Since 
2m m E c p  is taken in the traditional analysis,  Ex and the light pulse, when the pulse enters the box, is 

equal to the momentum of the pulse in vacuum. 
When the pulse just leaves the box, the box has moved 

a d

  med ˆ ˆgr grm v E c v c p z z  
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where Equation (C-5) and 
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is Abraham’s momentum [10]. 
 box thought experiment, For the single photon-medium

we have the Abraham photon momentum  
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Em m c  p  if is taken [7], while we have the 
inkowski photon mM omentum  
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-6) we can see that, to obtain
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From above Equation (C  
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ave to assume that mp  is known. In the tra- 
onal analysis, diti 2
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