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ABSTRACT 

As currently understood since its discovery, the bare Klein-Gordon theory consists of negative quantum probabilities 
which are considered to be physically meaningless if not outright obsolete. Despite this annoying setback, these nega- 
tive probabilities are what led the great Paul Dirac in 1928 to the esoteric discovery of the Dirac Equation. The Dirac 
Equation led to one of the greatest advances in our understanding of the physical world. In this reading, we ask the 
seemingly senseless question, “Do negative probabilities exist in quantum mechanics?” In an effort to answer this ques- 
tion, we arrive at the conclusion that depending on the choice one makes of the quantum probability current, one will 
obtain negative probabilities. We thus propose a new quantum probability current of the Klein-Gordon theory. This 
quantum probability current leads directly to positive definite quantum probabilities. Because these negative probabili- 
ties are in the bare Klein-Gordon theory, intrinsically a result of negative energies, the fact that we here arrive at a the-
ory with positive probabilities, means that negative energy particles are not to be considered problematic as is the case 
in the bare Klein-Gordon theory. From an abstract—objective stand-point; in comparison with positive energy parti- 
cles, the corollary is that negative energy particles should have equal chances to exist. As to why these negative energy 
particles do not exist, this is analogous to asking why is it that Dirac’s antimatter does not exist in equal proportions 
with matter. This problem of why negative energy particles do not exist in equal proportions with positive energy parti- 
cles is a problem that needs to be solved by a future theory. 
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1. Introduction 

“My work always tried to unite the Truth with the 
Beautiful, but when I had to choose one or the other, I 
usually chose the Beautiful.” 

—Hermann Klaus Hugo Weyl (1885-1955) 

If one accepts the bare Klein-Gordon theory as it is 
currently understood since its discovery in 1927 by Os- 
kar Klein (1894-1977, of Sweden) and Walter Gordon 
(1893-1939, of Germany), then, there is no doubt that 
they will accept without fail that negative quantum me- 
chanical probabilities do exist in the bare Klein-Gordon 
theory. Solemnly, by a combination of a deep and rare 
curiosity, fortune, and serendipity, than by natural design, 
the existence of these negative probabilities in the 
Klein-Gordon theory is what led the eminent British 
physicist Paul Adrien Maurice Dirac (1902-1984) to his 
landmark discovery of the Dirac Equation [1,2]. Needless 
to say, but perhaps as a way of expressing our deepest 
admiration of this great achievement, the Dirac Equation 
ranks amongst the greatest and most noble equations of 

physics. Eighty four years on since its discovery (i.e., 
1928-2012), the Dirac Equation is an equation whose 
wealth of knowledge cannot be said to have been com- 
pletely deciphered and fathomed but is in the process 
thereof. 

Like other deep-thinking physicists of his time, right 
from the-word-go, Dirac passionately objected to the 
notion of negative probabilities implied by the Klein- 
Gordon theory. This led him to silently embark on a no-
ble scientific journey of the mind whose final destination 
was to successfully solve this persistent and nagging 
problem of negative probability. Dirac had hoped that by 
eliminating the negative probabilities, he would concur- 
rently eliminate the negative energies—he hoped for the 
rare fortuity of hitting two birds with one stone. Alas, 
that did not happen. Only the possibility of negative 
probabilities vanished while the negative energies stub- 
bornly reared their “ugly head” in Dirac’s new vision. On 
completion of his seemingly divine scientific journey of 
the mind, he arrived at his esoteric equation, which ac- 
curately describes the Electron. 
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Why do we say Dirac silently embarked on his quest 
for the Dirac Equation? Well the answer to this is that— 
for example, during a (tea/lunch) break at the 1927 Sol-
vay conference attended by the great Danish physicist 
Neils Henrik David Bohr (1885-1962), Dirac, and many 
other towering figures of the last half century in physics; 
Dirac was asked by Neils Bohr what he was working on, 
to which he replied: “I’m trying to take the square root of 
something...” meaning the square root of the Klein- 
Gordon Equation—in physics, this is strange because it 
meant taking the square root of an operator. Later, Dirac 
recalled that he continued on by saying he was trying to 
find a relativistic quantum theory of the Electron, to 
which Bohr commented, “But Klein has already solved 
that problem”. Dirac then tried to explain he was not sat- 
isfied with the (Klein-Gordon) solution because it in- 
volved a 2nd order equation in the time and space deriva- 
tives. Dirac was simply not open; he was a man of noto- 
riously very few words, he meant every word he said; in 
a nutshell, he was economic with his words. 

Further, Dirac was a man of great mathematical sub- 
tleness; it is this quality which led him to the Dirac 
Equation. He believed that one must follow the mathe- 
matics to where it would lead and in so doing he 
unlocked a great wealth of ideas such as magnetic 
monopoles, the variation of the gravitational constant 
amongst others. On the same pedestal—in 1942, all in an 
effort to forge ahead to seek new frontiers in the field of 
physical knowledge; Dirac back-pedalled on negative 
probabilities when he delved once again into the then 
un-chartered waters of negative probability when he 
wrote a paper entitled: “The Physical Interpretation of 
Quantum Mechanics” where he introduced the concept of 
negative probabilities [3]. In the introductory section of 
his watershed reading, he said: 

“Negative energies and probabilities should not be 
considered as [mere] nonsense. They are well-defined 
concepts mathematically, like a negative of money”. 

Fifty five years later after Dirac’s musings, i.e. in 1987 
toward the end of his fruitful life, another great mind, the 
flamboyant and charismatic American physicist, Richard 
Feynman (1918-1988), took the idea further when he 
argued that, no one objects to using negative numbers in 
calculations, although “minus three apples” is not a valid 
concept in real life [so, it should be reasonable to con- 
sider negative probabilities too]. Further into the shores 
of the unknown, he [Feynman] argued not only how 
negative probabilities could possibly be useful in prob- 
ability calculations, but as well how probabilities above 
unity may be useful [4]. Really? What would a probabil- 
ity above unity really mean? 

The ideas of Dirac and Feynman on negative probabil- 
ity have not gained much support. To ourselves, negative 
probabilities, even if they may be well defined mathe- 

matical concepts as Dirac and Feynman believe or want 
us to believe, they [negative probabilities] are physically 
meaningless and obsolete; they signify something “sinis- 
ter” in the finer detail of the theory in question. We like 
to view these ideas of negative probability as nothing 
more than highlighting and dramatising the desperation 
by physicists to make sense of nonsense all in an effort to 
find a natural explanation of nonsense. We think and 
hold that nonsense is nonsense and should be left that 
way; one should simply let the sleeping dogs lay. We 
have to be ruthless in our dismissal of these negative 
probabilities; we can only hope that the reader will par- 
don us for this. 

The root of negative probabilities and all that seems 
bizarre in the world of probability theory is the Klein- 
Gordon theory. If it could be shown that the Klein-Gor- 
don theory is devoid of these, it would render Dirac and 
Feynman’s effort worthless—and; order, harmony and 
tranquillity will certainly be restored in the world of 
probability theory. This would mean the chapter of nega- 
tive probabilities is closed altogether. The endeavour of 
this reading is to point out that the Klein-Gordon theory 
is devoid of these negative probabilities, hence possibly 
bringing to a complete standstill Dirac and Feynman’s 
efforts. 

If only physicists had extended the British-German 
physicist Max Born (1882-1970)’s idea that the magni- 
tude of the wavefunction gives the probability density 
function [7]; that is, extend this idea so that it applies to 
all quantum mechanical wavefunctions, then, we would 
never have landed on these rough, bizarre and uncertain 
shores of negative probabilities. As will be argued, what 
physicists have done is to carry over the probability cur- 
rent density found in the Schrödinger theory directly into 
the Klein-Gordon theory, in which process the quantum 
probability of the Klein-Gordon theory is constrained in 
a manner that allows for negative probabilities. Our sug- 
gestion, if correct as we would like to believe, is that 
instead of carrying over the probability current density 
found in the Schrödinger theory into the Klein-Gordon 
theory, we need to do things the other way round, that is, 
we have to carry over the probability density function of 
the Schrödinger theory into the Klein-Gordon theory. 
Simple, we must generalize Born’s idea, that is: 

Born’s idea that the wavefunction represents the 
probability amplitude and its magnitude represents the 
probability; this idea must be generalized so that it is 
applicable to any general wavefunction that purports to 
describe undulatory material particles. 

In this way, we constrain the resultant probability cur- 
rent density of the Klein-Gordon theory so as to allow 
only for positive definite probabilities—this is where we 
believe the problem in the negative probabilities lies. In 
the end, we obtain a Klein-Gordon theory that is devoid 
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of negative probabilities; this of cause leads us to an ob- 
jective world since all the probabilities are not only posi-
tive but positive definite. Notice that Schrödinger’s 
wavefunction together with Dirac’s wavefunction all 
conform to Born’s idea but the Klein-Gordon wavefunc-
tion does not. Why? We herein propose an answer to this 
question. 

Now, to wind up this section, we shall give the synop- 
sis of this reading; it is organised as follows: in the next 
section, we present the Schrödinger quantum mechanical 
probability theory as it is understood in the present day. 
In (3), we also present the Klein-Gordon probability 
theory as it is understood in the present day. In (4), we 
go onto the main theme of the present reading, where we 
demonstrate that if one makes an appropriate choice of 
the Klein Gordon probability current, one obtains a 
Klein-Gordon theory that is free from negative probabili-
ties. While § (2) and § (3) may seem trivial to the 
quantum mechanically erudite reader, it is worthwhile 
that we mention that we have taken the decision to go 
through these sections [i.e. (2) and (3)] for nothing 
other than instructive purposes. The well versed reader 
will obviously have to skip these and go straight to (4). 
In (5), we give the overall discussion and conclusions 
drawn thereof. 

§

§

§

§ §

§

2. Schrödinger Theory 

While in search of the Schrödinger Equation the great 
Austrian physicist, Erwin Rudolf Josef Alexander Schrö- 
dinger (1887-1961) first arrived at the Klein-Gordon 
Equation but discarded it because it did not give the cor- 
rect predictions for the hydrogen atom. Schrödinger, was 
largely motivated to successfully search for the Schrö- 
dinger Equation after a thoughtful remark by the eminent 
Professor, Peter Joseph William Debye (1884-1966, of 
Austria), at the end of a lecture that he [Schrödinger] 
delivered on de Broglie’s waves at the University of Vi- 
enna where he [Schrödinger] was working. 

Professor Debye who was the head of the physics re- 
search group, on hearing of the de Broglie waves, he 
asked Schrödinger to explain these to the rest of the re- 
search group. So, the great Schrödinger weighed up to 
the task. At the end of the lecture, Professor Debye re- 
marked that it seemed childish to talk of waves without a 
corresponding wave equation?! This proved to be 
Schrödinger’s great moment of inspiration that would 
immortalize his name in the annals of human history. 
What is the wave equation describing the de Broglie 
waves? 

In his 1924 doctoral thesis, which was nearly turned 
down [thanks to the pre-eminent French physicist Paul 
Langevin (1872-1946)’s wisdom and Einstein’s influence 

and stature1], the French Prince, Louis Victor Pierre 
Raymond de Broglie (1892-1987) hypothesised that there 
is a duality between waves and matter; he gave a formula 
for the matter waves which stated that the wavelength of 
material particles is inversely proportional to the mo- 
mentum of the matter particle in question. However, in 
his proposal, he did not propose the corresponding wave 
equation for these matter waves. As Professor Debye 
pointed out to Schrödinger, logic dictates that every wave 
must be described by a corresponding wave equation. 
The deep-and-agile Schrödinger saw immediately the 
depth and breadth of Professor Debye’s question and as 
the lore holds; he [Schrödinger] went into “hiding” for 
about six months in search of the Schrödinger Equation 
which he successfully found at the end of his esoteric 
sojourn which was not without tribulation and trials [6]. 
The equation he found is: 

2
2 ,

2
V i

m t


     


                (1) 

where the arcane symbol   is the Schrödinger wave- 
function (or probability amplitude),  is Planck’s nor- 
malized constant,  is the mass of the particle in ques- 
tion and 


m

  is the usual 3D differential operator and t  
is time. In presenting his equation in 1926, Schrödinger 
interpreted the magnitude of the wavefunction as giving 
the density of the Electronic charge of the atom. How- 
ever, Max Born [3] gave a radically different interpreta- 
tion, where this quantity [magnitude of the wavefunction] 
is assumed to represent the probability that the atom is in 
a given state. In this way, Born ushered physics into the 
depth and realm of probability calculus. To this day, 
physicists do not agree on how to interpret this wave-
function but the general consensus is that, it is a prob-
ability function. 

2.1. Schrödinger Probability Current Density 

For instructive purposes, we present here the usual way 
in which one arrives at the expression of the Schrödinger 
probability current density. To do this, we have to take 
the Schrödinger Equation, divide it throughout by  
and then multiply the resultant by the complex conjugate 
of the wavefunction, i.e.: 

i

1Instead of rejecting de Broglie’s doctoral thesis, the cautious Langevin 
decided that the greatest living scientist of the day—Albert Einstein—
must be consulted on the matter before a fateful decision is reached. 
The agile Einstein immediately endorsed the idea with the remark that 
de Broglie had gone a step further from where he [Einstein] had left the 
issue of wave-particle duality. In his [Einstein] own words: “I believe it 
is a first feeble ray of light on this worst of our physics enigmas. I, too,
have found something which speaks for his construction” [see e.g. Ref.
5, p. 21]. Behold! To a “sleepy world”, unknowingly, like Russia’s 
Sputnik flying past the United States of America in the cover of dark-
ness, de Broglie had just opened the scientific Pandora’s box, a very 
rich scientific gold mine which to the present we are still trying to 
understand. 
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* * 2 2

2

i imV

t m

         




* 



.        (2) 

Further, taking the complex conjugate of this same 
equation and then multiplying it by the wavefunction, 
one arrives at: 

*
2 * *2

,
2

i imV

t m

         








      (3) 

and now adding these two equations, one obtains: 


*

* * 2 .
2

i

t t m

 
       

 
 2 *     (4) 

If we set , which is the probability density 
function, then: 

*=  

*
* .

t t

  
  

  t
              (5) 

For the right handside of Equation (4), we will have: 

 

 

* 2 2 *

* *

2

,
2

i

m
i

m

    

       




        (6) 

and setting: 

 * ,
2

S i

m    
J *            (7) 

which is the Schrödinger probability current density, then, 
Equation (4) reduces the probability conservation equa-
tion, i.e.: 

.S

t 

  


J                 (8) 

Now, this is not the only continuity equation that can 
be written out of the Schrödinger Equation. The quantity 
 , S  J  comprises the four probability current density. 
In the next section, we shall write another continuity 
equation out of the Schrödinger Equation not in terms of 
the probability density function but in terms of the prob-
ability amplitude, . 

2.2. Schrödinger Equation as a Continuity 
Equation 

To write down another continuity equation out of the 
Schrödinger Equation in terms of the probability ampli- 
tude, we know that, for any general smooth, square inte- 
grable and differentiable space and time varying function 
(or field) , from the chain rule, the follow- 
ing holds true always: 

 , t   r 

   

 
0 0

0

d
d = d

d

= d ,

t

t

t

t

t
t

t

       
 



 



r

r

rr

v
       (9) 

where  is the guiding velocity of the particle de-
scribed by the field (i.e., the function ) and 

v
 d r  

d d dx y z i j k  is a differential element of the position 
vector, where the , , s are the usual orthogonal 
unit vectors along the x, y and z-axis respectively. In the 
integral (9), the initial conditions are such that at time 0 , 
the particle is at position . At 

i j k

r
t

0r    , t0 0 , the 
wavefunction 

, t r r
  is such that 0 0 . This initial 

condition 
 r  , 0t

 0 0, 0i.e. t     is required by one of the 
postulates of QM where the wavefunction must vanish at 
the end points where the particle is confined2. The iden-
tity (9) is central to the main result of this reading—it is 
the guide and lodestar of the present thesis. If the reader 
has any objections to the final conclusions that we shall 
arrive at, then they must object to this identity forthwith. 

r

Before we proceed, we need to clearly define . Our 
interpretation of is exactly the same as that handed down 
to us by the great theoretical physicist—American- 
British Professor, David Joseph Bohm (1927-1992), in 
his Pilot Wave Theory which is popularly known as 
Bohmian Mechanics3 [8,9]. Remember that all quantum 
mechanical wavefunctions are functions of the phase 

v

S t  k r  i.e.  t    k r : where k  and 
  are the wave number and angular frequency of the 
particle. Since according to the de Broglie’s wave-parti- 
cle duality hypothesis  p k E and    where  
and  are the momentum and energy of the particle; it 
follows that 

p
E

 Et  p r   and . As 
first noted by de Broglie4 (1927) and latter [8,9] 
(independently of de Broglie’s 1927 work), the wave- 
function can be written in the form 

S E t p r

iSRe    where 
 ,R R t r  is a real function which acts as a modulation 

function of the particle wavepacket. With the wavefunc- 
tion written in this form, the guiding velocity  of the 
particle then becomes: 

v

*

*
Im ,

m

          

v              (10) 

where  is the mass of the particle under consideration 
[8,9, de Broglie, ]. In (10), the operator “Im” ex-
tracts only the imaginary part of a complex function or 
complex number i.e.: if 

m
1927

z x iy   is a complex number, 
then  zIm y  and if  Im  F x H x  

G H
 is a com- 

plex valued function where  are real valued 
functions of 

 ,
x , then    Im F x    H x . Thus, for any 

smooth square integrable and differentiable function   
the particle guiding velocity is given by (10). 
2For example, in one dimension, for a particle confined in the region 
(0 )x a  , we have (0, ) = ( , ) = 0t a t  . 

3This theory is also called the de Broglie-Bohm theory, the Pilot-Wave 
model, or the Causal Interpretation of Quantum Mechanics. 
4de Broglie, L., 1928, in Solvay 928, p. 119: Rapports et Discussions 
du Cinqui ème Conseil de Physique tenu à Bruxelles du 24 au 29 Oc-
tobre 1927 sous les Auspices de l’Institut International de Physique 
Solvay, Paris: Gauthier-Villars. 
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Now moving on; the identity (9) can further be simpli- 
fied. Since , it follows that 0 v      v v  
because according to the chain rule:  

  0         v v v v v . 

With  given, (9) becomes:     v v

d
t

t
t 

0 0
d

t

t
t              v v .        (11) 

All we want with the relation (9) is to have the 
operator “ “ outside of the integral operator “∫”. This is 
important for latter purposes. In the far right of (11), the 
velocity  has been removed from inside the integral 
sign. This is possible because  has no explicit depen- 
dence on time. Any change in  with respect to time 
happens not explicitly but implicitly. 

v
v

v

Now, as we are going to demonstrate; using the iden-
tity (11), one can recast after a few basic algebraic opera-
tions, the Schrödinger Equation (1) into a continuity 
equation. To achieve this, we begin by dividing (1) 
throughout by “ ”, where we will have: i 

2 .
2

i i
V

t m


     





          (12) 

Now, taking the first term on the right hand side of 
Equation (12), it is clear that: 

2 .
2 2

i i

m m
        

  
           (13) 

For the second term on the right hand side of (12), 
using the identity (11) where  replaces V   in this 
identity i.e. , it is clear from this identity that: V 

0
d .

t

t

i i
V V

      
v

t

              (14) 

Now, adding (13) and (14) , we will have: 

2

0

2

d .
2

t

t

i i
V

t m
i i

V t
m


     


        

v





 

        (15) 

This can now be written as: 

0,S

t 


 


J               (16) 

where the new current term S
J  is given by: 

0
d .

2

tS

t

i i
V t

m    



vJ            (17) 

What this means is that there is a corresponding con-
served probability amplitude current for the probability 
current. The quantity  com- 
prises the four probability amplitude current. Though this 
is a very trivial result, if it is correct (as we believe) and 

acceptable, it is a new result in QM. 

   , : 0,1,2,3SJ 
  J

3. Klein-Gordon Probability as Currently 
Understood 

For a free particle of rest mass 0  and wavefunction m
 , the Klein-Gordon Equation describing this particle is 
given by: 

22
2 0

2 2

1
.

m c

c t

          
          (18) 

This equation is named after the physicists Oskar 
Klein and Walter Gordon, who in 1927 proposed it as an 
equation describing relativistic Electrons. The Klein- 
Gordon Equation was first considered as a quantum me- 
chanical wave equation by Schrödinger in his search for 
an equation describing de Broglie waves. In his final 
presentation in January 1926 where he proposed the 
Schrödinger Equation, Schrödinger discarded this equa- 
tion because when the Coulomb potential is in-cooper- 
ated for the case of an Electron-Proton system, it did not 
give the correct predictions for the hydrogen atom as 
Schrödinger expected. 

Now, we would like to develop for the Klein-Gordon 
Equation the usual expressions for probability density 
function and the corresponding probability current den- 
sity similar to the Schrödinger case. This is a task that is 
considered a bit tricky as compared to the Schrödinger 
case because the Klein-Gordon Equation is second dif- 
ferential equation. If we take the probability density 
function *     and then differentiate it with respect 
to time, what we get is (5), and from this point, if we are 
to follow the Schrödinger prescription, we should be able 
to arrive at a continuity equation containing the prob- 
ability density function and the corresponding probability 
current density by substituting the time derivatives of the 
wavefunction. 

Now—here lies the problem; most textbooks will tell 
you that one is not able to proceed to find the continuity 
equation for the above equation from the Schrödinger 
prescription simply because the Klein-Gordon Equation 
does not have a first-order derivative that would enable a 
straight substitution [see e.g. Ref. 10, pp. 576-578]. So 
what is typically done is to work backwards, that is start 
from the known Schrödinger probability current density 
and proceed from there to see if one can find a corre- 
sponding probability density function. As we all know, 
one does arrive at a continuity equation, namely: 

0,SKG

t 


 


J              (19) 

where the Klein-Gordon probability is given by: 
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*
*

2
0

.
2KG

i

t tm c


  
     

 
         (20) 

There is no need for us to go through the full deriva- 
tion of the Klein-Gordon probability continuity equation 
as this can readily be found in most textbooks of quan- 
tum mechanics. Further, there is no need to demonstrate 
that this probability density function leads to negative 
probabilities for particles of negative energy as this is 
well anchored in most quantum mechanics textbooks. 
What we shall do is to point out that there is a loophole 
in this derivation and this loophole is deeply embedded 
in the fact that: 

The Klein-Gordon Equation is not a first order dif- 
ferential equation which would allow for a smooth and 
straight forward substitution of the time derivative of the 
magnitude of the Klein-Gordon wavefunction into Equa- 
tion (4) directly from the Klein-Gordon Equation, so as 
to derive the probability continuity equation; because of 
this, one has to seek other alternative means. 

Why not force the Klein-Gordon Equation to produce 
a probability current density under these conditions? The 
legitimate rules of mathematics allow for this, why not 
go for it?! This is our borne of contention. 

It is perhaps important that we mention here that in 
1934, two other distinguished Austrians, Wolfgang Pauli 
(1904-1982) and Victor Frederick Weisskopf (1908-2002) 
discovered what is hailed as a suitable interpretation of 
the Klein-Gordon Equation within the scope of quantum 
field theory. Treating it [Klein-Gordon wavefunction] 
like a field equation analogous to Maxwell’s Equations 
for an electromagnetic field, they quantized it, so that   
became an operator [11]. This made the Klein-Gordon 
theory more acceptable and since then, there appears to 
have been some acceptable and believable order in the 
Klein-Gordon world. 

As will be seen latter in (4), if the main reason for 
adding the Klein-Gordon probability density function that 
leads to negative probabilities is that it emerges from the 
continuity equation constructed out of the second order 
differential Klein-Gordon Equation; then, this way of 
arriving at the probability density function can be chal-
lenged as there is another way to arrive at a continuity 
equation from the Klein-Gordon Equation, this equation 
involves the magnitude of the Klein-Gordon wavefunc-
tion. After all, no one has made a direct measurement to 
test the correctness or lack thereof the Klein-Gordon 
probability and the Klein-Gordon probability current 
density, it is just but an “agreed upon interpretation”. 

§

Klein-Gordon Probability Amplitude Current 

First things first, we need to categorically state one thing 
which is clear to all: which is that, the Klein-Gordon 

Equation is not cast in stone; the meaning of which is 
that it can be rewritten in different but mathematically 
equivalent forms provided one applies permissible and 
legitimate mathematical operations to it. So, just as we 
have done in the Schrödinger case, we will write down 
the continuity equation of the Klein-Gordon Equation 
which involves the probability amplitude    and not 
the probability density function   . By integrating the 
Klein-Gordon Equation with respect to time throughout, 
one consequently recasts this equation into the form: 

 
2

0
2

1
d d

m c
t t

tc

             
. 
    (21) 

In the above equation—for our convenience vis-a-vis 
the labour of typing, we have not put the limits to the 
integral as we have done in (11); from here and after, we 
shall no-longer put the limits. It shall be assumed that the 
reader knows them. That said, written in this form i.e. the 
Klein-Gordon Equation in the form (21), one can easily 
construct a continuity equation. The strategy here being 
championed is to rewrite the second order Klein-Gordon 
differential equation as a first order differential equation 
in terms of time as is the case with the Schrödinger 
Equation. Having done this; using the fact stated in (11), 
it is not difficult to deduce that (21) can further be writ-
ten as: 

   
22

2 0d d d
m c

c t t t
t

.
           

    
 

v   (22) 


Thus setting: 

  
22

2 0= d d dKG m c
c t t t

 
    

 
   ,J v      (23) 

it is easy to see that: 

0.KG

t 


 


J              (24) 

This is our desired equation. What this means is that 
the probability amplitude has a corresponding current. In 
the language of Einstein’s Special Theory of Relativity 
(STR), it means we can talk of a four probability ampli-
tude comprising the probability amplitude and the prob-
ability amplitude current i.e. .  , KG J

4. New Klein-Gordon Probability Continuity 
Equation 

Now, we come to the main theme of this reading. In (21) 
we have written the Klein-Gordon Equation with the 
time derivative to first order. For convenience, we shall 
rewrite this Equation (21) here as: 

 
22

2 0d d
m c

c t t
t

             
. 
    (25) 
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Now, multiplying this equation throughout by the 
complex conjugate of the wavefunction, that is: 

 * * 2

22
*0

d

d ,

c t
t

m c
t

        

 
   
 





          (26) 

and then taking the complex conjugate of this same 
equation and then multiplying it by the wavefunction, 
one arrives at: 

 
*

2 *

22
*0

d

d .

c t
t

m c
t

       

 
   
 





           (27) 

Adding these two Equations (26) and (27), one obtains: 

 

 

*
* 2 * 2 2

22
* *0

d

d .

c
t t

m c
t

 
        

 

 
     
 

 

 

* t

  (28) 

The left hand side is obviously equal to the time de-
rivative of the probably density function  i.e. *   

 *d d d dt    t

t t


. To simplify the right hand side, 
we have to make use of the identity in Equation (11); 
doing so, we will have: 

 
 

2 * 2 2 *

2 * 2 2 *

d

d d ,

c t

c

     

         


 

  v
  (29) 

and upon further reduction, the above becomes: 

 

 

22
* *0

22
* *0

d

d d .

m c
t

m c
t t

 
     
 

         
  

 

  v





 
 

   (30) 

Now, adding (29) and (30), we obtain, KG J , 
where KGJ  is the new Klein-Gordon probability current 
density such that KG J v  where   is what we shall 
call the Klein-Gordon probability charge density. This 
charge density is such that: 

  

 

2 * 2 2 *

22
* *0

d

d d .

c

m c
t t




       


       
  

   

 

t





     (31) 

This new Klein-Gordon probability current density 

KG J v  is what leads us to positive definite probabili-
ties5. All our seemingly naïve efforts lead us to recast the 
Klein-Gordon Equation into the new continuity equation: 

0.KG

t 

  


J                (32) 

In this manner, just as in the Schrödinger case, the 
magnitude  * 0      of the wavefunction gives a 
positive definite probability and is part of a four current. 
The quantity  , KG

 J  is the new four Klein-Gordon 
probability current that leads to positive definite prob-
abilities via the new definition of the Klein-Gordon 
probability current KG

J . We feel and believe this ap-
proach is the correct approach to understanding the 
Klein-Gordon Equation. It contains no negative prob-
abilities but real and objective probabilities just as in the 
Schrödinger case. It is our modest and vested opinion 
that it is much easier to try and understand KG

J  as the 
new Klein-Gordon probability current density, than to try 
and justify negative probabilities as Dirac, Feynman and 
many others have attempted (with great pain), only to 
fail. 

5. Discussion and Conclusion 

5.1. General Discussion 

At this juncture, we are of the candid view that the reader 
will concur with us that—from the rather trivial presenta-
tion made herein; the existence of negative quantum 
mechanical probabilities depends on the choice of the 
probability current density that one has made. In moving 
from Schrödinger’s theory (which officially was first to 
be discovered) to the Klein-Gordon theory, it is the 
probability current density that is held sacrosanct [e.g. 
Ref. 10, pp. 576-578], the meaning or suggestion of 
which is that it must be the important quantity, otherwise 
there really would be no reason to preserve it. We ask 
our dear reader; could there be any other better reason to 
do so besides that it is a “sacrosanct quantity”? We have 
suggested otherwise, that it is the probability density 
function in the Schrödinger theory that must be held sac-
rosanct when we move over to the Klein-Gordon theory. 
This way of looking at the Klein-Gordon theory resolves 
(once and for all-time) the negative probabilities that 
bedevil and bewilder this theory. Because we here have 
shown that these negative probabilities can be gotten rid 

5In comparison—the expression for the Schrödindger probability cur-
rent density ‘is more beautiful’ than the new expression for the 
Klein-Gordon probability current. In-accordance with Weyl’s doctrine, 
our work is always to unite the Truth with the Beautiful. In all honesty, 
there is no derivable Truth in negative probabilities of Klein and 
Gordon, thus how can we unite these together into an everlasting or-
nament? There is obviously an element of truth in the new positive 
definite Klein-Gordon probability. Somehow, there must exist a hidden
beauty in the new Klein-Gordon probability current. 
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of completely, we believe this reading is a significant 
contribution to physics insofar as the endeavours to de-
ciphering and fathoming the meaning of Klein-Gordon’s 
negative probabilities is concerned. 

In all history of human experience, it is important to 
note that no single experiment has been performed to 
date to directly measure the probability and the probabil-
ity current implied by the quantum mechanical wave-
function. For example, the wavefunction of the hydrogen 
atom as deduced from the Schrödinger Equation is 
known yet no one has measured directly that the Electron 
in the hydrogen atom is found at the position that it is 
expected to be with the predicted frequency. The prob-
ability interpretation is an interpretation that strongly 
appears to work very well, especially when dealing with 
ensembles. What this means is that the currently accepted 
Klein-Gordon probability can be revised as we have done. 
If what is required of this probability is that it satisfies 
the continuity equation where this probability density 
function has a corresponding probability current density 
—well then—we have shown that there exists such a 
positive definite probability satisfying the continuity 
equation. It is difficult to dismiss the present approach 
(proposal). Whether or not mainstream science will seri-
ously consider our approach (proposal made herein), 
only time will tell. 

If our suggestion is correct and acceptable (as we be-
lieve it to be), then, one is lead to wonder what trajectory 
physics might have taken if what we have just presented 
were known to Dirac and his contemporaries. This is so 
especially given that Dirac was largely motivated by the 
desire to get reed of the negative probabilities that appear 
in the Klein-Gordon theory. There is nothing exotic or 
new about the ideas that we have presented, it is just a 
different way of looking at things. The only thing that 
appears to make this approach of importance, is that it 
allows us to settle once and for all-time the nagging 
problem of negative probabilities. 

Clearly, if the present presentation was available and 
acceptable to Dirac before the advent of his equation; 
then, if he [Dirac] was to discover the Dirac Equation as 
he did, he would have arrived at it from a different point 
of departure altogether. I wonder what his motivation 
would have been. Trying to imagine what his point of 
departure would have been, leads me into the wilderness 
of thought—analogous to chasing after the rainbow, the 
wind or one’s own shadow. Perhaps, out of mathematical 
curiosity, beauty and elegance, he simply would have 
sought for an equation linear in both the time and space 
derivatives. 

On the other hand, since negative probabilities are in-
trinsically tied to negative energy-mass particles, the 
non-existence of negative probabilities would mean that 
the existence of negative energy-mass particles has no 

problem in principle. This invariably means that negative 
energy-mass particles must be considered without any 
prejudice whatsoever as they have equal legitimacy to 
exist. Our only concern would be what these negative 
energy-mass particles are; are they Dirac’s antimatter, or 
Dirac’s sea of invisible energy-mass particles? Current 
thinking due to Richard Feynman is that negative en- 
ergy-mass particles are antiparticles. These antiparticles 
have positive energy and the reason for this is that they 
are thought to be negative energy-mass particles moving 
back in time, in which case they would appear to have 
positive energy-mass [see e.g. Ref. 12, pp. 66-70]. The 
perfect symmetry of Dirac’s theory allows a negative 
energy-mass particle that is moving forward in time to 
look identical to a positive energy-mass particle moving 
back in time. 

5.2. Conclusions 

Assuming the correctness (or acceptableness) of the ideas 
presented herein, we hereby make the following conclu- 
sion: 

1) This reading has demonstrated that negative prob- 
abilities can be avoided in quantum mechanics by mak- 
ing an appropriate choice of the Klein-Gordon probabil- 
ity current. 

2) By avoiding the negative probabilities as suggested 
herein, it is seen that negative energy particles will still 
exist with the important difference that they are no longer 
attached to the meaningless negative probabilities as is 
the case in the original Klein-Gordon theory. These 
negative energy particles have a real positive definite 
probability of existence. 
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