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The elementary pen-and-string method to draw ellipsis has been devised to examine planetary orbits on 
the basis of the Kepler’s laws. Besides qualitative features of the orbits, quantitative dependence of the 
orbital shape on the quantities appearing in the Kepler’s laws can also be analyzed with simple geometri-
cal procedures. The method thus provides a relevant intermediate step to students prior to the study of the 
rigorous theory of central force problems. 
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Introduction 

Kepler’s laws of planetary motion are usually stated as (Fig-
ure 1): 

1) The planetary motion follows an elliptic orbit with the Sun 
at one of its two foci, 

2) The area swept by a line joining a planet and the Sun dur-
ing a unit time interval, areal velocity, is constant, and, 

3) The cube of the semimajor axis of the elliptic orbit is pro-
portional to the square of the orbital period, i.e. one year. 

Kepler’s laws are among the most well-known scientific laws 
that frequently appear in articles on popular sciences. Despite 
of their ubiquity, however, the laws require university level 
knowledge on analytical geometry to treat quadratic curves and 
some expertise on handling differential equations to solve 
physical problems if they are to be fully understood on the 
bases of more fundamental physical principles, i.e. Newtonian 
dynamics. This mathematical aloofness often discourages those, 
say secondary school students, who are not satisfied with 
knowing only what are stated in Kepler’s laws but interested 
further in how they work and why they stand. Therefore, it is of 
much pedagogic importance to provide some intermediate ap-
proach that can turn Kepler’s laws into congenial working 
knowledge without recourse to university level mathematics.  

As a possible candidate for such approach, a method based 
solely on elementary geometry is discussed here. The method 
has been devised by noting that the key notion of the Kepler’s 
laws is the elliptic nature of planetary orbits, and, accordingly, 
any simple method to handle ellipses, if appropriately related to 
the principles of mechanics, could make the laws viable even 
without the knowledge on university level mathematics and 
physics. 

Motivated by R. P. Feynman’s solely geometric proof of Ke-
pler’s first law (Goodstein & Goodstein, 1999), a 
non-mathematical scheme comprising a series of geometrical 
construction has been proposed to analyze major features of 
planetary orbits (Okabe & Yajima, 2004; Yajima & Okabe, 
2006). Here an alternative but much simpler approach based on 
a familiar method to draw ellipses is discussed. 

 

Figure 1.  
Quantities appearing in Kepler’s 
laws of planetary motion. 

Method 

The most familiar and virtually unique elementary method to 
draw an ellipse is to use a pair of pins, a string, and a pen; also 
a paper is of course necessary on which the ellipse is drawn. 
The string is tied to the pins at each end and the pins are firmly 
pushed into the paper separately. The separation of the pins is 
thus shorter than the length of the string. The pen, when moved 
so as to keep pulling the string taut, traces an ellipse. By using 
2a long string and setting the distance of pins to 2ae (e < 1: 
orbit’s eccentricity), one can draw an ellipse with its two foci 
on the pins and having semimajor and semiminor axes of a and 

21b a e  , respectively (Figure 2). This method to construct 
an ellipse is referred to as “pen-and-string” method hereafter. 

Next we summarize some important properties of the elliptic 
orbit of planets moving under the gravitational potential, 

 V r k r  .                  (1) 

For details of the discussion to follow, any standard textbook 
on classical mechanics should be consulted (Goldstein, 1980). 

Semimajor axis a of the orbit becomes, 

2
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a

E
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where E (<0) is the total mechanical energy. The angular mo-
mentum vector L and the planet mass m determine semiminor 
axis b as, 
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Figure 2.  
Pin-and-string method as applied to the drawing of pla-
netary orbits under various conditions. 
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and semi latus rectum  as,  21l a e  
2L

l
mk

 ,                    (4) 

where l = |L|. 
Quantities that appear in the Kepler’s laws, the orbital period, 

one year, 
3 2

π 2T k m E
  and the areal velocity 2A L m  

can then be expressed respectively by the above parameters 
characterizing the orbital shape, a, b, and l, as, 

3 22πT m k a  ,               (5) 

and, 

1 1
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b
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a
    .          (6) 

When the pen-and-string method is used to draw planetary 
orbits, the length of a string tied to pins, 2a, determines the 
orbital period (Equation (5)) and, though not appeared explic-
itly in the Kepler’s laws, the total mechanical energy of the 
motion (Equation (2)). And orbits with various areal velocities 
can be drawn by changing the separation of the pins as in Fig-
ure 2 (Equation (6)).  

For instance, one can draw orbits having the same areal ve-
locity A but different orbital periods T, if one uses strings with 
different length and adjusts the pin separation so as to keep the 
semi latus rectum l constant. And in case one wants to see how 
the orbital having a definite one year period T, alters its shape 
when the areal velocity A is changed, one can use single string 
and draw orbits by changing either the semi latus rectum l or 
the semiminor axis b; the latter might be more convenient in 
this case since  whileb A l A .  

Examples 

To see how this method works, Figure 3 shows orbits char-
acterized by the same areal velocity but different one year pe-
riod. The string used to draw the larger orbit is twice as long as 
the one used to draw the smaller orbit. The magnitude of the 
mechanical energy, |E| = −E, for the larger orbit is therefore one 
half of that for the smaller orbit (Equation (2)). Accordingly, 
the one year period on the larger orbit is about 2.8 times longer 
than that on the smaller orbit (Equation (5)). Despite the dif-
ference in mechanical energy and one year period, they share 
the same areal velocity that leads to the equal length of semi 
latus rectum l.  

Figure 4 illustrates, on the other hand, orbits of a planet 

moving with the same one year period but with different areal 
velocity. Having the same orbital period, they can all be drawn 
with a string. Values of areal velocity for three orbits in the 
figure are in the ratio of 3:2:1, so are the lengths of semiminor 
axis (Equation (6)). 

Circles around the fixed pin that represents the sun in these 
figures have radii 2a, the length of the string used to draw each 
orbit. Any orbit having the particular one year period specified 
by the string used is drawn within the corresponding circle. It 
might merit attention that eccentricity of the orbits shown here 
is much exaggerated compared with that of actual planetary 
orbits in our solar system. 

For quantitative discussions, it is useful to prepare such 
graph data as those showing the relation between one year pe-
riod T and the string length 2a:  3 2

2T a  (Figure 5), and  
 

 

Figure 3.  
Planetary orbits with the same areal velocity 
but different orbital period. See text for details. 

 

 

Figure 4.  
Planetary orbits with the same orbital period 
but different areal velocity. See text for details. 
 

 

Figure 5.  
Conversion graph assisting to draw orbits with 
various orbital period, i.e. one year period. 
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between the areal velocity A and semi latus rectum l: l A  
(Figure 6). 

the Kepler’s laws without recourse to university level mathe- 
matics and physics. Not only qualitative features of the orbits 
but also quantitative dependence of the orbital shape on the 
quantities appearing in the Kepler’s laws can be readily ana- 
lyzed not with mathematical but with geometrical procedures. 
The method thus provides a relevant intermediate step to stu- 
dents prior to the study of more advanced, fully-developed 
theory of central force problems. 

Conclusion 

The elementary pen-and-string method to draw ellipsis is well 
applicable to the examination of planetary orbits on the basis of 
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Figure 6.  
Conversion graph assisting to draw orbits 
having the same one year period but mov-
ing with various areal velocity. 

 


